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Abstract—In this paper, a general scheme for complete model-
based decomposition of the polarimetric synthetic aperture radar
(POLSAR) coherency matrix data is presented. We show that
the POLSAR coherency matrix can be completely decomposed
into three components contributed by volume scattering and
two single scatterers (characterized by rank-1 matrices). Under
this scheme, solving for the volume scattering power amounts
to a generalized eigendecomposition problem and the non-
negative power constraint uniquely determines the the minimum
eigenvalue as the volume scattering power. Furthermore, in
order to discriminate the remaining components we propose two
approaches. One is based on eigendecomposition and the other
is based on model fitting, both of which are shown to properly
resolve the surface and double-bounce scattering ambiguity. As
a result, this paper in particular contributes to two pending
needs for model-based POLSAR decomposition. Firstly, it over-
comes negative power problems, i.e., all the decomposed powers
are strictly guaranteed non-negative; and secondly, the three-
component decomposition exactly accounts for every element of
the observed coherency matrix, leading to a complete utilization
of the fully polarimetric information.

Index Terms—Polarimetric synthetic aperture radar (POL-
SAR), coherency matrix, model-based scattering power decom-
position.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (POLSAR) is
an advanced microwave remote sensing system which

acquires not only high-resolution image but also complete
electromagnetic scattering characteristics of the terrain targets.
Therefore, polarimetric analysis of the POLSAR data has
received an increasing research attention along with the launch
of recent platforms such as ALOS-PALSAR, RADARSAT-2
and TerraSAR-X equipped with quad-polarization data-take
capabilities.

Due to the reason that the measured scattering matrix is
often affected by the noise-like speckle, incoherent analysis
making use of the second-order statistics such as the co-
herency/covariance matrix is mostly used. Among the many
methods proposed in the past decades [1]–[7], two represen-
tative groups can be identified, i.e., the eigendecomposition-
based approaches and the model-based approaches, which are

Manuscript received August 06, 2012; revised February 18, 2013; accepted
April 04, 2013. The work was in part supported by the Space Sensing Project
funded by the Ministry of Education of Japan and in part supported by the
National Science Foundation of China (No. 41171317).

Y. Cui, Y. Yamaguchi, and H. Kobayashi are with Faculty of Engineering,
Niigata University, Niigata 950-2181, Japan (e-mail: cuiyi.trea@gmail.com).

J. Yang is with Department of Electronic Engineering, Tsinghua University,
Beijing 100084, China.

S.-E. Park and G. Singh are with Graduate School of Science and Tech-
nology, Niigata University, Niigata 950-2181, Japan.

respectively pioneered by Cloude-Pottier [1] and Freeman-
Durden [2]. However, as compared to the eigendecomposition-
based method, the model-based decomposition remains an
open question in at least two aspects. First, efforts are still
being made for fully utilizing the polarimetric information. A
complete coherency/covariance matrix contains 9 independent
real-valued parameters [8]. The Freeman-Durden decompo-
sition [2] explicitly assumes reflection symmetry and thus
only accounts for 5 parameters. Yamaguchi et al [3] extends
the method by adding the helix term which accounts for
one more independent parameter. Later, the orientation angle
compensation has also been introduced to model-based de-
composition [4], [7], [9]. It is shown that this transformation
equivalently reduces the independent parameters from 9 to
8 [8] such that after matrix rotation the modified Freeman-
Durden decomposition can account for 5 out of 8 parameters
while for modified Yamaguchi decomposition the number
becomes 6 out of 8. Most recently, advancement has been
made to fully use the polarimetric information within the
four-component decomposition scheme [8] while as within the
three-component decomposition scheme no such progress has
been seen, to the best of our knowledge.

On the other hand, emergence of negative component pow-
ers has been noticed by many researches as a potential flaw
that might undermine the usability of the decomposition results
[3]–[5]. In order to prevent this from happening, several ad-
hoc approaches have been adopted based on examination of
teh decomposed powers [3], [4]. More recently, van Zyl et al
[5] proposed to estimate the volume scattering power based on
the constraint of nonnegative eigenvalues. It is a systematic
approach which ensures that all the extracted component
powers are non-negative. However, an analytically tractable
solution of their method also depends on the reflection-
symmetry assumption. In the case of non-reflection-symmetry,
no computationally efficient algorithm has been derived yet.

This paper is then dedicated to provide a general method
for simultaneously solving the aforementioned problems, es-
pecially on full utilization of the polarimetric information
and prevention of negative powers. We focus on the three-
component decomposition scheme and show that the POLSAR
coherency matrix can be completely and exactly decomposed
into three components contributed by volume scattering and
two single scatterers with strictly non-negative powers. The
paper is organized as follows. In Section II, a brief introduction
of the three-component decomposition scheme using the co-
herency matrix is introduced. Section III presents the complete
decomposition method, including volume scattering power
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extraction and single scatterer discrimination. Experimental
results with real POLSAR data are given in Section IV
and Section V concludes the paper. Mathematical proofs and
derivations are shown in Appendices.

