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Abstract—Characteristic polarization state theory is restudied
for the symmetric coherent Sinclair scattering matrix case. First,
the geometric relations of the characteristic polarization states on
the Poincaré sphere are derived. Based on these relations, simple
formulas are given for all of the characteristic polarization states
of this Sinclair matrix in Stokes vector form. From the formu-
lation, it is clear that the CO-POL Nulls are fundamental char-
acteristic polarization states for the symmetric coherent Sinclair
scattering matrix case, in that the others can straightforwardly be
obtained from the Stokes vectors of the CO-POL Nulls. For fur-
ther study of the characteristic polarization state and the distribu-
tion of the received powers on the Poincaré sphere, we introduce
the concept of the equi-power curve. It is defined as the curve on
the Poincaré sphere on which the received powers in some defined
channel have the same value. We deal with the characteristics of
the equi-power curves for various special cases. In addition, we
show how the characteristic polarization states are generated by
the equi-power curves. It is demonstrated that the characteristic
polarization states can usually be regarded as the points of contact
of the Poincaré sphere and a conicoid representing a power-related
quadratic form. This leads to a new method to introduce the char-
acteristic polarization states. The new method provides a geometric
interpretation for visualization of changes in polarized states on the
Poincaré sphere.

Index Terms—Polarization, radar polarimetry, scattering ma-
trix.

I. INTRODUCTION

T HE problem with the characteristic polarization states was
first considered by Kennaugh [1], and later was studied

and redeveloped by Huynen [2], Boerneret al. [3]–[11], Van
Zyl [12], [13], Mott [14], Lüneburg and Cloude [15], and
Yamaguchiet al. [16]. This problem involves finding the polar-
ization states for which the radar receives minimum/maximum
power. In the symmetric coherent Sinclair scattering matrix
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case, it is known that there usually exist, in total, five pairs
of characteristic polarization states: two CO-POL Nulls for
which the radar receives zero power in the co-pol channel; one
CO-POL Max for which the radar receives maximum power
in the co-pol channel; and one CO-POL Saddle for which the
radar receives critical power in the co-pol channel, two X-POL
Nulls for which the radar receives zero power in the cross-pol
channel, two X-POL Saddles for which the radar receives
critical power in the cross-pol channel, and two X-POL Maxs
for which the radar receives maximum power in the cross-pol
channel. However, the CO-POL Saddle and the CO-POL Max
are identical with the X-POL Nulls; and, therefore, there exist,
in total, eight different physical characteristic polarization
states for the symmetric coherent Sinclair scattering matrix
case. On the Poincaré sphere, the CO-POL Nulls, the CO-POL
Max, and the CO-POL Saddle form an interesting pattern,
called theHuynen fork[2].

Up to now, although there have been several approaches ap-
plied for determining the characteristic polarization states, we
still desire to find a set of “final more rigorous and complete
formulations” for the characteristic polarization states of a co-
herent symmetric scattering matrix [7]. On the other hand, the
Poincaré sphere and the Stokes vector are frequently used in
radar polarimetry because the former is a useful graphical aid
for the visualization of polarization effects. Therefore, it is im-
portant to find a set of formulas or a simple method to obtain the
Stokes vectors of the characteristic polarization states in a more
direct approach.

This paper consists of two parts. In the first part, we initially
study the geometric relations of the characteristic polarization
states on the Poincaré sphere for the symmetric coherent Sin-
clair scattering matrix case. Then, based on these relations, a
simple formula is proposed to obtain all characteristic polar-
ization states (in the Stokes vector form) in a closed compre-
hensive presentation. From this formulation, we observe that
the CO-POL Nulls are the fundamental characteristic polariza-
tion states for the symmetric Sinclair scattering matrix case, in
that the other characteristic polarization states can be obtained
straightforwardly from the expressions of the CO-POL Nulls by
using the proposed method. Finally, an example is given. The
calculation results are identical with those given by other opti-
mization approaches [4], [5], [7], [11], [16], [19], [20], corrob-
orating the validity of the proposed method.

