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Abstract—Characteristic polarization state theory is restudied case, it is known that there usually exist, in total, five pairs
for the symmetric coherent Sinclair scattering matrix case. First, of characteristic polarization states: two CO-POL Nulls for
the geometric relations of the characteristic polarization states on e the radar receives zero power in the co-pol channel; one
the Poincaré sphere are derived. Based on these relations, slmpleCO POL Max f hich th d . .
formulas are given for all of the characteristic polarization states =™~ ax for whic € radar receives maximum Power
of this Sinclair matrix in Stokes vector form. From the formu-  in the CO'D_Ol cha_n_nel; and one CO-POL Saddle for which the
lation, it is clear that the CO-POL Nulls are fundamental char- radar receives critical power in the co-pol channel, two X-POL
acteristic polarization states for the symmetric coherent Sinclair Nulls for which the radar receives zero power in the cross-pol
scattering matrix case, in that the others can straightforwardly be channel, two X-POL Saddles for which the radar receives

obtained from the Stokes vectors of the CO-POL Nulls. For fur- itical in th | ch | d two X-POL M
ther study of the characteristic polarization state and the distribu- critical power In the cross-pol channel, and two A- axs

tion of the received powers on the Poincaré sphere, we introduce for which the radar receives maximum power in the cross-pol
the concept of the equi-power curve. It is defined as the curve on channel. However, the CO-POL Saddle and the CO-POL Max

the Poincaré sphere on which the received powers in some definedgre identical with the X-POL Nulls; and, therefore, there exist,

channel have the same value. We deal with the characteristics of i to15)  eight different physical characteristic polarization
the equi-power curves for various special cases. In addition, we

show how the characteristic polarization states are generated by states for the s.ymm(,atnc coherent Sinclair scattering matrix
the equi-power curves. It is demonstrated that the characteristic Case. On the Poincare sphere, the CO-POL Nulls, the CO-POL
polarization states can usually be regarded as the points of contact Max, and the CO-POL Saddle form an interesting pattern,
of the Poincaré sphere and a conicoid representing a power-related called theHuynen fork{2].

quadratic form. This leads to a new method to introduce the char- Up to now, although there have been several approaches ap-
acteristic polarization states. The new method provides a geometric _ . . L o
interpretation for visualization of changes in polarized states on the pl!ed for. determmmg the chgractenstlc-polanzatlon states, we
Poincaré sphere. still desire to find a set of “final more rigorous and complete
formulations” for the characteristic polarization states of a co-
herent symmetric scattering matrix [7]. On the other hand, the
Poincaré sphere and the Stokes vector are frequently used in
radar polarimetry because the former is a useful graphical aid
. INTRODUCTION for the visualization of polarization effects. Therefore, it is im-

HE problem with the characteristic polarization states w&9rtant to find a set of formulas or a simple method to obtain the
T first considered by Kennaugh [1], and later was studiegfokes vectors of the characteristic polarization states in a more
and redeveloped by Huynen [2], Boerratral. [3]-[11], Van diréct approach. _ o
Zyl [12], [13], Mott [14], Luneburg and Cloude [15], and This paper consists of two parts. In the first part, we initially
Yamaguchét al. [16]. This problem involves finding the polar- Study the geometric relations of the characteristic polarization
ization states for which the radar receives minimum/maximufiates on the Poincare sphere for the symmetric coherent Sin-

power. In the symmetric coherent Sinclair scattering matrflair scattering matrix case. Then, based on these relations, a
simple formula is proposed to obtain all characteristic polar-
ization states (in the Stokes vector form) in a closed compre-
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the Poincaré sphere on which the received powers in some biethe above equations, the superscriad= denote the trans-
fined channel have the same value. Kennaugh [1] and Huynawsition of a vector and the complex conjugation, respectively;
[2] considered the similar problem in the co-pol channel casg. (i = 1,2, 3) denotes the components of the sub-Stokes vec-
Mott [14] further pursued the problem, based on the concepttofs of the CO-POL Nullg:, andg:,; andA 2 is given by

the polarization match factor, but he did not use this concept for

studying the problem on the characteristic polarization states. AL 2 = +4/53 — s183. @)