II. POLSAR COHERENCY MATRIX AND
THREE-COMPONENT DECOMPOSITION SCHEME

A. POLSAR Coherency Matrix

In model-based POLSAR decomposition, various literatures
have witnessed the use of two data formats, commonly known
as the coherency matrix [3], [4], [7] and the covariance
matrix [2], [5], [6]. From a statistical point of view, both
the coherency matrix and covariance matrix represent second-
order statistics of the polarimetric information and they are
equivalent to each other up to orthogonal transformations. In
this paper we focus on decomposing the coherency matrix
as its covariance matrix counterpart can be straightforwardly
analogized. By definition, the coherency matrix is given by:

T = E
(
kpkH

p

)
, (1)

where E denotes mathematical expectation and the superscript
H stands for the conjugate transpose operator. The Pauli-vector
kp is defined as:

kp =
1√
2

SHH + SVV

SHH − SVV

2SHV

 , (2)

where SHH, SVV, and SHV are elements of the polarimetric
scattering matrix. According to (1), procurement of the co-
herency matrix is in fact an estimation problem which can
be cast into the general setting of POLSAR data filtering
[10]. Although different filtering/reconstructing methods will
definitely affect the estimation accuracy of the coherency
matrix and consequently the decomposition result thereupon,
detailed discussion is beyond the scope of this paper. As within
this paper, the coherency matrix can be obtained by ensemble
averaging [8] or filtering [10] and the estimation uncertainty
are also reflected in the decomposed powers.

B. Three-Component Decomposition Scheme Based on Co-
herency Matrix

Under the three-component decomposition scheme, the ef-
fort is to expand the measured coherency matrix, T, as a linear
combination of three submatrices corresponding to surface
scattering, double-bounce scattering, and volume scattering
mechanisms [2]. Mathematically, the relation can be written
as:

T = PSTS + PDTD + PVTV, (3)

where TS, TD, and TV are the coherency matrices accounting
for surface scattering, double-bounce scattering, and volume
scattering, respectively; PS, PD, and PV are expansion coef-
ficients. Throughout this paper TS, TD, and TV are always
power normalized such that PS, PD, and PV represent power
contributions which by physical meaning shall be all non-
negative numbers.

Solving the matrix expansion problem of (3) starts with
modeling (parameterizing) TS, TD, and TV. For example,
in the Freeman-Durden decomposition the following (power
normalized) coherency matrices are used [2]:

TS(β) =
1

1 + |β|2

1 β∗ 0
β |β|2 0
0 0 0

 , |β| < 1, (4)

TD(α) =
1

1 + |α|2

|α|2 α∗ 0
α 1 0
0 0 0

 , |α| < 1, (5)

TV =
1

4

2 0 0
0 1 0
0 0 1

 , (6)

where the unknown parameters α and β together with the
expansion coefficients, PS, PD, PV, are to be determined from
(3). However, the above models assume reflection symmetry of
the media and consequently cannot fully explain the scattering
mechanisms present in the measured coherency matrix. For
example, it is clear from (4)–(6) that the elements T13 and T23

of T will not be accounted for whatsoever. In addition, directly
solving the unknown parameters does not always guarantee
physically meaningful outcomes (e.g., positive component
powers), due to model mismatch or measurement uncertainty
(speckle noise) [11]. In order to overcome these difficulties,
in the next section we will cast the matrix expansion problem
under a more general scheme and show how exact solutions
can be found therein.

III. COMPLETE THREE-COMPONENT DECOMPOSITION OF
POLSAR COHERENCY MATRIX

In this section, we solve the matrix expansion problem of
(3) under the following conditions:
• Condition #1: TV is a known positive-definite Hermitian

matrix.
• Condition #2: TS and TD are two unknown single-rank

matrices.
• Condition #3: PS, PD, PV are unknown non-negative ex-

pansion coefficients.
It should be noted that in Condition #1 we do not designate any
specific form for TV but only specify the positive-definiteness.
In fact, it can be shown that (see Appendix A) that for any
volume matrix generated from a cloud of random scatterers,
this condition will be generally satisfied. As a result, existing
volume scattering models [3], [6], [12], [13] can be all safely
used. Condition #2 is a generalization of the surface and
double-bounce scatterers based on the observation that both (4)
and (5) are special rank-1 matrices. Also in Condition #3 we
emphasize the non-negativeness of the expansion coefficients
because it is this solution that is physically meaningful. Ac-
cordingly, the observed POLSAR coherency matrix is assumed
to be the combined contribution of volume scattering and
two single scatterers. Note, however, that although we keep
the conventional subscript notation for TS and TD, they do
not necessarily stand for simple surface and double-bounce
scattering anymore. As will be seen in Section III-B, there
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exists ambiguity with regard to discrimination of these two
components and explanation of their underlying mechanisms
depends on further analysis for a given solution.

A. Solving for Volume Scattering Component

First we rewrite (3) by:

T− PVTV = PSTS + PDTD. (7)

Since both TS and TD are rank-1 matrices (Condition #2),
T − PVTV is at most a rank-2 matrix. Consequently, the
determinant of T− PVTV is bound to vanish, that is:

det(T− PVTV) = 0, (8)

where det(·) denotes matrix determinant. It can be shown (see
Appendix B) that (8) is a simple cubic equation about PV

whose three roots can be easily obtained. However, before the
volume scattering power can be determined, two issues require
resolution: 1) whether non-negative roots exist for (8); and 2)
if non-negative roots exist, which one of them applies for PV.

Answering these questions relies on the observation that the
roots of (8) in fact correspond to the following generalized
eigendecomposition problem:

Tx = λTVx, (9)

where λ is the generalized eigenvalue and x is the associated
eigenvector. In Appendix C we have proved that under the
condition that TV is positive-definite and Hermitian (Condi-
tion #1), all the eigenvalues of (9) are non-negative for any
positive-semidefinite Hermitian matrix T. Therefore, all the
roots of (8) are non-negative.