In the second part of this paper, the theory of the equi-power
curves for three special channel cases are investigated system-
atically. Here, the equi-power curve is defined as the curve on
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the Poincaré sphere on which the received powers in some de-
fined channel have the same value. Kennaugh [1] and Huynen
[2] considered the similar problem in the co-pol channel case.
Mott [14] further pursued the problem, based on the concept of
the polarization match factor, but he did not use this concept for
studying the problem on the characteristic polarization states.
In this paper, we deal with the characteristics of the equi-power
curves which are important for analyzing the distribution of
the received powers on the Poincaré sphere. Besides, we show
how the characteristic polarization states are generated by the
equi-power curves. In this way, we provide a new method for
introducing the characteristic polarization states, which is quite
different from Kennaugh’s method [1] (based on the voltage
equation), Huynen’s method [2] (based on the power equation),
Boerner’s method [4], [5] (based on the polarization ratio), and
Yamaguchi’s method [16] (based on the eigenvalue problem).

II. THE CHARACTERISTIC POLARIZATION STATES IN THE

CO-POL CHANNEL AND AN EIGENVALUE PROBLEM

A. The Characteristic Polarization States in the Co-Pol
Channel

Let

(1)

denotea symmetric scattering matrixof a radar target, and let

(2)

denote the corresponding Kennaugh matrix which is defined in
the Appendix. If , then the char-
acteristic polarization states in the co-pol channel are given by
[19] and [20]:

1) the CO-POL Max:

(3)

2) the CO-POL Saddle:

(4)

3) for the case of , the CO-POL Nulls:

(5a)

(5b)

(5c)

for the case of , the CO-POL Nulls:

(6a)

(6b)

(6c)

In the above equations, the superscriptsand denote the trans-
position of a vector and the complex conjugation, respectively;

denotes the components of the sub-Stokes vec-
tors of the CO-POL Nulls and is given by

(7)

B. An Eigenvalue Problem

In the cross-pol channel, the received power is expressed as

(8)

where denotes the Stokes vector of the po-
larization state of the transmitter (without loss of generality, we
assume that for all the Stokes vectors in this
paper); and is the modified Kennaugh matrix, given by

(9)

Let

and

(10)

Then (8) can be rewritten as

(11)

By solving the following eigenvalue problem:

(12)

we obtain three linearly independent eigenvectors
. It is easy to prove that

are the X-POL Maxs, the X-POL Saddles, and the X-POL
Nulls [16]. According to the definition of the X-POL Nulls,
we know from (11) that the eigenvalue corresponding to the
X-POL Nulls is

(13)

Denote the eigenvalues corresponding to the X-POL Maxs and
the X-POL Saddles as and , respectively. Then we know
from algebraic theory that

(14a)

(14b)

Since , we know from (13) and (14) that

(15a)

(15b)

Note that the received power corresponding to the X-POL Max
is greater then or equal to that corresponding to the X-POL
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Saddle. Therefore, we have from (11) that . This result,
together with (15a) and (15b), lead to

(16a)

(16b)

In this way, all eigenvalues of the matrix are obtained. We
will make use of the above results later.

III. N EW APPROACH FOROBTAINING THE CHARACTERISTIC

POLARIZATION STATES

There exist some relations in the characteristic polarization
states of the symmetric coherent Sinclair scattering matrix. Ken-
naugh [1] first noticed these relations. Later, Huynen tried to
prove the relations by using his parameters and deducing the fa-
mouspolarization forkconcept [2]. Boerneret al.extended this
work, based on the polarization ratio [4], [5]. This section tries
to derive the geometric relations of the characteristic polariza-
tion states on the Poincaré sphere for the symmetric coherent
Sinclair scattering matrix case. Then, based on these results and
the formula of the CO-POL Nulls, a new approach is proposed
to obtain all the characteristic polarization states in the Stokes
vector form.

On the Poincaré sphere, let and
denote the CO-POL Max, the CO-POL Saddle, and the
CO-POL Nulls, respectively; and let
and denote the X-POL Maxs, the X-POL
Saddles, and the X-POL Nulls, respectively. Here,

and are
expressed in the form of the sub-Stokes vectors and their tips
are denoted as
and , respectively (see Fig. 1).

In this section, we assume that The
problem for the cases of will be studied in
Section V. Under the assumption of , the
geometric relations of the characteristic polarization states are
expressed as

R1) ;
R2) and are symmetric about the segment

;
R3) is parallel to the segment ;
R4) is perpendicular to the segment

as well as to the segment .

Now let us prove the above relations.
Proof of (R1): Let denote the X-POL Nulls, then

, which yields Kennaugh’s pseudoeigenvalue equation

where is defined as . This leads to

(17a)

Fig. 1. Characteristic polarization states on the Poincaré sphere.