In this paper, we deal with the characteristics of the equi-power

curves which are important for analyzing the distribution oé An Eigenvalue Probl

the received powers on the Poincaré sphere. Besides, we show genvalue Froblem
how the characteristic polarization states are generated by thé the cross-pol channel, the received power is expressed as
equi-power curves. In this way, we provide a new method for 1,

introducing the characteristic polarization states, which is quite Py = 59Ky (8)
different from Kennaugh’'s method [1] (based on the voltage
equation), Huynen's method [2] (based on the power equatioh),~ * ; _ )
Boerner's method [4], [5] (based on the polarization ratio), ar{arlzatmn state of the transmitter (without loss of generality, we

Yamaguchi's method [16] (based on the eigenvalue problemfSSume thag; + g3 + g = 1 for all the Stokes vectors in this
paper); andK].,. is the modified Kennaugh matrix, given by

Il. THE CHARACTERISTIC POLARIZATION STATES IN THE koo ko1 koo ko
CO-POL (HANNEL AND AN EIGENVALUE PROBLEM K], = —kor —ki1 —ki2 —kis ' ©)
A. The Characteristic Polarization States in the Co-Pol —ko2  —kia =k —kas
Channel _k03 _kl?; _k23 _k33
Let Let
— t
[S] _ |:Sl 32:| (1) X = [91792793]
Sz 53 and
denotea symmetric scattering matrf a radar target, and let ki k2 ks
[J] = | k12 koo ko3 (10)
koo kor ko2 ko3 kis  kos ka3
[K] _ kOl kll k12 k13 (2) )
T ko ki Koy Koz Then (8) can be rewritten as
kos kiz kes k 1
o T e e P, = 5 (koo — X[ 1] X). (11)
denote the corresponding Kennaugh matrix which is defined in 2
the Appendix. Ifv = \/k§, + k3, + k3; # 0, then the char- By solving the following eigenvalue problem:
acteristic polarization states in the co-pol channel are given by
[19] and [20]: [Je] X = AX (12)
1) the CO-POL Max: we obtain three linearly independent eigenvectors
g5, = (1, koy /v, Koz /v, ko /v)! (3) Xi(t = 1,2,3). Itis easy to prove that-X,(i = 1,2,3)
are the X-POL Maxs, the X-POL Saddles, and the X-POL
2) the CO-POL Saddle: Nulls [16]. According to the definition of the X-POL Nulls,
¢ —(1,—k —k —k t 4y Wwe know from (11) that the eigenvalue corresponding to the
g; = ( o1/ 02/v 03/v) (4) X-POL Nulls is

3) for the case of3 # 0, the CO-POL Nulls:

An = koo- 13
B |$3|2 _ |)\172 +$2|2 00 ( )

gl - 2 2 (5a) . .
|s3|? 4+ |A1,2 + so| Denote the eigenvalues corresponding to the X-POL Maxs and
—2Re(s3(A12 + 52)) the X-POL Saddles a5, and )\, respectively. Then we know
g2 = : (5b) .
|s3|% + [A1,2 + s2]? from algebraic theory that
g — —211;1(s§§\A1,2 + 822)) (5¢) Ao 4 Am + A = trace[Jy] = ki1 + koo + kss  (148)
|35 + [AL2 + 2] A ds = det[Ji]. (14b)
for the case of; # 0, the CO-POL Nulls: )
|)\ 2 s 2 Sinceky1 + kas + kaz = koo, we know from (13) and (14) that
1,2 — S2|” — |81
= 6
DT P+ Pz — 52 (62) As+An =0 (15a)
* — det[.J;,
4o = 2RIz = 52)) (6b) A, — ek[ Kl (15b)
|s1|? + [A1,2 — s2]? 00
s = —2Im(s{(A12 — s2)) (60) Note that the received power corresponding to the X-POL Max
3=

|s1]2 4+ [A12 — 822 is greater then or equal to that corresponding to the X-POL
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Saddle. Therefore, we have from (11) that> X,,,. This result,
together with (15a) and (15b), lead to

det[Jk] >
—koo

A = =4 detl/i] _ (16b)
—koo

In this way, all eigenvalues of the matiixt;] are obtained. We
will make use of the above results later.