In order to determine which one of the roots represents the
volume scattering power, we note that the single-rankness of
TS and TD (Condition #2) implies that they can be written
as:

TS = kSkH
S , (10)

TD = kDkH
D, (11)

where kS and kS are the corresponding Pauli-vectors. Thus the
non-negativeness of PS and PD (Condition #3) dictates that
T−PVTV be positive-semidefinite because for any vector y
we have:

yH(T− PVTV)y = yH(PSTS + PDTD)y

= PS

∣∣yHkS

∣∣2 + PD

∣∣yHkD

∣∣2
≥ 0.

(12)

In Appendix D, we have proved that T− PVTV is positive-
semidefinite if and only if PV = λmin where λmin is the
minimum generalized eigenvalue of (9). Hence the volume
scattering power is uniquely determined as equal to the mini-
mum root of (8).

It is worth mentioning that from the perspective of non-
negative eigenvalue decomposition (NNED) [5], the minimum
root of (8) can be also considered as the maximum value pos-
sible for the volume scattering. If PV takes a smaller value, the
remaining matrix, T − PVTV, will become strictly positive-
definite. This consequently leads to a four-component model of

volume scattering and up to three single scatterers. However,
using the maximum amount of power results in the best fit of
the volume scattering model to the measured coherency matrix
and has been suggested as a reasonable strategy [5], [6]. In
addition, van Zyl et al [5] proposed an alternative approach
to obtain the maximum possible volume power by deriving
the eigenvalues of the remaining matrix but the analytical
solution is only available when reflection-symmetry holds. On
the other hand, it has been shown here that for the general
case of non-reflection-symmetry, the volume strength is also
analytically tractable through solving the cubic equation of (8)
or the generalized eigendecomposition problem of (9).

B. Discriminating Single Scatterers by Eigendecomposition

The remaining matrix, T′ = T − PVTV, contains the
contribution of up to two single scatterers and the next purpose
is to discriminate them. However, there exist infinite ways
in terms of writing T′ as the sum of two rank-1 matrices
because we are handling a problem with more unknowns than
the number of equations. To be more specific, we can write
the corresponding Pauli-vectors, kS and kD, in the following
normalized forms:

kS(δS, ωS, φS, ϕS) =

 cos δS
sin δS cosωSe

jφS

sin δS sinωSe
jϕS

 , (13)

kD(δD, ωD, φD, ϕD) =

 cos δD
sin δD cosωDe

jφD

sin δD sinωDe
jϕD

 , (14)

where δS, ωS, φS, ϕS, δD, ωD, φD, ϕD are unknown real angles.
Then together with the unknown power coefficients PS and
PD, we have a total of 10 free variables, whereas the maximum
number of independent equations available from T′ is 8 (but
not 9 because det(T′) = 0 reduces one dimension of the data).
Unique solution is only possible with further assumptions.

Based on the fact that T′ is a positive-semidefinite matrix,
an immediate way to write T′ as the sum of two rank-1
matrices with positive expansion coefficients would be by the
eigendecomposition:

T′ = λ1k1k
H
1 + λ2k2k

H
2 , (15)

where without loss of generality we assume λ1 ≥ λ2. In fact,
eigendecomposition implicitly assumes the orthogonality be-
tween k1 and k2 which adds two more equations (respectively
from the real and imaginary parts) such that (15) becomes
a unique solution. For any positive-semidefinite Hermitian
matrix, its eigendecomposition is equivalent to single value
decomposition (SVD). Then λ1k1k

H
1 is the optimal rank-1

approximation for T′ in the sense of minimum Frobenius
distance [14]. Hence k1 in fact stands for the predominant
single scatterer and k2 is the minor scatterer. Consequently,
eigendecomposition can be considered as dominant scattering
decomposition for the remaining matrix.

In order further interpret the scattering mechanisms underly-
ing k1 and k2, we follow van Zyl’s reasoning by inspecting the
co-polarized phase [5], [15]. However, a closer examination
can also consider the orientation of each single scatterer. Let Si
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be the scattering matrix corresponding to ki. Then according
to the Huynen decomposition [16] Si can be de-oriented as:

S′i = R(−τi)SiR(τi), (16)

where τi is the orientation angle (see Appendix E for its
derivation) and the transformation R(τi) is given by:

R(τi) =

[
cos(τi) − sin(τi)
sin(τi) cos(τi)

]
. (17)

Finally we check the co-polarized phase of S′i to determine
whether even or odd scattering is present.

To summarize, the procedure for power decomposition of
the measured coherency matrix into surface, double-bounce
and volume scattering is outlined in Algorithm 1.

Algorithm 1
1: Input: T and TV

2: Solve cubic equation: det(T− xTV) = 0⇒ x1, x2, x3

3: Determine volume power: PV = min{x1, x2, x3}
4: Obtain remaining matrix: T′ = T− PVTV

5: Perform eigendecomposition: T′ = λ1k1k
H
1 + λ2k2k

H
2

6: for i = 1 to 2 do
7: Write Si in terms of Pauli-vector ki
8: Obtain orientation angle τi of Si
9: Perform de-orientation: S′i = R(−τi)SiR(τi)

10: if Re
{
S′i,HH

(
S′i,VV

)∗}
> 0 then

11: PS ← PS + λi
12: else
13: PD ← PD + λi
14: end if
15: end for
16: Output: PS, PD, PV

C. Discriminating Single Scatterers by Model Fitting

As previously pointed out, there exist an infinite number
ways in terms of writing T′ as the sum of two rank-1 matrices
and the eigendecomposition in Section III-B offers just one of
them. In this sub-section, we provide another solution with a
model-based approach.