The eigenvectors of this problem are the solutions of the fol-
lowing problem:

optimize (17b)

or

optimize (17c)

where denotes the components of the sub-Stokes
vector of . Obviously, the solutions of (17c) are identical with
the CO-POL Max and the CO-POL Saddle. #

Proof of (R2): From the assumption , it
is easy to prove that . For the case of , we
have from (7) that and . Using
this result and (5), we can prove that

(18a)

For the case of , we have from (6) that

(18b)

Note that and have the same amplitude. From the
above equations, we deduce that (R2) holds. #

Proof of (R3): Let

(19)

Then using (10) and applying the Lagrangian multiplier method
to the problem

minimize
subject to:

we can prove that there exist two real numbers,and , such
that

(20a)

(20b)

According to the definition of the CO-POL Nulls, we have

Substituting (20) into the above equation, we can easily obtain
and . Note
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that , where . From
(R2), we deduce that , denoted as. Therefore, we have
from (20a) and (20b) that

(21)

Note that . Comparing
(21) with (12) and (16), we can deduce that , which
means that (R3) is true. #

Proof of (R4): Since is a real symmetric matrix and
it does not have multiple eigenvalues if ,
therefore and , the eigenvectors of
the matrix , are orthogonal. From this orthogonality and the
results (R1-3), we deduce that (R4) is true. #

Based on the above relations and the formulas (5) and (6), the
characteristic polarization states of a symmetric coherent Sin-
clair scattering matrix can be obtained by the following simple
method.

1) The CO-POL Nulls are given by (5) and (6).
2) The CO-POL Max is

(22)

3) The CO-POL Saddle is

(23)

4) The X-POL Nulls are

(24)

5) The X-POL Maxs are

(25)

where denotes the vector from the point
to the point and “=” means that both sides

of the above equation have the same components.
6) The X-POL Saddles are

(26)

where “ ” denotes the vector product. By the above
method, we can easily obtain all the characteristic polar-
ization states in the Stokes vector form for the case of

. Let us use an example for showing
the validity of the proposed method.

Example: Let be a scattering ma-

trix of a radar target. According to (5), we obtain the
CO-POL Nulls and

. Then, from (22) to
(26), the following results can be obtained easily:

CO-POL Max:

CO-POL Saddle:

X-POL Maxs: and

X-POL Saddles:

and

X-POL Nulls:

and

These results are identical to those found by using other opti-
mization approaches [4], [5], [7], [11], [16], [19], [20], corrob-
orating the validity of the proposed method.

IV. EQUI-POWER CURVES OF THERECEIVED POWER

In this section, we also assume that . The
problem for the cases of will be studied in
Section V.

A. The Co-Pol Channel Case

In the co-pol channel, let be an arbitrary constant and
. Then,

(27)

represents a curve on the Poincaré sphere. We call this curve
the equi-power curvein the co-pol channel because the received
powers on this curve have the same value. Now let us consider
the shape of this equi-power curve. Using (10), we can express
the received power in the co-pol channel as

(28)

where is given by

(29)

According to algebra theory,
represents a conicoid, the shape of which is determined by

the matrix . From (13), (16), and the proof of (R3), the
eigenvalues of the matrix are

(30a)

(30b)

(30c)
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Therefore, represents
an ellipsoid, and the equi-power curve (27) is the intersection of
the ellipsoid and the Poincaré sphere. Fig. 2(b) and (e) shows the
equi-power curves in the co-pol channel on the Poincaré sphere.
Letting vary from 0 to , we can find the process by
which the characteristic polarization states in the co-pol channel
are derived, which is quite different from the others [1], [2], [4],
[5], [16].

When , the ellipsoid is tangent to the Poincaré sphere
at two points: the CO-POL Nulls [see Fig. 2(a)]; when

, the ellipsoid is tangent to the Poincaré sphere at another
point: the CO-POL Max [see Fig. 2(d)]; when

, the ellipsoid is tangent to the Poincaré sphere at the
opposite point of the CO-POL Max: the CO-POL Saddle [see
Fig. 2(c)]. Furthermore,the characteristic polarization states
in the co-pol channel can be regarded as the points of contact
between the special ellipsoids and the Poincaré sphere.

