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Abstract—In this paper, we address the theoretical aspects of
coherence region modeling and its inversion methods for polari-
metric interferometric SAR (PolInSAR). Instead of only consid-
ering the geometrical shape of the coherence region, we focus on
directly modeling the whitened interferometric cross-correlation
matrix of the PolInSAR data. In particular, we consider three
classes of generic scattering models that respectively contain
single, double and triple phase centers within one resolution cell.
We then demonstrate, for each class, that the modeled whitened
interferometric cross-correlation matrix is normal. Based on
this property, we propose, for each case, efficient algorithms
to obtain the best normal matrix approximation solution for
model inversion from the observed whitened interferometric
cross-correlation matrix. In addition, we show how a simple and
effective criterion can be designed from the derived solutions
for model validation. Finally, we verify the solutions with both
simulated and real data. The results prove the proposed method
to be a very promising tool for PolInSAR applications.

Index Terms—Polarimetric interferometric SAR (PolInSAR),
coherence region modeling, model inversion, whitened interfero-
metric cross-correlation matrix, best normal matrix approxima-
tion.

I. INTRODUCTION

IN past decades, polarization diversity has been exten-
sively exploited to understand the scattering mechanisms

in synthetic aperture radar (SAR) images [1]–[7]. Due to the
sensitivity of the wave polarization states to the physical and
geometrical structure of the targets, the potential capability
of polarimetric SAR (PolSAR) to discriminate multiple scat-
terers beyond imaging resolutions has been demonstrated by
eigen-based [8] or model-based decomposition [9]. However,
since such discrimination is only based on the polarization-
dependent backscatter responses, the spatial position of differ-
ent scatterers cannot be inferred from a single PolSAR dataset.
Interferometric SAR (InSAR), on the other hand, enables 3-
dimensional imaging to render the earth topography by dual
acquisitions [10]. Nevertheless, single-baseline interferometry
cannot provide fully tomographic information [11]. Strictly
speaking, it is only able to determine one phase center on
the ground whereas in the presence of multiple scatterers
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of different height distribution, conventional InSAR fails in
discrminination.

Polarimetric interferometric SAR (PolInSAR) combines
both advantages of radar polarimetry and interferometry. The
key concept of PolInSAR was first introduced by Cloude and
Papathanassiou in [12] where they showed that polarization
plays a significant role in the variation of the interferometric
coherence. They further demonstrated that the optimal coher-
ence values can be successfully used for tree height inversion
[13]. Later, it was pointed by Flynn and Tab [14], [15] and
Colin et al. [16] that the behavior of the PolInSAR coherence,
i.e., the coherence region, is equivalent to the numerical
range of the whitened interferometric cross-correlation matrix
(see Section II-B for definition). Based on this formulation,
Colin et al. [16] devised an alternative coherence optimization
algorithm which proves useful for phase estimation of point
scatterers.

Meanwhile, several scattering models have been also pro-
posed for analysis of PolInSAR data. Among them, the random
volume over ground (RVoG) [13], [17] is probably the most
recognized one that encodes double phase centers. It has been
shown that the coherence region of the RVoG model is a
line segment of which the slope as well as the end points
contains the essential information [18]. Therefore, the task of
model inversion becomes estimation of the line parameters
from the measured coherence region. Cloude et al. [18] did
this by least squares fitting the coherence values of typical
scattering mechanisms. Ferro-Famil et al. [19] addressed the
problem by a maximum likelihood approach. More recently,
Lopez-Martinez et al. [20] proposed the affine transformation
method to estimate the line segment. Another widely used
PolInSAR model has been the summation of single scatterers
which was first considered by Yamada et al. [21] for forest
height inversion. They showed that parameter estimation of
the model is virtually equivalent to array signal processing
and can be solved by the ESPRIT algorithm. Guillaso et al.
[22], [23] further applied the ESPRIT algorithm for urban
characterization, whose works are the first ones to evaluate
such method for the separation of isolated scattering phase
centers in the context of building layovers. Similar problem
was also addressed by Colin et al. in [16] where the coherence
of each single scatterer is related to the boundary point of the
coherence region.

We have seen that inversion of the model parameters is often
accomplished by examining the geometrical shapes of the
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coherence region for fitting of points or line segments. How-
ever, since the coherence region is equivalent to the numerical
range which in turn is uniquely determined by the whitened
interferometric cross-correlation matrix, model inversion can
be essentially done in a more algebraic way by extraction of
this matrix from the noisy observable. Note that this should be
distinguished from the statistical mission of speckle reduction
which aims to estimate the PolInSAR coherency matrix data
[24] (see also Section II-A). Indeed, in the absence of thermal
and temporal decorrelation and with sufficiently large multi-
looking, the whitened interferometric cross-correlation matrix
computed from the reconstructed PolInSAR coherency does
asymptotically approach the true one. Unfortunately, very high
number of looks is often practically unavailable due to, e.g.,
scene heterogeneity. Thus the task herein defined is better
regarded as a refined step that follows speckle filtering, that is,
to infer the whitened interferometric cross-correlation matrix
that is consistent with the assume scatteirng model, from the
filtered PolInSAR data.

In this paper, we will show that such a task can be accom-
plished by effectively exploiting the special structure of the
whitened interferometric cross-correlation matrix. Especially,
we will demonstrate that for a wide class of scattering models,
the whitened interferometric cross-correlation matrix should
be normal. The property consequently motivates us to derive
very efficient algorithms to obtain the best normal matrix
approximation solution for model inversion.

This paper is organized as follows. In Section II we give
a brief review of PolInSAR. In Sections III, Section IV,
and Section V we respectively discuss the scattering models
consisting of single, double, and triple phase centers and we
each derive the algorithms for the corresponding best normal
matrix approximation solution. In Section VI, we show how to
use the best normal matrix approximation solution to validate
the scattering models. In Section VII, we demonstrate the
effectiveness of the solution by simulation and in Section VIII
we provide the experimental result on real PolInSAR dataset.
Finally, Section IX is the conclusion.