In particular, we seek to fit a Bragg scatterer subject to
azimuth slope modulation [17] to T′. The coherency matrix
for such a scatterer can be written as:

TS(β, θ) = RT(θ) ·TS(β) ·R(θ), (18)

where TS(β) is given in (4) and θ denotes the orientation
angle. The rotation matrix R(θ) is given by:

R(θ) =

1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ

 . (19)

Then after rotation compensation by T′(θ) = R(θ)T′RT(θ),
we can arrive at the model equation shown in (20) at the
bottom of this page where δ, ω, φ, ϕ are the re-normalized
vector parameters of k = R(θ)kD(δD, ωD, φD, ϕD). The
unknowns on the right-hand side of (20) can be directly solved
in terms of the elements of T′(θ) and the results are given by:

PS = T ′11(θ) + T ′22(θ)− |T
′
13(θ)|2 + |T ′23(θ)|2

T ′33(θ)
, (21a)

β =
T ′33(θ)[T ′12(θ)]∗ − T ′23(θ)[T ′13(θ)]∗

T ′11(θ)T ′33(θ)− |T ′13(θ)|2
, (21b)

PD = T ′33(θ) +
|T ′13(θ)|2 + |T ′23(θ)|2

T ′33(θ)
, (21c)

δ = sin−1

√
|T ′33(θ)|2 + |T ′23(θ)|2

|T ′33(θ)|2 + |T ′23(θ)|2 + |T ′13(θ)|2
, (21d)

ω = sin−1

√
|T ′33(θ)|2

|T ′33(θ)|2 + |T ′23(θ)|2
, (21e)

φ = arg {T ′23(θ)[T ′13(θ)]∗} , (21f)

ϕ = −arg [T ′13(θ)] , (21g)

where the superscript ∗ denotes the conjugate of a complex
number and arg[·] denotes the argument. From (21) it can
be verified that the component powers, PS and PD, are
both strictly non-negative. PD ≥ 0 is obvious in (21c).
As for the non-negativity of PS, according to the positive-
semidefiniteness of T′(θ) any of its principal minors should be
also positive-semidefinite. This property leads to the following
inequalities:

T ′11(θ)T ′33(θ)− |T ′13(θ)|2 ≥ 0, (22a)

T ′22(θ)T ′33(θ)− |T ′23(θ)|2 ≥ 0, (22b)

From the above equation it is easy to see that PS in (21a) is
also non-negative.

Next, note in (21) that all the model parameters and power
coefficients are functions of θ. Then we obtain the optimal
value of θ such that PS is maximized. Physically, it means we
try to fit the best model TS(β, θ) to the remaining matrix T′.
The solution to this optimization problem is (see Appendix F
for derivation):

θmax =
1

4

[
tan−1

(
B +

√
B2 − C

)
d− a(

B +
√
B2 − C

)
e− b

+ kπ

]
, (23)

where k = 0 or k = 1 accounts for the angle ambiguity and
can be determined according to (F.8) (see Appendix F). The
constants on the right hand side of (23) are respectively given
by:

B =
ad+ eb− cf
d2 + e2 − f2

, (24a)

T′(θ) =
PS

1 + |β|2

1 β∗ 0
β |β|2 0
0 0 0

 + PD

 cos2 δ cos δ sin δ cosωe−jφ cos δ sin δ sinωe−jϕ

cos δ sin δ cosωejφ sin2 δ cos2 ω sin2 δ cosω sinωej(φ−ϕ)

cos δ sin δ sinωejϕ sin2 δ cosω sinωej(ϕ−φ) sin2 δ sin2 ω

 (20)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

C =
a2 + b2 − c2

d2 + e2 − f2
, (24b)

a =
1

2

(
T ′11T

′
33 − |T ′13|2 − T ′11T

′
22 + |T ′12|2

)
, (24c)

b = Re
[
T ′12 (T ′13)

∗]− T ′11Re (T ′23) , (24d)

c = T ′22T
′
33−|T ′23|2+

1

2

(
T ′11T

′
33 − |T ′13|2 + T ′11T

′
22 − |T ′12|2

)
,

(24e)

d =
1

2
(T ′33 − T ′22) , (24f)

e = −Re (T ′23) , (24g)

f =
1

2
(T ′22 + T ′33) . (24h)

Finally we substitute θmax to (21b) for model validation
because Bragg scattering requires |β| < 1. However, if
|β| > 1, then in this case we are in fact fitting a rotated
dihedral scatterer to the remaining matrix. The scattering
mechanism for the other single scatterer can be also interpreted
in the same way as in Section III-B, that is, we perform the
Huynen decomposition and check the co-polarized phase of
the de-oriented scattering matrix for odd or even scattering.
To summarize, the aforementioned decomposition procedure
is restated in Algorithm 2.