As =

o

(16a)

A

Fig. 1. Characteristic polarization states on the Poincaré sphere.
[Il. NEW APPROACH FOROBTAINING THE CHARACTERISTIC
POLARIZATION STATES The eigenvectors of this problem are the solutions of the fol-

There exist some relations in the characteristic polarizati(|)(?1wIng problem:

states of the symmetric coherent Sinclair scattering matrix. Ken- optimizea [S]?[S]a (17b)
naugh [1] first noticed these relations. Later, Huynen tried to
prove the relations by using his parameters and deducing the%h-
mouspolarization forkconcept [2]. Boerneet al. extended this
work, based on the polarization ratio [4], [5]. This section tries
to derive the geometric relations of the characteristic polarizahereg; (i = 1, 2, 3) denotes the components of the sub-Stokes
tion states on the Poincaré sphere for the symmetric cohergattor ofa. Obviously, the solutions of (17¢) are identical with
Sinclair scattering matrix case. Then, based on these results #aRdCO-POL Max and the CO-POL Saddle. #
the formula of the CO-POL Nulls, a new approach is proposed  Proof of (R2): From the assumptio=(n) # +GL(n), it
to obtain all the characteristic polarization states in the Stokigseasy to prove thds; | + |s3| # 0. For the case of3 # 0, we
vector form. have from (7) thal; = — o andA\? = A3 = s3 — s;s3. Using

On the Poincaré sphere, |€.(m), G.(s), and G>*(n) this result and (5), we can prove that
denote the CO-POL Max, the CO-POL Saddle, and the 5
CO-POL Nulls, respectively; and leGi%(m), GL2(s), e (n) +Ge(n)
and G.?*(n) denote the X-POL Maxs, the X-POL —2|s3/*v G.(m). (18a)

optimizekoo + ko191 + ko292 + kosga (17C)

Saddles, and the X-POL Nulls, respectively. Here, (Is3]% + | A1 + 52]%)(]s3]% + [ A2 + 52]2)
G.(m), G.(s), G2 (n), Gy (m), G*(s), and G;%(n) are  Eor the case of; #£ 0, we have from (6) that
expressed in the form of the sub-Stokes vectors and their tips
are denoted asi.(m), Gu(s), GL2(n), GL2(m), GL2(s), Gi(n)+Gi(n)
andG22(n), respectively (see Fig. 1). B —2s1|%v G 18b
In this section, we assume th@*(n) # +G(n) The T (512 F (AL = s2P) (512 + | Az — s2]2) e(m). (18b)
problem for the cases @ (n) = +G2(n) will be studied in L ) .
Section V. Under the assumption G2(n) # +G.(n), the Note thatG, (n) andG: (n) have the same amplitude. From the

geometric relations of the characteristic polarization states &2°Ve eguations, we deduce that (R2) holds. #

expressed as Proof of (R3): Let
R1) Gi(n) = G.(m),G2(n) = G.(s); v" = [kot, ko2, kos]- (19)
R2) G. dG? tric about th
) %.C(n) are symmetric about the Segmemi’hen using (10) and applying the Lagrangian multiplier method
R3) GL?(m) is parallel to the segmeni. (n)G2(n); to the problem
R4) G%?(s) is perpendicular to the segme@t (n)G2(n) minimize ¢'[K].g
as well as to the segme6t. (n)G2(n). subject toig? + g3 + g5 = 1

Now let us prove the above relations. we can prove that there exist two real numbegsandr,, such
Proof of (R1): Leta denote the X-POL Nulls, thefbla - hat

a = 0, which yields Kennaugh’s pseudoeigenvalue equation

[Ji]Ge(n) +v =0, Gi(n) (20a)
[Sla = A [_01 H ot = 2t [TGE(n) +v = 1,G2 (n). (20b)
According to the definition of the CO-POL Nulls, we have
wherea' is defined asit = [(1) _01 Ja*. This leads to []GE2(n) - G22(n) + 2v - GE2(n) + koo = 0.