II. POLARIMETRIC SAR INTERFEROMETRY

A. PolInSAR Data

A single-baseline PolInSAR system measures, by dual po-
larimetric acquisitions, two complex scattering matrices for
each resolution cell. In the case of reciprocal propagation
media, either scattering matrix can be equivalently represented
by the corresponding Pauli-vector:

k =
1√
2

SHH + SVV

SHH − SVV

2SHV

 , (1)

where SHH, SHV, SVV are the backscattering coefficients in
the horizontal/vertical polarization basis. Suppose k1 and k2

respectively denote the master and slave Pauli-vectors, then
the concatenated vector can be formed by [kT

1 ,k
T
2 ]T from

which the polarimetric interferometric coherency matrix, T6,
is defined as:

T6 =

〈[
k1

k2

] [
kH

1 kH
2

]〉
=

[
T11 Ω12

ΩH
12 T22

]
, (2)

where Tii = 〈kikH
i 〉 is the 3×3 polarimetric coherency matrix

and Ω12 = 〈k1k
H
2 〉 is the inteferometric cross-correlation

matrix. It is specially noted that the ensemble averaging oper-
ator 〈·〉 should be differentiated from the ideal mathematical
expectation. The former involves the finite multilooking effect
such that both Tii and Ω12 are subject to speckle to various
degrees. This fact constitutes one major challenge when we
are trying to infer exact scattering models from real PolInSAR
data.

B. PolInSAR Coherence

The inteferometric coherence for the PolInSAR data is given
by [12]:

γ(w1,w2) =
wH

1 Ω12w2√
wH

1 T11w1

√
wH

2 T22w2

, (3)

where w1 and w2 are two arbitrary 3×1 non-zero complex
vectors of the same norms. In this paper we consider the
single-mechanism variant of (3) under the constraint of w1 =
w2 = w, by the reasoning that T11 ≈ T22 with small spatial
and temporal baseline. Consequently, (3) becomes:

γ(w) =
wHΩ12w

wHTw
, (4)

where T = (T11 + T22)/2. By letting v = T
1
2 w, (4) can be

further written as:

γ(v) =
vHΩ̃12v

vHv
, (5)

where the whitened interferometric cross-correlation matrix is
given by:

Ω̃12 = T−
1
2 Ω12T

− 1
2 . (6)

Importantly, (5) allows to relate all the possible values of the
interferometric coherence (i.e., the coherence region) with the
concept of numerical range of Ω̃12, which is defined as the
set:

W
(
Ω̃12

)
=

{
vHΩ̃12v

vHv

∣∣∣∣v ∈ C3,v 6= 0

}
. (7)

Accordingly, the coherence region is mathematically equiv-
alent to W

(
Ω̃12

)
that solely depends on Ω̃12. In general,

determination of the numerical range of an arbitrary matrix
has not been a trivial problem and intensive efforts have been
devoted for its study [25], [26]. A comprehensive investigation
of the numerical range in the context PolInSAR applications is
also given by Neumann [27]. Interestingly, however, in certain
special cases the numerical range can take a fairly regular
form. In particular, the following theorem holds: [26]

Theorem 1. Let A be an n × n complex matrix. If A is a
normal matrix that is, if AAH = AHA, then W (A) is the
convex hull of the points in the complex plane corresponding
to the eigenvalues of A; and the reverse is true for n ≤ 4: if
W (A) is the convex hull of the eigenvalues of A (n ≤ 4), A
is normal.

As a consequence, one may immediately see that if Ω̃12 is
normal, its coherence region will be a triangle whose vertices
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correspond to the three eigenvalues of Ω̃12. Depending on the
location of the eigenvalues the triangle can also degenerate
into a line segment (when the three eigenvalues are colinear
on the complex plane) or a single point (when the three
eigenvalues overlap). It is additionally important to note that
Theorem 1 is of particular relevance to the PolInSAR equal
optimal scattering mechnism hypothesis [19], or otherwise re-
ferred to as interferometrically polarimetric stationarity (IPS)
hypothesis [27]. It can be proved that for IPS to hold, Ω̃12

has to be normal. In the following sections, we will further
exploit such a special property from the perspective of generic
PolInSAR scattering models. We will show that these models
indeed enjoy normality (hence fulfill IPS) and the shape of the
coherence region is essentially determined by the number of
phase centers within the resolution cell. Such fact consequently
motivates the best normal matrix approximation solution for
model inversion when dealing with measured data.

III. COHERENCE MODELING AND INVERSION: THE
SINGLE PHASE CENTER CASE

A. Data Model

In this section, we consider the case where the resolution
cell only contains a single phase center. Mostly this is charac-
terized as flat surface scattering [10]. Single scattering phase
center can also happen in the presence of dense vegetation
when the radar cannot ”see” through to the ground [28]. To be
more precise, whenever the scatterer does not have distinctive
vertical distributions or polarizations, the single-phase center
applies. In such cases, the PolInSAR data can be modeled as:

T = T1, (8)

Ω12 = γ1T1, (9)

where T1 is the coherency matrix of the target and γ1 =
ρ1e

jφ1 is the corresponding complex coherence. The overbar
for the terms on the left hand side of (8) and (9) indicates
the modeled case where there is no finite multilooking ef-
fect. In real scenarios, one may expect T1 to represent an
extended Bragg scatterer [5]. It is also possible that T1 comes
purely from a uniformly distributed volume layer [2]. In such
case, since each volume scatterer equally contributes to the
backscatter, the net effect amounts to an averaged phase center
lying at the middle of that layer.

Throughout this paper we always assume that T
−1

exists
such that according to (8) and (9), the modeled whitened
interferometric cross-correlation matrix becomes:

Ω̃12 = T
− 1

2 Ω12T
− 1

2 = γ1I3, (10)

where I3 is the 3×3 identity matrix. From the above equation
it is clear that Ω̃12 is a special normal matrix whose three
eigenvalues are all equal to γ1. As a result, the numerical
range of Ω̃12, or equivalently, the coherence region, collapses
to a single point on the complex plane where γ1 exactly lies.