Algorithm 2
1: Input: T and TV

2: Solve cubic equation: det(T− xTV) = 0⇒ x1, x2, x3

3: Determine volume power: PV = min{x1, x2, x3}
4: Obtain remaining matrix: T′ = T− PVTV

5: Determine a, b, c, d, e, f, B,C by (24)
6: Obtain orientation angle θ by (23)
7: Rotate remaining matrix: T′(θ) = R(θ)TRT(θ)
8: PS = 0, PD = 0
9: Calculate β by (21b)

10: if |β| < 1 then
11: PS ← PS + T ′11(θ) + T ′22(θ)− |T

′
13(θ)|2+|T ′

23(θ)|2
T ′
33(θ)

12: else
13: PD ← PD + T ′11(θ) + T ′22(θ)− |T

′
13(θ)|2+|T ′

23(θ)|2
T ′
33(θ)

14: end if
15: Calculate δ, ω, φ, ϕ by (21d)–(21g)
16: k =

[
cos δ, sin δ cosωejφ, sin δ sinωejϕ

]T
17: Write S in terms of Pauli-vector k
18: Obtain orientation angle τ of S
19: Perform de-orientation: S′ = R(−τ)SR(τ)
20: if Re

{
S′HH (S′VV)

∗}
> 0 then

21: PS ← PS + T ′33(θ) +
|T ′

13(θ)|2+|T ′
23(θ)|2

T ′
33(θ)

22: else
23: PD ← PD + T ′33(θ) +

|T ′
13(θ)|2+|T ′

23(θ)|2
T ′
33(θ)

24: end if
25: Output: PS, PD, PV

IV. DECOMPOSITION RESULTS WITH SELECTED
EXPERIMENTAL SCENES

In this section, we present the decomposition results for
POLSAR data collected by the NASA/JPL AIRSAR, JAXA
ALOS-PALSAR and CSA/MDA RASARSAT-2. We compare
the proposed methods with the Freeman-Durden decompo-
sition (FDD) [2], the Yamaguchi four-component decompo-
sition with rotation compensation (Y4R) [7], and the non-
negative eigenvalue decomposition assuming reflection sym-
metry (NNED-RS) with maximum volume scattering power
[5]. In addition, throughout this section we have tested, for
Algorithm 1, Algorithm 2, and NNED-RS, a library of three
volume models that are representative of the horizontally, uni-
formly, and vertically oriented cloud of dipoles. The coherency
matrices are respectively given by [3]:

Thorizontal
V =

1

30

15 5 0
5 7 0
0 0 8

 , (25a)

Tuniform
V =

1

4

2 0 0
0 1 0
0 0 1

 , (25b)

Tvertical
V =

1

30

15 −5 0
−5 7 0
0 0 8

 . (25c)

We then compute the power for each of the aforementioned
volume models and choose the one with the largest strength
as the best model.

A. Study Scene 1: Volume Scattering Dominant Area

We first test on the L-band AIRSAR polarimetric data
acquired over the Black Forest in Germany where random
volume scattering is expected to be dominant. A spatial
multi-look processing by combining 5×5 (range×azimuth)
neighboring pixels is performed on this dataset in order to
achieve a better coherency matrix estimate. Fig. 1 displays
the power decomposition results using five methods. It shows
that while all the methods confirm the volume scattering
dominance in the vegetated area, different scattering powers
are obtained. The power distributions in the selected patches
in Fig. 1 are shown in Fig. 2. It can be seen that Algorithm
1 and Algorithm 2 give the least volume scattering power
estimation. In particular, it is interesting to note in Fig. 2(a)–(c)
that the proposed methods extract smaller volume scattering
power than the NNED-RS. Recall that the former can be also
regarded as NNED but without assuming reflection symmetry.
Thus the power differences in Fig. 2(a)–(c) indicate that taking
account of non-reflection-symmetry will further reduce the
volume scattering power. This appears to be a reasonable result
given that the volume models used in (25) are not characterized
by non-reflection-symmetric terms.

In order to see which one of the volume models in (25)
produces the best fit to the scene, we display the maps of
model selection in Fig. 3, where Fig. 3(a) is the map generated
by fitting the volume model to the complete coherency matrix
and Fig. 3(b) is the map generated by fitting the volume model
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(a) (b) (c)

(d) (e)

Ps! Pv!

Pd!

Fig. 1. Decomposition results of the AIRSAR data by (a) Algorithm 1, (b)
Algorithm 2, (c) non-negative eigenvalue decomposition assuming reflection
symmetry, (d) Yamaguchi decomposition with rotation angle compensation,
and (e) Freeman-Durden decomposition. Power distributions in the selected
boxes containing vegetated areas are shown in Fig. 2.

(a) (b) (c)

(d) (e)

Fig. 2. Power distributions in the selected boxes in Fig. 1 of the decomposition
results by (a) Algorithm 1, (b) Algorithm 2, (c) non-negative eigenvalue
decomposition assuming reflection symmetry, (d) Yamaguchi decomposition
with rotation angle compensation, and (e) Freeman-Durden decomposition.

to the coherency matrix assuming reflection symmetry. It is
interesting to note that both Fig. 3(a) and Fig. 3(b) nicely
delineate the forested area that is best modeled by the hor-
izontally oriented dipoles. Alternatively, Yamaguchi et al [3]
suggested that the volume models can be chosen from based on
the magnitude balance of 〈|SHH|2〉 and 〈|SVV|2〉. Specifically,
if 10lg

(
〈|SHH|2〉/〈|SVV|2〉

)
< −2dB, Thorizontal

V will be
selected; if 10lg

(
〈|SHH|2〉/〈|SVV|2〉

)
> −2dB, Tvertical

V will
be selected; otherwise, Tuniform

V is selected. Based on this rule,
we have also plotted the map of volume model selection in
Fig. 3(c). Similarity can be observed among Fig. 3(a), (b) and
(c). This suggests that the volume model selection with a best

(a) (b) (c)

Fig. 3. Maps of volume model selection by (a) fitting the volume models
to the complete coherency matrix, (b) fitting the volume models to the
coherency matrix assuming reflection symmetry, and (c) magnitude balance
of co-polarized channels.

fitting approach can be a useful complement to that based on
prior experimental evidences.