Note that the center and main directions of the ellipsoid are in-
dependent of the constant. Therefore, for any constant

, the corresponding ellipsoid has three fixed main
directions (the same as and ) and a fixed
center. According to analytic geometry, we know that the center

of the ellipsoid is
determined by

B. The Cross-Pol Channel Case

In the cross-pol channel, let be an arbitrary constant and
. Then,

(31)

represents a curve on the Poincaré sphere. We call this curve
the equi-power curve in the cross-pol channel. From (11), the
received power in the cross-pol channel can also be expressed
as

where

(32)

From (13), (16), (29), and (30), we know that the eigenvalues of
the matrix are

(33a)

(33b)

(33c)

Therefore, representsan elliptic
cylinder and the equi-power curve in the cross-pol channel is
the intersection of the elliptic cylinder and the Poincaré sphere
[see Fig. 3(b) and (e)]. When , the cylinder degener-
ates into a line and the equi-power curve degenerates into two
points: the X-POL Nulls [see Fig. 3(a)]. When , the
equi-power curve degenerates into two other points: the X-POL
Maxs [see Fig. 3(d)]. When , the cylinder

Fig. 2. Equi-power curves and the characteristic polarization states in the
co-pol channel.

is tangent to the Poincaré sphere at two other points: the X-POL
Saddles [see Fig. 3(c)]. In general, the elliptic cylinder inter-
sects the Poincaré sphere, forming the equi-power curve in the
cross-pol channel [see Fig. 3(b) and (e)]. Therefore, we can use
the above equi-power curves for deriving the characteristic po-
larization states in the cross-pol channel.

It should be pointed out that for an arbitrary constant, the
central line of the elliptic cylinder
is , and that the X-POL Nulls are located at this line,
where is given by (19).

C. The Matched-Pol Channel Case

The received power in the matched-pol channel is

(34)

If , then the received power is a
constant . Let us consider the case of . For an arbitrary
constant

(35)

representsacircle,calledtheequi-powercircleinthematched-pol
channel[see Fig. 4(b) and (d)]. This equi-power circle is formed
byusingtheplane tocut thePoincarésphere.When

, the plane is tangent to the Poincaré sphere at
onepoint:theM-POLMin[seeFig.4(a)];when ,the
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Fig. 3. Equi-power curves and the characteristic polarization states in the
cross-pol channel.

plane is tangent to the Poincaré sphere at another point:
theM-POL Max[see Fig. 4(c)]. If ,
the plane intersects the Poincaré sphere, forming the equi-power
circle [see Fig. 4(b) and (d)].

Let , then has a concrete geometric
meaning, shown in Fig. 4(b). Obviously, the range ofis

. and correspond to the M-POL Max and the
M-POL Min, respectively.

V. THE CHARACTERISTIC POLARIZATION STATES AND THE

EQUI-POWER CURVES FORTWO SPECIAL CASES

In this section, we study the characteristic polarization
states and the equi-power curves for two special cases:

and .

A. Case of

First, let us prove the following conclusion:

holds if and only if

Proof: From (3) and (19), we know that . If
, it is easy to check that and

; and if , or , we can observe from (18) that

Fig. 4. Characteristic polarization states and the equi-power curves in the
matched-pol channel.

. Summing up all cases, we deduce that the
above conclusion is true. #

From and the expression of the
Kennaugh matrix [14], we know that the scattering matrix for
the case of has the following form:

(36)

where is a complex number, and and are real num-
bers. Obviously, sphere targets (or plates) and diplanes belong
to this kind of targets.

Note that for the case of , the scattering matrix of

the target is . The CO- POL Nulls of this target

(diplane) are given by

(37)

In the co-pol channel, (30a)–(30c) become
and , respectively. Therefore, the conicoid

is a cylinder. Letting be ex-
pressed by different constants, we then obtain the corresponding
equi-powercurves in theco-pol channel, consisting of a setof cir-
cles [see Fig. 5]. When , the cylinder degenerates into
a line through two points of the Poincaré sphere: the CO-POL
Nulls [see Fig. 5(a)]; when , the equi-power curve
is a circle, having the same center as the Poincaré sphere. We de-
note this circle as theCO-POL Max Circle[Fig. 5(c)]. Because

isorthogonaltotheplaneinwhichtheCO-POLMax
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Circle lies, the equation of the plane is .Therefore,
the equation of the CO-POL Max Circle can be written as

(38)

According to the above analysis, we conclude the following con-
clusion.