B. Best Normal Matrix Approximation Solution for Model
Inversion

When dealing with measured data, the finite multilooking
effect deteriorates the normality of the observed whitened
interferometric cross-correlation matrix Ω̃12. Alternatively,
this means that the observed coherence region will no longer
be a single point but take up an extended area on the complex
plane. In this case, we attempt to obtain the best approximation
matrix to Ω̃12 that maintains the normality as the solution to
model inversion. In light of (10), the optimization problem can
be formulated by:

minimize
ˆ̃
Ω12

∥∥∥ ˆ̃
Ω12 − Ω̃12

∥∥∥
F

subject to ˆ̃
Ω12 = γ1I3,

(11)

where the subscript F stands for the Frobenius norm. For any
complex matrix A: ‖A‖2F = Tr(AAH) where Tr(·) represents
the trace of a matrix. Note that (11) is a single complex
variable optimization problem with regard to γ1 which can
be easily solved. In fact, we can re-write the minimizer in
(11) as

∆ =
∥∥∥γ1I3 − Ω̃12

∥∥∥2

F

= Tr
(
|γ1|2I3 − γ1Ω̃

H
12 − γ∗1Ω̃12 + Ω̃12Ω̃

H
12

)
.

(12)

Taking ∂∆
∂γ1

= 0, the solution is given by:

γ̂1 =
1

3
Tr
(
Ω̃12

)
. (13)

As observed, (13) indicates that γ̂1 is the mean of the three
eigenvalues of Ω̃12. From a geometrical point of view, γ̂1 lies
at the centroid of the triangle formed by the eigenvalues of Ω̃12

in the complex plane. Consequently, the best normal matrix
approximation to Ω̃12 in the case of one phase center is given
by:

ˆ̃
Ω12 =

1

3
Tr
(
Ω̃12

)
I3. (14)

IV. COHERENCE MODELING AND INVERSION: THE
DOUBLE PHASE CENTER CASE

A. Data Model

In this section, we consider the second case where the reso-
lution cell contains two different phase centers. The scattering
model can be written as:

T = T1 + T2, (15)

Ω12 = γ1T1 + γ2T2, (16)

where Ti is the polarimetric coherency matrix and γi = ρie
jφi

is the complex coherence associated with either target. It is
worth emphasizing that (15) and (16) contain the specific case
of the RVoG model where T1 may represent the localized
scatterer on the ground and T2 represents the volume layer
overhead. Assuming no temporal and baseline decorrelation,
γ1 = ejφ1 codes the ground phase whereas the volume
coherence γ2 = ρ2e

jφ2 accounts for both the propagation
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extinction (ρ2) and the averaged scattering center (φ2) of the
vegetation layer.

According to (15) and (16), the modeled interferometric
coherence is:

γ(w) = γ2 +
µ(w)

1 + µ(w)
(γ1 − γ2), (17)

where

µ(w) =
wHT1w

wHT2w
. (18)

As observed, the coherence region defined by (17) delineates
a line on the complex plane. In other words, the numerical
range of Ω̃12 = T

− 1
2 Ω12T

− 1
2 is a line segment. This evidence

consequently dictates that Ω̃12 be a normal matrix according
to the following theorem [29]:

Theorem 2. If W (A) is a line segment, A is normal.

Note that Theorem 2 can be regarded as a special case of
Theorem 1 and its application to the study of RVoG model
was first introduced by Neumann et al. in [30].

B. Best Normal Matrix Approximation Solution for Model
Inversion

Again, in the measured case, Ω̃12 is unlikely to be normal
but we can invert a normal matrix that is closest to Ω̃12

in the sense of minimum norm. However, what complicates
the problem in this case is that we need to further constrain
the numerical range to be a line segment. To be specific, the
optimization must be formulated as follows:

minimize
ˆ̃
Ω12

∥∥∥ ˆ̃
Ω12 − Ω̃12

∥∥∥
F

subject to W (
ˆ̃
Ω12) is a line segment.

(19)

In order to solve the aforementioned problem, we first invoke
the following theorem [25]:

Theorem 3. The numerical range W (A) of a matrix A is
a line segment exactly when A and a Hermitian matrix are
affine equivalents. That is, there exist some a, c ∈ C and a
Hermitian matrix B such that A = aB + cI.

As a consequence of Theorem 2, (19) can be reformulated
as:

minimize
a,c,B

∥∥∥(aB + cI3)− Ω̃12

∥∥∥
F

subject to B = BH.
(20)

Excitingly, the above optimization problem is analytically
tractable. We provide the derivation in Appendix A. Algorithm
1 summarizes the procedure for obtaining the best normal
matrix approximation to Ω̃12.

As an additional remark, we note the difference between
the method proposed here and a recent work by Lopez-
Martinez et al. in [20] where a normal matrix approximation
ˆ̃
Ω12 is also derived. These two optimization methods lead
to different solutions. Specifically, [20] is based on mini-
mizing the skew-Hermitian part of the affine transformation
of Ω̃12 such that ˆ̃

Ω12 is computed by the corresponding

inverse affine transformation after discarding the minimized
skew-Hermitian matrix. Consequently, it does not necessarily
minimize ‖ ˆ̃

Ω12 − Ω̃12‖2F (see Table I in Section VII-B), in
other words, it is not the best normal matrix approximation
solution. On the other hand, the proposed method does not
make explicit use of the affine transformation but directly
solve the best normal matrix approximation problem (19) or
(20), which guarantees the minimization of ‖ ˆ̃

Ω12 − Ω̃12‖2F.
More importantly, this property of the solution subsequently
motivates a simple and effective way for model validation
using only the minimized norm (see Section IV) contrary to
[20]. Indeed, a more sophisticated method based on maximum
likelihood test is proposed in [20] for model validation instead.