B. Study Scene 2: Oblique Urban Area

The next test dataset is acquired by ALOS-PALSAR over
the area of Kyoto on April 9, 2009. The original data format
is single-look complex (SLC) scattering matrix. An ensemble
averaging of 4×24 (range×azimuth) pixels is performed for
estimating the coherency matrix. The resolution of the final
image corresponds to 60m in the ground area. The illuminated
scene mainly consists of oblique urban areas that are not or-
thogonal to the radar line-of-sight. The decomposition results
are shown in Fig. 4. Patches containing oblique man-made
structures are selected in Fig. 4 and the power distributions
therein are drawn in Fig. 5. First, it can be seen in Fig. 5(e) that
the FDD produced a volume scattering dominant result. This
is because the FDD treats all the cross-polarization returns
as volume scattering contribution and so cannot discriminate
the cross-polarization power generated by oriented single
scatterers such as oriented dihedrals. The NNED-RS presents
an improvement with a reduced volume scattering power but
the difference is subtle. This may be due to the fact that in
oblique urban areas the non-reflection symmetry terms such
as T23 can play a significant role. On the other hand, more
reasonable results are achieved by Algorithm 1, Algorithm 2,
and Y4R. It can be seen in Fig. 5(a), (b), (d) that both double-
bounce and surface scattering powers become dominant which
is more consistent with the situation in urban areas.

C. Study Scene 3: Surface Scattering Dominant Area

The third test image is acquired by RADARSAT-2 at the
south of Yanliang City of Shaanxi Province in China on
February 28, 2009. The original data format is also SLC with
an approximate 5 meter spacing in both range and azimuth
directions. Spatial multilooking is performed by combining
9×9 pixels to obtain the coherency matrix data. Fig. 6 shows
the decomposition results from which we can see that surface
scattering dominance is confirmed in the center of the image
near the bank of a river (Wei River) by different methods.
This area mainly consists of farmlands but at the time of
the data acquisition (late February) no crop has been yet
planted such that single-bounce scattering by bare soil is
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(a) (b) (c)

(d) (e)

Ps! Pv!

Pd!

Fig. 4. Decomposition results of the ALOS-PALSAR data by (a) Algorithm
1, (b) Algorithm 2, (c) non-negative eigenvalue decomposition assuming
reflection symmetry, (d) Yamaguchi decomposition with rotation angle com-
pensation, and (e) Freeman-Durden decomposition. Power distributions in the
selected boxes containing vegetated areas are shown in Fig. 5.

(a) (b) (c)

(d) (e)

Fig. 5. Power distributions in the selected boxes in Fig. 4 of the decomposition
results by (a) Algorithm 1, (b) Algorithm 2, (c) non-negative eigenvalue
decomposition assuming reflection symmetry, (d) Yamaguchi decomposition
with rotation angle compensation, and (e) Freeman-Durden decomposition.

the primary mechanism. The power distributions within the
selected patches in Fig. 6 are also shown in Fig. 7. It can be
seen that the proposed methods, Algorithm 1 and Algorithm 2,
produced very similar results to the Y4R in terms of extracted
surface and double-bounce scattering power. The FDD and
NNED-RS give relatively smaller surface scattering estimate,
possibly due to slight azimuth slope modulation.

D. Study Scene 4: Terrains with Azimuth Slopes

Note by deriving (23) in Section III-C, we have in fact
proposed another orientation angle estimation method that is
different to the circular-polarization method [17] or the cross-
pol minimization method [7]. In this subsection, we evaluate

(a) (b) (c)

(d) (e)

Ps! Pv!

Pd!

Fig. 6. Decomposition results of the RADARSAT-2 data by (a) Algorithm
1, (b) Algorithm 2, (c) non-negative eigenvalue decomposition assuming
reflection symmetry, (d) Yamaguchi decomposition with rotation angle com-
pensation, and (e) Freeman-Durden decomposition. Power distributions in the
selected boxes containing vegetated areas are shown in Fig. 7.

(a) (b) (c)

(d) (e)

Fig. 7. Power distributions in the selected boxes in Fig. 6 of the decomposition
results by (a) Algorithm 1, (b) Algorithm 2, (c) non-negative eigenvalue
decomposition assuming reflection symmetry, (d) Yamaguchi decomposition
with rotation angle compensation, and (e) Freeman-Durden decomposition.

the estimated orientation angle in (23) for tilted terrains
with azimuth slopes. The test L-band dataset is acquired by
AIRSAR over Camp Roberts (California, US) in May 1998.
For reducing the speckle effect we perform a simple boxcar
filtering with a 3×3 window. The orientation angle estimated
by (23) is shown in Fig. 8(a) whereas for comparison the
orientation angle estimated by the circular-polarization method
[17] is shown Fig. 8(b). It can be shown that Fig. 8(a) is similar
to Fig. 8(b) but it is also much noisier. This is because our so-
lution tries to fit an ideal model (ideal rotated Bragg scatterer)
to the noisy data and so is more susceptible to speckle noise
than the circular-polarization method. Nevertheless, Fig. 8(a)
contains useful information which helps the decomposition
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(a) (b)

Fig. 8. Orientation angles of the L-band AIRSAR data of Camp Roberts
(California, US) estimated by (a) Eq. (23), and (b) circular-polarization
method.

algorithm to discriminate tilted scatterers.