Substituting (20) into the above equation, we can easily obtain
[S]7[S]a = |\ a. (17a) m = —koo — v - Gi(n) andry = —keo — v - G>(n). Note
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thatv = vG.(m), wherev = |jv|| = /K3, + k2, 5. From V2 V2 i
(R2), we deduce that, = 7., denoted ag. Therefore “we have CO-POL SaddleG.(s) = —50 -
from (20a) and (20b) that
X-POL Maxs:GL(m) = (0,1,0)!andG?(m) = (0, —1,0)!
[Jk] (Gi(n) — Gi(n)) =n (Gi(n) —Gi(n)) . (21)
X-POL SaddlesGL(s) = <f,o, f)
Note that) = —kgo—v-G2*(n) < —koo+||v|| < 0. Comparing 2 2

(21) with (12) and (16), we can deduce that= X,,, which and t

means that (R3) is true. # G(s) = _@ 0 ﬁ
Proof of (R4): Since[J;] is a real symmetric matrix and ” 27772

it does not have multiple eigenvaluesGP(n) # +Gi(n), t

thereforeGL?(s), GL*(m), andG*(n), the eigenvectors of  x_po| Nulls: GL(n) = <§7 £>

the matrix[./;], are orthogonal. From this orthogonality and the T2
results (R1-3), we deduce that (R4) is true. #nd .
Based on the above relations and the formulas (5) and (6), the Q@ _ V2 2
characteristic polarization states of a symmetric coherent Sin- 2(n) = T T Ty
clair scattering matrix can be obtained by the following simple
method. These results are identical to those found by using other opti-
1) The CO-POL Nullgat#(n) are given by (5) and (6). mization approaches [4], [5], [7], [11], [16], [19], [20], corrob-
2) The CO-POL MaxG.(m) is orating the validity of the proposed method.
G.(m) = — (G3(n) + G3(n)) / ||Go(n) + GZ(n)| . (22) IV. EQuI-POWER CURVES OF THERECEIVED POWER
3) The CO-POL SaddI&, (s) is In this section, we also assume tiGgt(n) # +G*(n). The
i problem for the cases @& (n) # +G>(n) will be studied in
G.(s) = (G:(n) +G2(n))/ |G-(n) + GZ(n)|| . (23) Section V.
4) The X-POL NullsGL2(n) are A. The Co-Pol Channel Case
In the co-pol channel, lef’ be an arbitrary constant afd<
G, (n) = Ge(m), Gi(n) = Ge(s). (24) C < maxP.. Then,
5) The X-POL Max€zL%(m) are P, =3g¢'Kl.g=C
2 2 2 __ 1 (27)
g1+ 92 +93=

G m). G2 (m) = + GG ) [ |GG ()| (@5)

represents a curve on the Poincaré sphere. We call this curve
where GL(n)G2(n) denotes the vector from the pointt€ €qui-power curvia the co-pol channel because the received
Gl(n) m@( ) and “=" means that both sidesPowers on this curve have the same value. Now let us consider

of the above equation have the same components. the shape of this equi-power curve. Using (10), we can express

6) The X-POL Saddle€:?(s) are the received power in the co-pol channel as
1 1
Gi(s5),Ga(s) = P.= 3¢'[Kleg = S(Ia)X - X +20- X + koo)
£ (Gi(n) x Gi(n)) / ||GE(n) x GZ(n)|| 1
(26) =5 (s X - X +2v- X) (28)

where “x” denotes the vector product. By the abovévhere[Jx]4. is given by
method, we can easily obtain all the characteristic polar-

ization states in the Stokes vector form for the case of k11 + koo k12 ks
Gl(n) # +G?(n). Let us use an example for showing [Jel+ = k2 k22 + Foo ka3 - (29
the validity of the proposed method. ki3 ks k33 + koo
Example: Let [S] = | 2 O'5] be a scattering ma- Accordinato algeb = . X) =
0.5 —1 gtoalgebratheory, = (1/2)([Ji]+ X - X+2v-X) =

trix of a radar target. According to (5), we obtain the& represents a conicoid, the shape of which is determined by
CO-POL Nulls G:(n) = (=(1/3),(v/7/3),—(1/3))t and the matrix[J,],. From (13), (16), and the proof of (R3), the
G3(n) = (—(1/3),—(v/7/3),—(1/3))t. Then, from (22) to eigenvalues of the matri/;], are