Algorithm 1
input: Ω̃12

H1 =
(
Ω̃12 + Ω̃H

12

)
/2,H2 =

(
Ω̃12 − Ω̃H

12

)
/ (2j) ,

A = 4 Tr
(
H2

1

)
, B = −8 Tr (H1H2) , C = 4 Tr

(
H2

2

)
D = 4 Tr (H1) , E = −4 Tr (H2) , F = 3,
X =

(
4AF −D2 − 4CF + E2

)
/2, Y = 2BF −DE

θ = [atan2 (Y,X) + π]/2
ρ = −2F/ (D cos θ + E sin θ)
z = ρ (cos θ + j sin θ)
ˆ̃
Ω12 =

(
zΩ̃12 − z∗Ω̃H

12 − I
)
/ (2z)

output: ˆ̃
Ω12

V. COHERENCE MODELING AND INVERSION: THE TRIPLE
PHASE CENTER CASE

A. Data Model

In this section, we investigate the third case when the
resolution contains three different phase centers. Similarly, the
scattering model is:

T =

3∑
i=1

Ti, (21)

Ω12 =

3∑
i=1

γiTi. (22)

We have already seen in Section III that when the resolution
cell contains a single phase center, the modeled whitened inter-
ferometric cross-correlation matrix is a normal matrix whose
numerical range (coherence region) contracts to one point on
the complex. On the other hand, Section IV tells us that in
the case of two phase centers, the modeled whitened matrix is
also normal whose numerical range becomes a line segment.
In particular, (10) and Theorem 2 respectively guarantee the
normality for these two situations for any γi ∈ C, no matter
what Ti look like. This, unfortunately, is not the case for the
triple phase center model. One may verify that for arbitarily
chosen Ti in (21)–(22), Ω̃12 = T

− 1
2 Ω12T

− 1
2 is not always

normal. It then follows that for Ω̃12 to be normal ∀γi, Ti must
satisfy the following condition:

TiT
−1

Tj = TjT
−1

Ti, i 6= j, i, j = 1, 2, 3, (23)
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where T is given by (21). The proof is provided Appendix B.
It should be noted that (23) is redundant. As a matter of fact,
we only need to verify one pair of i 6= j according to Lemma
1 in Appendix B.

However, (23) is non-constructive. It does not provide much
insight as to what Ti could each look like in order to fulfill the
normality, a point that deserves further investigation. Indeed,
it seems that the discussion is ad hoc and at this stage we
have not been able to exhaust all the possible structures of
Ti except for some limited cases. Among them, there exists
a very interesting one. It turns out that if Ti are all single-
rank matrices (single-scatterers), that is, if (21) and (22) can
be written as:

T =

3∑
i=1

kik
H
i , (24)

Ω12 =

3∑
i=1

γikik
H
i . (25)

then Ω̃12 = T
− 1

2 Ω12T
− 1

2 is normal. This can be proved
via validation of (23) and is left for interested readers (hint:
kH
i T
−1

kj = 0 for i 6= j). Nonetheless, in the following
we provide an alternative proof which reveals the intrinsic
relationship between the coherence of each scatterer and the
eigenvalues of Ω̃12. In particular, we have the following
theorem:

Theorem 4. Ω̃12 = T
− 1

2 Ω12T
− 1

2 is normal if and only if T
and Ω12 can be respectively written by (24) and (25).

Proof. We first prove the sufficient condition. Note that (24)–
(25) can be re-written in the more compact form by:

T = KKH, (26)

Ω12 = KΓKH, (27)

where K = [k1,k2,k3] and Γ = diag(γ1, γ2, γ3). Then we
define the 3×3 matrix U by:

U = T
− 1

2 K. (28)

It is easy to verify that U is unitary. In fact, according to (26)
and (28) we have:

UUH = T
− 1

2 KKHT
− 1

2 = I. (29)

Thus by (27) Ω̃12 can be written as:

Ω̃12 = T
− 1

2 KΓKHT
− 1

2 = UΓUH. (30)

(30) says that Ω̃12 is diagonalizable to Γ by the unitary matrix
U and hence by the definition of matrix normality, the theorem
holds.

Next we prove the necessary condition. Since Ω̃12 =

T
− 1

2 Ω12T
− 1

2 is normal, it is unitarily diagonalizable:

Ω̃12 = T
− 1

2 Ω12T
− 1

2 = UΓUH, (31)

such that
Ω12 = T

− 1
2 UΓUHT

− 1
2 . (32)

Let K = T
− 1

2 U, then (32) becomes:

Ω12 = KΓK, (33)

and

T = T
− 1

2

(
T
− 1

2

)H

= KUUHKH = KKH. (34)

By (33) and (34), the theorem holds.

Essentially, Theorem 4 says that if the resolution cell does
physically consist of three single scatterers, their respective
complex coherences can be conveniently obtained through
eigendecomposition of Ω̃12. Note that this imposes a strong
restriction on the scattering scenario, which is indeed reported
in a controlled experiment in anechoic chamber by Colin et al.
[16]. However, even if Ti are not single-rank, Theorem 4 also
says as long as Ω̃12 is normal, the resolution cell can be always
decomposed (at least conceptually) into three single-scatterers
whose associated complex coherences respectively correspond
to the vertices of the triangular coherence region. This is
a very important property revealed from the normality/IPS
assumption and can be even considered as a PolInSAR parallel
to the PolSAR H/α decomposition [8]. However, contrary to
PolSAR, the three single-scatterers in the PolInSAR decompo-
sition are not necessarily orthogonal to each other. In the next
subsection, we will see how it applies to the single and double
phase center cases to provide an alternative interpretation of
those two models.

B. Link to Single and Double Phase Center Models

Here we show that the single and double phase center
models, with their whitened inteferometric cross-correlation
matrices being both normal, can be also expressed as sum of
three single scatterers.

For the single phase center case, we only need to replace T1

in (8) and (9) with its eigendecomposition and the scattering
model becomes:

T =

3∑
i=1

λiviv
H
i , (35)

Ω12 =

3∑
i=1

γ1

(
λiviv

H
i

)
, (36)

where λi are the eigenvalues and vi are the corresponding
eigenvectors. Thus by comparing with (24) and (25), one
immediately sees that ki =

√
λivi and γ′i = γ1, meaning

that the coherences of all scatterers are equal.
For the double phase center model, we rewrite (15) as:

T = T
1
2
2

(
T
− 1

2
2 T1T

− 1
2

2 + I
)

T
1
2
2 . (37)

Then suppose the eigendecomposition of T
− 1

2
2 T1T

− 1
2

2 is
given by T

− 1
2

2 T1T
− 1

2
2 =

∑3
i=1 λiviv

H
i and also notice

I =
∑3
i=1 viv

H
i , the above equation becomes:

T =

3∑
i=1

(λi + 1)
(
T
− 1

2
2 vi

)(
T
− 1

2
2 vi

)H

. (38)
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Similarly, (16) can be written as:

Ω12 =

3∑
i=1

(λiγ1 + γ2)
(
T
− 1

2
2 vi

)(
T
− 1

2
2 vi

)H

. (39)

Thus by comparing with (24) and (25), one sees that ki =√
λi + 1T

− 1
2

2 vi and γ′i = λi
λi+1γ1 + 1

λi+1γ2. The latter result
shows that the coherences of the three single scatterers are
colinear between the line segment with γ1 and γ2 as the end
points.