V. CONCLUSION

In this paper, we have shown that the POLSAR coherency
matrix data can be completely decomposed into three com-
ponents that are contributed by volume scattering and two
single scatterers. In particular, under this scheme, the first
important result is that the volume scattering power can be
uniquely determined and it is equal to the minimum general-
ized eigenvalue of (9). Furthremore, we have pointed out that
discrimination of the two single scatterers from the remaining
matrix is ambiguous because more unknowns than independent
equations are to be dealt with. Thus for single scatterer ex-
traction, we have proposed two different approaches. The first
one is based on simple eigendecomposition while the second
one is based on optimal model fitting. Experimental results
showed that both methods are able to properly differentiate
surface and double-bounce scattering from the real POLSAR
data.

Another important remark is the link between the pro-
posed decomposition with NNED. It has been pointed out
in Section III-A that the derived volume scattering power
can be considered as the maximum value possible from the
NNED perspective. Thus Algorithm 1 and Algorithm 2 are
both special solutions of the NNED without assuming reflec-
tion symmetry and using the maximum amount of volume
scattering. Although it is nevertheless legitimate to use a
smaller volume power which consequently leads to a four-
component model, the three-component model as used in this
paper provides the simplest and most compact explanation of
the polarimetric data.

APPENDIX A

In this appendix, we show that for any volume model
generated from a cloud of random oriented scatterers, the
corresponding coherency matrix is positive-definite in gen-
eral. Suppose the Pauli-vector of the elementary scatterer is
k = [k1, k2, k3]T, then the volume matrix can be derived as:

TV = Eθ {T(θ)} = Eθ
{
R(θ)kkHRH(θ)

}
(A.1)

where Eθ denotes the mathematical expectation over θ; R(θ)
is the rotation matrix given in (19). Then for any non-zero

vector x = [x1, x2, x3]H, the quadratic form of TV is:

xHTVx = Eθ
{
|xHR(θ)k|2

}
=

∫ 2π

0

g(θ)p(θ)dθ, (A.2)

where p(θ) is the probability density function (pdf) of the
orientation angles and g(θ) is given by:

g(θ) = |k1x1 +(k2x2 +k3x3) cos 2θ+(k3x2−k2x3) sin 2θ|2.
(A.3)

Note that g(θ) = 0 has at most (in the worst case, zero) two
solutions, θ0 and θ0 + π, within [0, 2π]. Thus unless all the
mass of p(θ) is only concentrated on these two points, i.e., un-
less p(θ) takes the singular form of [δ(θ−θ0)+δ(θ−θ0−π)]/2
(where δ(θ) is the Dirac delta function), we can always find a
small neighborhood ∆ ⊂ [0, 2π] such that g(θ) > 0, p(θ) > 0
for any θ ∈ ∆. Consequently, (A.2) becomes:

xHTVx =

∫ 2π

0

g(θ)p(θ)dθ ≥
∫
θ∈∆

g(θ)p(θ)dθ. (A.4)

The aforementioned equation demonstrates that TV will
be generally positive-definite. The exception happens when
p(θ) = [δ(θ − θ0) + δ(θ − θ0 − π)]/2. However, in this case
all the elementary scatterers will be aligned along the same
direction θ0. Such a volume model does not represent random
scattering and so is excluded from discussion.

APPENDIX B
Suppose A and B are two 3×3 Hermitian matrices and B

is positive-definite. We show that det(A−xB) = 0 is a cubic
equation with respect to x. In fact, det(A− xB) = 0 can be
written as:

a3x
3 + a2x

2 + a1x+ a0 = 0, (B.1)

where the coefficients are given by:

a0 =A11A22A33 + 2Re{A13A
∗
12A

∗
23}

−A11|A23|2 −A22|A13|2 −A33|A12|2,
(B.2a)

a1 =−B11A22A33 −B22A11A33 −B33A11A22

− 2Re{B12A23A
∗
13} − 2Re{B23A12A

∗
13}

− 2Re{B13A
∗
12A

∗
23}+ 2Re{B13A22A

∗
13}

+ 2Re{B23A11A
∗
23}+ 2Re{B12A33A

∗
12}

+B11|A23|2 +B22|A13|2 +B33|A12|2,

(B.2b)

a2 =A11B22B33 +A22B11B33 +A33B11B22

+ 2Re{A12B23B
∗
13}+ 2Re{A23B12B

∗
13}

+ 2Re{A13B
∗
12B

∗
23} − 2Re{A13B22B

∗
13}

− 2Re{A23B11B
∗
23} − 2Re{A12B33B

∗
12}

−A11|B23|2 −A22|B13|2 −A33|B12|2,

(B.2c)

a3 =−B11B22B33 − 2Re{B13B
∗
13B

∗
23}

+B11|B23|2 +B22|B13|2 +B33|B12|2,
(B.2d)

Note that B is positive-definite and so a3 = −det(B) 6= 0.
Hence (B.1) is a cubic equation. Furthermore, define the
following two constants:

P =
√

(2a3
2 − 9a3a2a1 + 27a2

3a0)2 − 4(a2
2 − 3a3a1)3,

(B.3a)
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Q = 3

√
(P + 2a3

2 − 9a3a2a1 + 27a2
3a0)/2. (B.3b)

Then the three roots of (B.1) are respectively given by:

x1 = − a2

3a3
− Q

3a3
− a2

2 − 3a3a1

3a3Q
, (B.4a)

x2 = − a2

3a3
+
Q(1 + j

√
3)

6a3
+

(1− j
√

3)(a2
2 − 3a3a1)

6a3Q
,

(B.4b)

x3 = − a2

3a3
+
Q(1− j

√
3)

6a3
+

(1 + j
√

3)(a2
2 − 3a3a1)

6a3Q
.