(26), the following results can be obtained easily:

A = 2kgo > 0 (30a)
CO-POL Max:G.(m) = V2 0, Y= vz\' A =—v-G3(n) >0 (30b)
9 0 T )\Z,j' = 2kgo +v - G’z(n) > 0. (30c)
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Therefore,P. = (1/2)([Jx]+X - X + 2v- X) = C represents  CO-POL Null ’
an ellipsoid and the equi-power curve (27) is the intersection «
the ellipsoid and the Poincaré sphere. Fig. 2(b) and (e) shows

equi-power curves in the co-pol channel on the Poincaré sphe equi - power

Letting C vary from 0 tomax P., we can find the process by curve

which the characteristic polarization states in the co-pol chani w \

are derived, which is quite different from the others [1], [2], [4] (a) ‘ (o)
[5], [16]. CO - POL Null Cc=0

WhenC' = 0, the ellipsoid is tangent to the Poincaré sphei
at two points: the CO-POL Nulls [see Fig. 2(a)]; whéh=
max P., the ellipsoid is tangent to the Poincaré sphere at anot!
point: the CO-POL Max [see Fig. 2(d)]; whefi = 2kg, —  ©€aui- power
max P,, the ellipsoid is tangent to the Poincaré sphere attl  ““™®
opposite point of the CO-POL Max: the CO-POL Saddle [se
Fig. 2(c)]. Furthermorethe characteristic polarization states /4
in the co-pol channel can be regarded as the points of conte
between the special ellipsoids and the Poincaré sphere

Note that the center and main directions of the ellipsoid are i
dependent of the constafit Therefore, for any constafit(0 <
C < max F.), the corresponding ellipsoid has three fixed mai
directions (the same &%..(s), G..(m), andG,(n)) and a fixed
center. According to analytic geometry, we know that the cent CO- POL Nult
¢ of the ellipsoidP. = (1/2)([Jk]+X - X +2v-X) = C'is
determined by

C=2ky~max P,

CO- POL Max

equi - power
curves

[Ji]re = —v.
(d)

C=max P,

CO- POL. Saddle
CO- POL. Max

B. The Cross-Pol Channel Case

In the cross-pol channel, €t be an arbitrary constant and CO- POL Null (e)

0 < P < max P,. Then, Fig. 2. Equi-power curves and the characteristic polarization states in the
— Lt — co-pol channel.
A (31)
git+grt+gz=1 ) ) ) )
represents a curve on the Poincaré sphere. We call this cufy/i@ngent to the Poincaré sphere at two other points: the X-POL
the equi-power curve in the cross-pol chanrfglom (11), the Saddles [see Fig. 3(c)]. In general, the elliptic cylinder inter-

received power in the cross-pol channel can also be expresS&gs the Poincare sphere, forming the equi-power curve in the
cross-pol channel [see Fig. 3(b) and (e)]. Therefore, we can use

as the above equi-power curves for deriving the characteristic po-
P, = l(lfoo —[Ji]X - X) = E[Jk]_X X larization states in the cross-pol channel.
2 2 It should be pointed out that for an arbitrary consté@hthe
where central line of the elliptic cylindeP, = (1/2)[Jx]-X - X =C
k11 — koo k12 ki3 is X = w»t, and that the X-POL Nulls are located at this line,
(i =— k12 koo — koo kos . (32) wherew is given by (19).
k13 ka3 k33 — koo
From (13), (16), (29), and (30), we know that the eigenvalues 8’f The Matched-Pol Channel Case
the matrix[J]  are The received power in the matched-pol channel is
Al =0 (33a) P = koo + korg1 + ko2g2 + kozgs. (34)
Ay = 2koo +v-G3(n) > 0 (33b) If v = k&, + k3, + k33 = 0, then the received power is a
A3 = —v-G3(n) > 0. (33c) constantin. Let us consider the case@t~ 0. For an arbitrary

Lo in P, < < max P,
Therefore,P, = (1/2)[.Jx]-X - X = C representan elliptic constant’(min S s max Bn)

cylinder and the equi-power curve in the cross-pol channel is {P2m = 500 "‘2/“0191 + ko292 + kozgs = C (35)
the intersection of the elliptic cylinder and the Poincaré sphere g1 +93+g3=1