Therefore, the single phase center and double phase cen-
ter models can be also regarded as containing three single
scatterers except that for the former all their coherences are
equal whereas for the latter the coherences are linearly aligned.
The significance is that the three models introduced so far
constitute a hierarchical way of describing the PolInSAR
scattering mechanism. If one model cannot properly fit the
data, increasing the model order guarantees to improve the
result. For details, see also Section VI.

C. Best Normal Matrix Approximation Solution for Model
Inversion

Once again, as can be expected, the measured whitened
interferometric cross-correlation matrix Ω̃12 will be no longer
normal due to finite multilook averaging. In this case, we still
attempt to estimate a normal matrix ˆ̃

Ω12 that is closest to Ω̃12.
Specifically, now we need to solve the following optimization:

minimize
ˆ̃
Ω12

∥∥∥ ˆ̃
Ω12 − Ω̃12

∥∥∥
F

subject to ˆ̃
Ω

H

12
ˆ̃
Ω12 =

ˆ̃
Ω12

ˆ̃
Ω

H

12.

(40)

As a matter of fact, (40) poses the best normal matrix
approximation problem in the most general form, which has
been perfectly solved by Ruhe [31]. He showed that finding
the closest normal matrix is equivalent to finding the unitary
similarity transformation which maximizes the diagonal ele-
ments and for this purpose the Jacobian algorithm is readily
designed (an online MATLAB code is provided at [32]). Very
interestingly, the Jacobian algorithm has been also applied by
Ferro-Famil et al [19] whereas their purpose, as differed from
here, is to use it for line segment estimation of the RVoG
model. However, as we have seen, the best normal matrix
approximation solution itself has a clear physical explanation
by which the eigen spectrum directly correponds to the inter-
ferometric phase of each single scatterer. From a geometrical
point of view, (40) attempts to approximate the numerical
range of Ω̃12 with a triangle whose vertices are the three
eigenvalues of ˆ̃

Ω12 (according to Theorem 1). Suppose the
Jacobian decomposition of Ω̃12 is:

Ω̃12 = UΓUH. (41)

Then the best normal matrix approximation to Ω̃12 is given
by:

ˆ̃
Ω12 = Udiag (Γ) UH, (42)

where diag (Γ) denotes the diagonal matrix consisting of the
diagonal elements of Γ.

VI. VALIDATION OF SCATTERING MODELS

In practice, it is seldom possible to know a prori the true
number of phase centers within a resolution cell. It is thus
desirable to devise a way to validate the aforementioned
scattering models. For doing so, we can calculate the relative
error between the observed whitened interferometric cross-
correlation matrix and its best normal approximation as fol-
lows:

δ =

∥∥∥ ˆ̃
Ω12 − Ω̃12

∥∥∥2

F∥∥∥Ω̃12

∥∥∥2

F

. (43)

Since ˆ̃
Ω12 is the closest normal matrix to ˆ̃

Ω12, δ is the smallest
relative error possible when assuming the given model. If δ is
small, we may accept the model whereas if its value remains
large, it is likely that the model does not apply. Since we have
an hierarchy of models to describe the PolInSAR data, it is
always possible to decrease the relative error by increasing
the assumed number of phase centers. Then starting from
the single phase center model, this process stops if (43) is
sufficiently small (meaning model is accepted).

However, it is important to realize that the validation so
implemented is limited by the normality assumption. We have
seen that the normality of the whitened interferometric cross-
correlation matrix is maintained if the resolution cell contains
no more than three phase centers. When the resolution cell
contains more than three phase centers or even when there
are only three phase centers but the normality does not hold,
the best normal approximation solution is not meaningful
anymore. In both cases, we may expect a large δ whatsoever.
We remark that such limitation is an indicator of the maximum
number of phase centers that a single-baseline PolInSAR
dataset can discriminate. Note that this is independent of the
method used because of the limited information contained
therein. In fact, Colin et al. [16] has pointed out that their
proposed coherence optimization method cannot distinguish
more than three single scatterers, either. From the ESPRIT
approach perspective [21], three is also the maximum number
of sources discriminable given only three independent polar-
ization channels (i.e., HH, HV, and VV).

Last, it is worth noting that (43) does not reply on any
specific distribution assumption nor it is dependent on scat-
tering power (because Ω̃12 is whitened). Validity test of the
scattering models is generic for different PolInSAR datasets.

VII. SIMULATION

We provide the simulation results of coherence estimation
based on the scattering models in Section III, IV, and V. The
observed T6 matrices are all randomly generated from the
scattering models with multilook processing. That is, if T6 is
the modeled PolInSAR coherency matrix, the observed matrix
is simulated by:

T6 = T
1
2

6

(
1

L

L∑
l=1

uiu
H
i

)
T

1
2

6 , (44)
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where ui are independent Gaussian vectors of zero mean and
unit covariance matrix. L is the number of looks. Throughout
this section, L = 100 is used.