(B.4c)

APPENDIX C

In this appendix, we prove that for any positive-semidefinite
Hermitian matrix T and any positive-definite Hermitian matrix
TV, all the generalized eigenvalues of (9) are non-negative.
First we show that this generalized eigenvalue problem can
be reduced to a standard (Hermitian) symmetric eigenvalue
problem. Note that for any positive-definite Hermitian matrix
TV, by eigendecomposition it can be written as:

TV = VΣVH = MMH, (C.1)

where Σ is a diagonal matrix containing the eigenvalues of
TV, V is a unitary matrix, and M = VΣ

1
2 . Substituting

(C.1) into (9) we have:

Tx = λMMHx. (C.2)

Since TV is positive-definite, M−1 and
(
MH

)−1
exist. Then

by multiplying M−1 on both sides of (C.2) and letting y =
MHx, we obtain:

M−1T
(
MH

)−1
y = λy. (C.3)

Consequently, the generalized eigenvalues of (9) are also
the eigenvalues of the Hermitian matrix M−1T

(
MH

)−1
. In

addition, it is easy to verify that M−1T
(
MH

)−1
is also

positive-semidefinite. As a matter of fact, note that T is
positive-semidefinite and for any vector z:

zH
[
M−1T

(
MH

)−1
]

z = wHTw ≥ 0, (C.4)

where w =
(
MH

)−1
z. So M−1T

(
MH

)−1
is positive-

semidefinite. Thus equivalently, all the generalized eigenvalues
of (9) are non-negative.

APPENDIX D

In this appendix, we prove that if PV is equal to one of the
generalized eigenvalues of (9), then T − PVTV is positive-
semidefinite if and only if PV equals the minimum generalized
eigenvalue of (9). According to Appendix C, the generalized
eigenvalues of (9) are also those of the positive-semidefinite
Hermitian matrix M−1T

(
MH

)−1
. Then by eigendecomposi-

tion of M−1T
(
MH

)−1
we have:

M−1T
(
MH

)−1
= U

λ1 0 0
0 λ2 0
0 0 λ3

UH, (D.1)

where without loss of generality we assume λ1 ≥ λ2 ≥ λ3 ≥
0; U is a unitary matrix. Consequently,

T = MU

λ1 0 0
0 λ2 0
0 0 λ3

UHMH, (D.2)

According to (D.2) and (C.1), we have:

T−PVTV = MU

λ1 − PV 0 0
0 λ2 − PV 0
0 0 λ3 − PV

UHMH,

(D.3)
From the above equation, it is easy to see that T− PVTV is
positive-semidefinite if and only if PV is equal to λ3, i.e., the
minimum eigenvalue.

APPENDIX E

In this appendix, we derive the orientation angle in the
Huynen decomposition. Let S be the scattering matrix. We
first obtain the Graves matrix by G = SHS. Then by
eigendecomposition of G we have:

G = SHS = UΛUH, (E.1)

where Λ = diag{λ1, λ2} are the eigenvalues and U =
[u1,u2] are the corresponding eigenvectors. Without loss of
generality, we assume λ1 ≥ λ2 such that u1 represents the
maximum transmitter polarization. The orientation angle τ of
S is then defined as the orientation angle of u1. Specifically,
Let the Jones-vector expression of u1 be:

u1 =

[
Ex

Eye
jφ

]
. (E.2)

The orientation angle τ is thus given by:

τ =
1

2

(
tan−1 2ExEy cosφ

E2
x − E2

y

+ kπ

)
, (E.3)

where k ensures that τ ∈
[
−π2 ,

π
2

]
and that sin 2τ and cosφ

are of the same sign.

APPENDIX F

In this appendix we derive the orientation angle θ that
maximizes PS in (21a). The optimization problem is:

max
θ

{
T ′11(θ) + T ′22(θ)− |T

′
13(θ)|2 + |T ′23(θ)|2

T ′33(θ)

}
, (F.1)

where T ′ij(θ) are the elements of the rotated matrix T′(θ) =
R(θ)T′RT(θ) and R(θ) is given in (19). By writing T ′ij(θ)
in terms of T ′ij and θ, the above optimization problem is
equivalent to:

max
θ

{
a · cos 4θ + b · sin 4θ + c

d · cos 4θ + e · sin 4θ + f

}
, (F.2)

where the constants a, b, c, d, e, f are given in (24). Let

a · cos 4θ + b · sin 4θ + c

d · cos 4θ + e · sin 4θ + f
= x. (F.3)

Then we have:

(dx− a) · cos 4θ + (ex− b) · sin 4θ = c− fx. (F.4)
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According to (F.4) and Cauchy inequality, for any θ the
following relation holds:

(dx− a)2 + (ex− b)2 ≤ (c− fx)2. (F.5)

Thus the range of x can be solved from the following quadratic
inequality:

x2 −Bx+ C ≤ 0, (F.6)

where the constants B and C are given by (24a)–(24b).
According to (F.6), the maximum value for x is:

xmax = B +
√
B2 − C. (F.7)

Then substituting xmax in (F.4) the rotational angle can be
obtained with the following equations:

cos 4θ =

(
B +

√
B2 − C

)
d− a

c−
(
B +

√
B2 − C

)
f
, (F.8a)

sin 4θ =

(
B +

√
B2 − C

)
e− b

c−
(
B +

√
B2 − C

)
f
. (F.8b)

Finally, (F.8) leads to (23).
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