For the case of , the characteristic
polarization states in the co-pol channel become: a pair of
CO-POL Nulls and a CO-POL Max Circle. The former is
determined by (5), (6), or (37), and the latter is determined
by (38).
Nowletusconsiderthecross-polchannelcase.When

, we know from (33) that the eigenvalues of the matrix
are and . Therefore,

degenerates into two planes. When
, the two planes coincide, intersecting the Poincaré sphere in a

circle [seeFig.6(a)].Wecall thiscircletheX-POLNullCircle[see
Fig. 6(a)]. Obviously, this circle is the same as the CO-POL Max
Circle [see Fig. 5(c)]. When

represents two planes, tangent to the Poincaré sphere at two
points: the X-POL Maxs [see Fig. 6(c)], which are the same as the
CO-POLNulls [seeFig.5(a)].Fig.6showstheequi-powercurves
in the cross-pol channel.

According to the above analysis, we obtain the following con-
clusion.

For the case of , the characteristic po-
larization states in the cross-pol channel become an X-POL
Null Circle and a pair of X-POL Maxs. The equation of the
X-POL Null Circle is given by (36). The X-POL Maxs are
the same as the CO-POL Nulls which are determined by
(5), (6), or (37).

B. Case of

From (5), (6), and (7), it is not difficult to prove that
is equivalent to . Therefore, the rank of

the scattering matrices corresponding to the case of
is 1. For this reason, we call these kind of targetsrank-1

targets. Wires and helixes are the typical targets of rank-1.
Using the above method, we can also obtain the equi-power

curves in the co-pol and cross-pol channels, consisting of a set
of circles. It is easy to obtain the following conclusion.

For the case of , the characteristic po-
larization states in the co-pol channel are two identical
CO-POL Nulls and one CO-POL Max. Both of them can
be obtained by the proposed method in Section IV.

For the case of , the characteristic po-
larization states in the cross-pol channel become: one pair
of X-POL Nulls and one X-POL Max Circle. The former
is given by

(39)

and the latter is given by

(40)

Fig. 5. Equi-power curves in the case of the co-pol channel whenGGG (n) =
�GGG (n).

Fig. 6. Equi-power curves in the case of the cross-pol channel whenGGG (n) =
�GGG (n).

VI. SUMMARY

This paper has restudied the Kennaugh characteristic po-
larization state theory for the symmetric coherent Sinclair
scattering matrix case. First, we proved some results about
the geometric relations of the characteristic polarization states
on the Poincaré sphere by mathematical methods. Based on
these relations, a very simple method has been proposed for
obtaining all the characteristic polarization states in the Stokes
vector form. From the proposed method, we observe that the
CO-POL Nulls are the fundamental characteristic polarization
states for the symmetric coherent Sinclair scattering matrix
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case, in that the others can be obtained easily from the Stokes
vectors of the CO-POL Nulls. By a concrete example, the
validity of the proposed method has been shown.

In Section II, we obtained the eigenvalues of an important
matrix, based on algebraic theory. Using this result, we have
studied the problem of the equi-power curves on the Poincaré
sphere. In Sections IV and V, we showed the equi-power curves
on the Poincaré sphere for three special channel cases; and
we also showed how the characteristic polarization states are
generated by using the equi-power curves. For the case of

(i.e., the CO-POL Nulls are not the same,
and they do not have the opposite position on the Poincaré
sphere), we observe that all the characteristic polarization
states can be regarded as the points of contact of the Poincaré
sphere and some conicoids for some special constants.
However, the characteristic polarization states in the cases
of are different from those in the case of

. For the case of , there
exists a circle, named the X-POL Max Circle, for which the
radar receives maximum power in the cross-pol channel; and
for the case of , there also exists a circle,
named the X-POL Null Circle or the CO-POL Max Circle, for
which the radar receives no echo in the cross-pol channel and
receives maximum power in the co-pol channel. The equations
of the X-POL Max Circle and the X-POL Null Circle/CO-POL
Max Circle have been presented in this paper.

The proposed method to derive the characteristic polarization
states in this paper is quite different from Kennaugh’s method
[1] (based on the voltage equation), Huynen’s method [2]
(based on the power equation and voltage equation), Boerner’s
method [4], [5] (based on the polarization ratio), and Yam-
aguchi’s method [16] (based on the eigenvalue problem). This
proposed method provides us with a geometric interpretation
or visualization of changes in polarized states on the Poincaré
sphere. In addition, the concept of the equi-power curves
also affords a useful tool for analyzing the distribution of the
received powers on the Poincaré sphere.

APPENDIX

DEFINITION OF THE KENNAUGH MATRIX

For a symmetric scattering matrix , the ele-

ments of the Kennaugh matrix are given by
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