A. Results of Single Phase Center Case

For the single phase center case, we hypothesize an ex-
tended Bragg scatterer. The polarimetric coherecy matrix is
given by [5]:

T =

 C1 C2 sinc(2β) 0
C∗2 sinc(2β) C3[1 + sinc(4β)] 0

0 0 C3[1− sinc(4β)]

 .
(45)

In this paper C1 = 1, C2 = 0.2 + 0.2j, C3 = 0.5, β = 0.05π
are adopted. Additionally, the interferometric cross-correlation
matrix is given by:

Ω = 0.9ej0.5πT. (46)

Fig. 1 shows the boundary of the observed coherence region
(blue broken line), the true coherence region (black asterisk),
as well as the estimated coherence region (red asterisk) ac-
cording to (13). As expected, the observed coherence region
is not a single point but an extended area due to the finite
multilooking effect. The best normal approximation solution,
on the other hand, provides a meaningful estimation that
is close to its true position. For the current example, the
estimated coherence is γ̂ = 0.88ej0.50π which is a very good
approximation to the true value of 0.9ej0.5π .
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boundary of coherence region

true coherence region

estimated coherece region

Fig. 1. Coherence estimation result for the simulated single phase center data
by the proposed method. In this case, the true coherence region is a single
point and equal to 0.9e0.5π .

B. Results of Double Phase Center Case

For the double phase center case, we assume the scattering
model to be composed of a localized ground scatterer overlaid

by a vegetation layer (i.e., the RVoG model). Specifically, the
polarimetric coherency matrix as well as the interferometric
cross-correlation matrix are respectively given by:

T = Tg + TV, (47)

Ω = 0.9ej
π
2 Tg + 0.3ej

π
5 TV, (48)

where the ground scatterer Tg is again assumed to be an
extended Bragg scatterer and the volume scattering model is
given by [9]:

TV =

2 0 0
0 1 0
0 0 1

 . (49)

Coherence estimation of the RoVG model is performed by
three methods, i.e., Algorithm 1 (proposed), the coherence
exterma estimation method [19], as well as the affine trans-
formation (AT) based method [20], given that the latter two
are also able to produce line segment approximation. Fig. 2
shows the results. It can be seen that proposed method seems
superior in terms of the closest proximity to the true coherence
region. To confirm this claim, we evaluate the relative error of
the result by:

δ1 =

∑2
i=1 |ẑi − zi|2∑3
i=1 |zi|2

, (50)

where z1 and z2 are the end points of the true line segment
while ẑ1 and ẑ2 are those of the estimated one. The average
value of δ1 in 2000 independent simulations is given in Table
II. One sees that the proposed method achieves the best
performance, seconded by the coherence extrema method, and
by the AT method. We also make special note to the large error
of the AT method, which is possibly attributed to its trend to
”overshoot” the coherence region as is clear from Fig. 2(c).
Nonetheless, its accuracy is quite good if only in terms of the
slope estimation. Table I lists the slope and intercept of each
line segment in Fig. 2. One can see that the proposed method
performs similarly to (in this case slightly better than) the AT
method, whereas both of them considerably outperform the
coherence extrema method.

Another interesting comparision can be done between the
proposed algorithm and the AT method because both of them
are able to directly estimate the whitened interferometric cross-
correlation matrix. In this case, we can calculate the relative
error by:

δ2 =

∥∥∥ ˆ̃
Ω12 − Ω̃12

∥∥∥2

F∥∥∥Ω̃12

∥∥∥2

F

, (51)

where Ω̃12 is the true matrix and ˆ̃
Ω12 is the estimated version.

The average value of δ2 in 1000 independent simulations is
given in Table II as well, where the proposed method again
shows better result. As previously mentioned in Secion IV-
B, this should have been expected since the AT method also
derives a normal matrix ˆ̃

Ω12 but the approximation principle
is based on minimizing the skew-Hermitian part of the affine
transformation of Ω̃12. It does not minimize ‖ ˆ̃

Ω12−Ω̃12‖2F nor

‖ ˆ̃
Ω12−Ω̃12‖2F, if from the statistical average point of view. On
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the other hand, Algorithm 1 directly solves the optimization
problem (19) and hence guarantees to minimize the distance
among all the possible normal matrix solutions.

TABLE I
LINE SLOPE (k) AND INTERCEPT (b) RESULTS OF FIG. 2 BY PROPOSED
METHOD, COHERENCE EXTREMA ESTIMATION METHOD [19], AND AT

METHOD [20]

True Proposed Extrema Estimation AT
k 3.217 3.783 0.874 3.980
b -0.742 -0.923 -0.124 -0.995

TABLE II
COHERENCE INVERSION ACCURACY OF SIMULATED DOUBLE PHASE

CENTER DATA BY PROPOSED METHOD, COHERENCE EXTREMA
ESTIMATION METHOD [19], AND AT METHOD [20]. AVERAGE VALUES

PER 2000 INDEPENDENT EXPERIMENTS ARE REPORTED

.
Proposed Extrema Estimation AT

δ1 0.1631 0.2815 687.5
δ2 0.3653 N/A 717.8

C. Results of Triple Phase Center Case

In this subsection, we provide the simulation results for the
case when the resolution cell contains three single-scatterers
with different phase centers. According to the anechoic cham-
ber measurements reported in [16], the typical Pauli-vectors
of such configuration can be expressed as:

K = [k1,k2,k3] =

ε 0.9 0.9
1 αej1.8 0.3
ε ε ε

 , (52)

where ε = 0.05 and α = 0.3 are chosen here. In addition, the
coherences of each scatterer are assumed to be:

Γ =

|γ|ej π10 0 0
0 |γ|ej π3 0
0 0 |γ|e−j π3

 , (53)

where |γ| is the coherence magnitude level. In our simulation
|γ| takes four different values: 0.90, 0.93, 0.96, 0.99. Note
that they are all close to 1 so as to emulate the anechoic
chamber measurement of well separated scatterers in low noise
environment. In this case, only estimation of interferometric
phases is relevant and three methods are compared for their
performances in phase estimation: 1) the proposed method
(Jacobian algorithm), 2) the coherence optimization approach
by Colin et al. [16], and 3) the ESPRIT algorithm [21], [23].
The estimation results for |γ| = 0.96 is displayed in Fig. 3.
The accuracy of phase estimation will be further evaluated by:

δ3 =

∑3
i=1 |φ̂i − φi|2∑3

i=1 |φi|2
, (54)

where φi and φ̂i are the true and estimated phases, respec-
tively. Table III shows the average values of δ3 of 2000
independent simulations. Interestingly, one sees that Colin’s
method achieves the best accuracy at high coherence levels
while the proposed method becomes superior at lower |γ|.
Both the methods, however, outperforms the ESPRIT method.