[see Fig. 3(b) and (e)]. Whe&' = 0, the cylinder degener- representsacircle, calléte equi-powercircleinthe matched-pol
ates into a line and the equi-power curve degenerates into tef@mnnel[see Fig. 4(b) and (d)]. This equi-power circle is formed
points: the X-POL Nulls [see Fig. 3(a)]. Whéh= max P,,the byusingtheplan&,, = C'tocutthe Poincaré sphere. Whén=
equi-power curve degenerates into two other points: the X-PQ@iin P,,, the plane?,, = C'is tangent to the Poincaré sphere at
Maxs [see Fig. 3(d)]. Whett' = 2kog — max P, the cylinder onepoint:thé1-POLMin[seeFig.4(a)];whef' = max B,,,the
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equi - power
curve
M- POL Min
| % PoL NULL m ‘l.
X- POL NULL |
(a) (®)
C=0
equi - power
equi - power circle
curves X- POL Max
A - (@) (b)
\ o o C=min P,
= —
2 =
I = =z
— -
o} ]
/ =+ X- POL Saddle T+
= =
X- POL Saddle © X- POL Max (e)
C=2 ko—max P, \
X POLM - T i
- ax ,\} M- POL Min M- POL Max
\\ // LN\
‘ \ equi - power circles )
l ( M- POL Max
/ \ (c)
C=max P,
. (d) C=maxP, Fig. 4. Characteristic polarization states and the equi-power curves in the
X- POL Max matched-pol channel.
Fig. 3. Equi-power curves and the characteristic polarization states in the
cross-pol channel. 2 1 .
GZ(n) = —G.(n). Summing up all cases, we deduce that the
above conclusion is true. #

planeP,, = Cistangentto the Poincaré sphere at another point:Fromy = \/m = 0 and the expression of the
theM-POL Max[see Fig. 4(c)]. Ifmin P,, < C' < max P, Kennaugh matrix [14], we know that the scattering matrix for
the plane intersects the Poincare sphere, forming the equi-powgf case ot3?(n) = —G*(n) has the following form:
circle [see Fig. 4(b) and (d)]. ) ey
Let C = koo + wcos6, thend has a concrete geometric [S5]= A { 710], r2c 20;} (36)
meaning, shown in Fig. 4(b). Obviously, the range?d$ 0 < re€ —Te
¢ < m. 6 = 0andd = = correspond to the M-POL Max and thewhere A is a complex number, and, 72, andé are real num-
M-POL Min, respectively. bers. Obviously, sphere targets (or plates) and diplanes belong
to this kind of targets.
Note that for the case 6f = s3 = 0, the scattering matrix of

V. THE CHARACTERISTIC POLARIZATION STATES AND THE . 0 1 .
the target i5] = sz 1 O]. The CO- POL Nulls of this target

EQuI-POWER CURVES FORTWO SPECIAL CASES

In this section, we study the characteristic polarizatiogglplane) are given by
states and the equi-power curves for two special cases: gi=%1, g2=0, g3=0. (37)
GZ(n) = GX(n) andG?(n) = —Gi(n).
In the co-pol channel, (30a)—(30c) becofe = 2kao, \f =

A. Case of3*(n) = —G(n) 0, and\ = 2k, respectively. Therefore, the conicditd =
_ X ) (1/2)([Jx]+X - X + 2v - X = Cisacylinder. Letting” be ex-
First, let us prove the following conclusion: pressed by different constants, we then obtain the corresponding
) . equi-power curves inthe co-pol channel, consisting of a set of cir-
v =1/ K, + kg + kis = 0 holds if and only if cles [see Fig. 5]. Whef = 0, the cylinder degenerates into
G*(n) = —Gi(n). a line through two points of the Poincaré sphere: the CO-POL

Nulls [see Fig. 5(a)]; whel’ = max P., the equi-power curve
Proof: From (3) and (19), we know that= vG.(m). If isacircle, having the same center as the Poincaré sphere. We de-
51 = s3 = 0, it is easy to check tha®?(n) = —GX(n) and note this circle as th€O-POL Max CircldFig. 5(c)]. Because
v =0; and ifs3 # 0, or s; = 0, we can observe from (18) thatGl(n)G2(n)isorthogonaltothe planeinwhichthe CO-POL Max
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Circle lies, the equation of the plangd§ (n) - X = 0. Therefore, CO- POL Null
the equation of the CO-POL Max Circle can be written as

Gin)- X =0
¢ 38
{ﬁ+£+ﬁ=1 (59)

According to the above analysis, we conclude the following cor
clusion.