TABLE III
PHASE ESTIMATIONN ACCURACY OF SIMULATED TRIPLE PHASE CENTER

DATA BY PROPOSED METHOD, COHERENCE OPTIMIZATION METHOD
[16], AND ESPRIT ALGORITHM [21],[23]. AVERAGE VALUES PER 2000

INDEPENDENT EXPERIMENTS ARE REPORTED

|γ| Proposed Coherence Optimization ESPRIT
0.90 1.64×10−3 1.87×10−3 6.12×10−3

0.93 1.11×10−3 1.11×10−3 4.32×10−3

0.96 6.36×10−4 5.74×10−4 3.49×10−3

0.99 2.01×10−4 1.40×10−4 3.39×10−3

VIII. EXPERIMENTAL RESULTS USING REAL POLINSAR
DATA

In this section, we provide the coherence estimation results
for real PolInSAR data. The dataset was acquired in a repeat-
pass mode by the L-band E-SAR system in the area of Oberp-
faffenhofen of Germany. The spatial baseline is 15 meters and
the temporal baseline is 10 minutes. In order to suppress the
speckle and obtain a proper estimation of the T6 matrix, the
dataset has been processed with a 2×2 spatial multilooking
followed by the improved sigma filter [33]. As a result, the
equivalent number of looks (ENL) has been increased to more
than 100. The Pauli-display of master PolSAR image is shown
in Fig. 4.

Fig. 4. Pauli-display of the E-SAR master polarimetric image. The PolInSAR
data have been processed by 2×2 spatial multilooking followed by improved
sigma filter.

First of all, one sees that the right part of Fig. 4 is mainly
covered by flat ground. Thus it is expected that in such
area only one phase center dominates. In order to verify this
conjecture, we select one target as indicated by point A in Fig.
4 and plot its coherence region. The result is shown in Fig.
5, which clearly witnesses the concentration of the coherence
region. In fact, the whitened correlation matrix of the selected
scatterer is:

Ω̃ =

 0.854− 0.416j 0.023− 0.032j 0.004 + 0.013j
0.003 + 0.008j 0.809− 0.449j −0.018 + 0.009j
−0.016 + 0.020j 0.014− 0.013j 0.849− 0.450j

 ,
(55)

which can be well approximated by ˆ̃
Ω = (0.837− 0.438j)×

I3 according to (13). By (43) the relative error in this case
is only 0.38%. The relative error of the best normal matrix
solution assuming single phase center for each pixel is shown
in Fig. 6. By comparing with Fig. 4, one observes that the
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Fig. 2. Coherence estimation result for the simulated double phase center data by (a) proposed method (Algorithm 1), (b) coherence extrema estimation
method [19], and (c) AT method [20]. The true coherence region is computed by the convex hull (in this case a line segment) of the eigenvalues of the true
whitened interferometric cross-correlation matrix Ω̃12.
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Fig. 3. Coherence estimation results for simulated triple phase center data by (a) proposed method (Jacobian algorithm), (b) coherence estimation method
[16], and (c) ESPRIT algorithm [21], [23]. The true coherences are given by (53) where |γ| = 0.96.

approximation error in most of the surface scattering area is
indeed very small, implying the validity of the single phase
center assumption on the ground. The exception happens at
the runway where the signal-to-noise ratio (SNR) is extremely
low. The system thermal noise is playing a much significant
role in such scenarios.

More importantly, Fig. 6 is an evident demonstration of the
power of PolInSAR for it also informs which places cannot be
properly characterized by single phase center scattering, a job
not easily accomplished by conventional InSAR. Especially
one sees that the relative approximation error appears quite
large in much of the forest area. To show this clearly, the
coherence region of a second target (marked as point B in
Fig. 4) is plotted in Fig. 7, where an elongated shape can
be observed. The single phase center approximation leads to a
relative error as large as 23.7%. Instead, if we assume a double
phase center scatteirng model, that is, if we approximate the

observed coherence region by a line segment according to
Algorithm 1, the relative error will be significantly reduced
to 2.2%. The estimated line segment is also plotted in Fig.
7, where one sees that the shape of the coherence region has
been nicely catched. For a general appreciation of how the
double phase center scattering model fits the real PolInSAR
data, the relative error for each pixel is displayed in Fig. 8.
This figure indicates that the relative errors of more than 80%
of the pixels are smaller than 5%.

Nevertheless, one may observe a considerable number of
pixels whose relative errors are still large in Fig. 8, particularly
within the forest areas at the upper left of the scene. This fact
implies that a double phase center model cannot properly fit
the data. Therefore, in order to reduce the approximation error,
we further approximate the observed whitened interferometric
cross-correlation matrix by the Jacobian algorithm. The cor-
responding relative error for each pixel is shown in Fig. 9.
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Fig. 5. Coherence estimation result for ”target A” in Fig. 4 by best normal
matrix approximation assuming single phase center.
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Fig. 6. Map of relative error by best normal matrix approximation assuming
single phase center.

As expected, the relative error has been indeed decreased due
to the increased model order. However, one can also see that
the usage of the triple phase center scattering model has not
been insufficient. The relative errors of those pixels whose
relative errors are large in Fig. 8 remain considerably large
in Fig. 9, especially in the forest areas at the upper left of
the scene. One explanation for such phenomenon is that these
regions may contain more than three phase centers; or it is also
possible that they contain three phase centers but the normality
(and hence IPS) are unlikely to hold. Therefore both invalidate
the normal matrix approximation solution. Another probable
reason is that these regions suffer strong decorrelation, a
fact supported by the very low coherence level in Fig. 10,
where the maximum coherence map based on coherence
optimization [12] is displayed. Such low coherence could be
possibly caused by a sudden wind disturbance [34] and so
complicates the scattering model dicussed so far. How the
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Fig. 7. Coherence estimation result for ”target B” (see Fig. 4) by the best
normal matrix approximation assuming double phase center.
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Fig. 8. Map of relative error by the best normal matrix approximation
assuming double phase center.

wind-induced temporal decorrelation affects the RoVG model
is analyzed in [34] but its quantitative effect on the normal
matrix approximation solution requires further investigation.

IX. CONCLUSION

We have theoretically demonstrated that the whitened in-
terferometric cross-correlation matrix is normal for generic
scattering models containing up to three phase centers. Such
property naturally motivates a unified and efficient approach,
i.e., the best normal matrix approximation solution for coher-
ence estimation. Using both simulated and real data, we have
demonstrated that the proposed solution compares favorably
with several existing methods, which proves itself a promising
alternative for PolInSAR application.

In addition, we emphasize the limit of the proposed method.
It does not function when the resolution cell contains more
than three phase centers. We have also shown that even if there
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Fig. 9. Map of relative error by best normal matrix approximation assuming
triple phase center.
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Fig. 10. Map of maximum coherence using the optimum scattering mecha-
nism.

are only three phase centers, the normality cannot be always
guaranteed. In these cases, discrimination of the scatterers
cannot completely accomplished by single-baseline PolInSAR
whereas multi-baseline SAR inteferometry or tomography [11]
should be applied instead.

APPENDIX A

In this appendix, we derive the solution to the optimization
problem (20). We first rewrite the minimizer as:

∆ =
∥∥∥(aB + cI3)− Ω̃12

∥∥∥2

F
. (56)

Note that ‖A‖2F = Tr(AAH) and B = BH. Then the above
equation can be further written as:

∆ = Tr
(
|a|2B2 + ac∗B− aBΩ̃H

12 + ca∗B + |c|2I3

− cΩ̃H
12 − a∗Ω̃12B− c∗Ω̃12 + Ω̃12Ω̃

H
12

)
.

(57)

Next we obtain the derivative of ∆ with respect to B. However,
caution must be paid due to the additional Hermition contraint
of B. Thus strictly speaking, the complex-valued matrix dif-
ferentiation techniques summarized in [35] cannot be directly
applied. Nevertheless, in practice, we can proceed without
considering the Hermitian constraint and check whether the
final solution to B is indeed Hermitian. By this approach, the

derivative of ∆ with respect to B is given by:

∂∆

∂B
= 2|a|2BT + ac∗I3 − aΩ̃∗12 + ca∗I3 − a∗Ω̃T

12. (58)

Letting ∂∆
∂B = 0 leads to:

B =
1

2|a|2
[
aΩ̃H

12 + a∗Ω̃12 − (ac∗ + ca∗) I3

]
. (59)

From (59) it can be easily verified that B is indeed Hermitian
which confirms the validity of the above solution.

Next we substitute (59) back to (56). With some straight-
forward derivation it is found that ∆ can be expressed in a
more compact form as:

∆ =

∥∥∥∥ 1

2z

(
zΩ̃12 + z∗Ω̃H

12 + I3

)∥∥∥∥2

F

, (60)

where
z =

a∗

ac∗ − ca∗
. (61)

It is clearly from (60) that minimization of ∆ with respect a
and c is equivalent to minimization with respect to a single
complex variable z. Suppose the polar coordinate format of z
is

z = ρ(cos θ + j sin θ). (62)

Also let:
H1 =

1

2

(
Ω̃12 + Ω̃H

12

)
, (63)

H2 =
1

2j

(
Ω̃12 − Ω̃H

12

)
. (64)

Considering (62)–(64) and neglecting the multiplicative con-
stant that is irrelavant to the minima, (60) can be expanded
as:

∆ =
D cos θ

ρ
+
E sin θ

ρ
+
F

ρ2

+A cos2 θ +B cos θ sin θ + C sin2 θ,

(65)

where
A = 4 Tr

(
H2

1

)
, (66)

B = −8 Tr (H1H2) , (67)

C = 4 Tr
(
H2

2

)
, (68)

D = 4 Tr (H1) , (69)

E = −4 Tr (H2) , (70)

F = 3. (71)

Minimizing (65) with respect to ρ leads to:

ρ = − 2F

D cos θ + E sin θ
. (72)

Substituting the above equation back into (65) and re-arranging
the sine/cosine terms we have:

∆ = X cos 2θ + Y sin 2θ + Z, (73)

where
X =

1

2

(
4AF −D2 − 4CF + E2

)
, (74)

Y = 2BF −DE, (75)
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Z = 2AF + 2CF − 1

2

(
D2 + E2

)
. (76)

Obviously, the minima of (73) is given by:

θ =
1

2
[atan2(Y,X) + π], (77)

Finally, according to (59) and (61), the best normal matrix
approximation to Ω̃12 becomes:

ˆ̃
Ω12 =

1

2z

(
zΩ̃12 − z∗Ω̃H

12 − I3

)
. (78)

The aforementioned procedure has been summarized in Algo-
rithm 1 in Section IV.

APPENDIX B

In this appendix, we derive the condition that should be
satisfied by Ti in (21) and (22) in order for Ω̃12 to be normal.
We first prove the following lemma.

Lemma 1. Let ∆i,j = TiT
−1

Tj − TjT
−1

Ti where T =∑3
k=1 Tk. Then ∆1,2 = ∆2,3 = ∆3,1.

Proof. As defined, we have

∆1,2 = T1T
−1

T2 −T2T
−1

T1

=
(
T−T2 −T3

)
T
−1

T2 −T2T
−1 (

T−T2 −T3

)
= T2T

−1
T3 −T3T

−1
T2

= ∆2,3.
(79)

Similarly, ∆2,3 = ∆3,1.

Next, notice that the normality of Ω̃12 = T
− 1

2 Ω12T
− 1

2

requires:

Ω̃12Ω̃
H

12 − Ω̃
H

12Ω̃12 = 0, (80)

which is equivalent to

Ω12T
−1

Ω
H

12 −Ω
H

12T
−1

Ω12 = 0. (81)

Now we replace Ω12 with (22) for the above equation. After
some necessary re-arrangement, (81) becomes:

=(γ1γ
∗
2 )∆1,2 + =(γ2γ

∗
3)∆2,3 + =(γ3γ

∗
1 )∆3,1 = 0. (82)

Therefore, according to Lemma 1, the above equation holds
for all γi ∈ C iff ∆i,j = 0.
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