For the case ot??*(n) = —G(n), the characteristic
polarization states in the co-pol channel become: a pair o
CO-POL Nulls and a CO-POL Max Circle. The former is
determined by (5), (6), or (37), and the latter is determined

by (38). | T

(b)

0<C <max P,

§ CO- POL Null c-o

Now letus considehe cross-pol channel cas&thenG? (n) = v CO- POL Ml
—G'(n), we know from (33) that the eigenvalues of the matri» — equi - power
[Jx]— areX] = 0, \; = 2kgo, andAy = 0. Therefore P, = \\ curves
(1/2)[Jx]-X - X = C degenerates into two planes. Whegn= ———
0, the two planes coincide, intersecting the Poincaré sphere it
circle [seeFig.6(a)]. We callthis circle tlePOL Null Circle[see K_/
Fig. 6(a)]. Obviously, this circle is the same as the CO-POL Ma \ / CO- POL
Circle [see Fig. 5(c)]. Whely' = koo, Pr(1/2)[J1]-X - X = N e Max Circle
koo represents two planes, tangent to the Poincaré sphere at 1| CO-POLMax Circle © CO- POL Null @
points: the X-POL Maxs [see Fig. 6(c)], which are the same as i v C=max P,
CO-POL Nulls[seeFig.5(a)]. Fig. 6 showsthe equi-power curves
in the cross-pol channel. Fig. 5. Equi-power curves in the case of the co-pol channel V@) =
According to the above analysis, we obtain the following con-GX(»).
clusion.

For the case of¥?(n) = —G(n), the characteristic po-
larization states in the cross-pol channel become an X-POL
Null Circle and a pair of X-POL Maxs. The equation of the

X-POL Null Circle is given by (36). The X-POL Maxs are
the same as the CO-POL Nulls which are determined by
(5). (6), or (37). @

X-POL Null Circle c=0

B. Case ofG?(n) = GL(n)

From (5), (6), and (7), itis not difficult to prove th& (n) = * POL Max X- POL Max

Gl(n) is equivalent tos3 — s;s3 = 0. Therefore, the rank of eq‘i'ur\'f:”er

the scattering matrices corresponding to the cas&dfn) =
G1(n)is 1 For this reason, we call these kind of targetisk-1
targets Wires and helixes are the typical targets of rank-1.

Using the above method, we can also obtain the equi-pow %- POL
curves in the co-pol and cross-pol channels, consisting of a ¢ Null Gircle
of circles. It is easy to obtain the following conclusion. T e (©)

For the case of(n) = isti C=ko X POL Max

G!(n), the characteristic po-
larization states in the co-pol channel are two identical
CO-POL Nulls and one CO-POL Max. Both of them can _g 16(77 Equi-power curves in the case of the cross-pol channel @Hén) =
be obtained by the proposed method in Section IV.

For the case o&*(n) = G*(n), the characteristic po- VI. SUMMARY
larization states in the cross-pol channel become: one pair
of X-POL Nulls and one X-POL Max Circle. The former
is given by

This paper has restudied the Kennaugh characteristic po-
larization state theory for the symmetric coherent Sinclair
scattering matrix case. First, we proved some results about
the geometric relations of the characteristic polarization states
GL2(n) = (010, 0y Va0, (39) :)hn the Poi_ncaré sphere by mathematical methods. Based on
© vr B2/v B3/ v ese relations, a very simple method has been proposed for
obtaining all the characteristic polarization states in the Stokes
vector form. From the proposed method, we observe that the
{v -X=0 (40) CO-POL Nulls are the fundamental characteristic polarization
g+gi+gs=1" states for the symmetric coherent Sinclair scattering matrix

and the latter is given by
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