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On the Reduction of Wave Propagation
Loss in Tunnels

Yoshio Yamaguchi, Member, IEEE, Takemitsu Honda, Masakazu
Sengoku, Member, IEEE, Seiichi Motooka, and Takeo Abe, Member, IEEE

Abstract— The reduction of radio wave attenuation in two-
dimensional tunnels is discussed. The attenuation of the dominant
mode due to its field penetration into the lossy dielectric side wall
is reduced by means of the attachment of periodically aligned
metallic strips on the wall surface. The electric field distribution
in tunnels with and without strips are illustrated to show the effect
on the attenuation characteristics. The efficiency of attenuation
reduction rate by the metallic-wall stripping method is sum-
marized. Finally, the calculation results based on the boundary
element analysis is verified by a laboratory experiment.
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1. INTRODUCTION

ITH the rapid development of radio communications
including cellular communication, wire-less commu-
nication and portable communication, the radio waves in the

frequency range from HF to microwave bands are now densely

utilized everywhere. However, the attenuation of the radio
wave in tunnels, buildings, underground streets, and parking
lots in basements, poses adverse problems for these radio wave
communications. It is well known that low frequency signals
such as “radio broadcasting or VHF amateur radio” cannot be
heard in tunnels. This is due to the cut-off propagation or the
large attenuation of the wave.

Here we focus our attention to the attenuation characteristics
in tunnels including corridors and underground streets. In
general, the tunnels may be considered as hollow waveguides
surrounded by lossy materials. Many theoretical and experi-
mental studies on the propagation characteristics have been
carried out including fundamental propagation characteristics
[1]-[13], excitation [14]-[17], field distribution [18]-[22],
and effect of obstacles [18]—[20]. From extensive research
investigations of the tunnel problem, the results on straight
tunnel propagation can be summarized as follows:

1) From an analytical point of view, tunnels are waveguides
of arbitrary cross section surrounded by lossy dielectric
materials.

2) The attenuation constant is due to refraction loss and
ohmic loss in the surrounding walls whose dielectric
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Fig. 1. Typical frequency characteristics of attenuation constants.

properties vary with frequency. Typical frequency char-
acteristics of attenuation constant are shown in Fig. 1.

3) The refraction loss plays a dominant role in the atten-
uation characteristics at higher frequencies where the
wavelength is much smaller than the cross-sectional
dimension, because the surrounding material acts as a
pure dielectric at frequencies above the UHF band. There
exists a high number of modes in tunnels in this higher
frequency region; however, the lowest attenuated mode
is the dominant mode whose attenuation constant is
inversely proportional to the frequency squared and to
the cubic size of the cross-sectional dimension. These
characteristics correspond to region A in Fig. 1. This
dominant mode is the hybrid mode in nature in an actual
tunnel and corresponds to the TE;p mode in a metallic
rectangular waveguide.

4) The ohmic loss plays a dominant role at lower frequen-
cies when the wavelength is comparable with the tunnel
dimension because the surrounding material then tends
to act as a heavily lossy dielectric as the electromagnetic
field penetrates into.the surrounding medium resulting
in the ohmic loss. This characteristic corresponds to
region B in Fig. 1.

5) There exists a vague cut-off frequency according to
the dimensional size of the tunnel cross section. The
value is not apparent as for the case of a metallic

- waveguide, because the attenuation continuously and
gradually increases as the frequency decreases for the
lossy case (region C in Fig. 1).

It is important to reduce attenuation in these structures.
However, only a few research studies [23], [24] on the
reduction of attenuation in tunnels have beern carried out to
expand the radio communications capability and to utilize
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it. Here, in this analysis, we propose one method to reduce
the attenuation in tunnels. From the outset, we know that in
the higher frequency region where the wavelength is much
smaller than the tunnel dimension the attenuation is very
small, for which the reduction is less important. However,
in the lower frequency region where the wavelength is close

to the tunnel dimension, we still encounter the propagation.

mode with large attenuation. It is our purpose to reduce the
attenuation constant of the dominant mode in this frequency
region. The main factor that contributes to the attenuation in
this frequency region-is the penetration of the electromagnetic
field into the surrounding material which results in the ohmic
loss. Hence, the basic idea to reduce the attenuation is to limit
the penetration of the field into the lossy walls, which leads
to the use of some metallic material on the tunnel walls for
shielding purposes. -

The shielding techniques may consist of using metallic
strips, geometrical combination of strips, or wire nettings.
Among them, the fine wire-nettings is the most efficient for the
reduction of the propogation loss for which we have already
reported the efficiency based on a laboratory experiment [24].
However, it still needs analytical investigations including
the formulation of mesh shape and size with respect to
the wavelength into consideration. The analysis is extremely
difficult at present. On the other hand, an insulated wire along
a tunnel, although it is not in the category of shielding, may
be considered to work well for the reduction of the loss. The
wire must be put close to tunnel wall so as not to disturb traffic
in tunnels. From a laboratory experiment, the insulated wire
close to tunnel wall causes additional loss in the frequency
considered here because the propagation rnodebchang,es from
the dominant mode to a quasi-TEM mode, The insulated wire

works well in the cut-off frequency region [25]. Upon these -

considerations, we investigated analytically and experimen-
tally how much the attenuation could be reduced in tunnels
using metallic strips on side walls, In the following, a brief
_ analytical formulation based on the boundary element method
is outlined. Then the effects of the metallic strips placed on the
side walls are examined by computer simulation illustrating
the field distribution in tunnels. A laboratory experiment is
carried out to show the validity of this method. Finally, the
efficiency of reduction by the metalhc—wall stripping method
is summarized.

II.- FORMULATION

Consider the two-dimensional tunnel as shown in Fig. 2.
The field in the tunnel has no variations in the y direction.
This two-dimensional tunnel is realized by covering the ceil-
ing and the bottom with two parallel perfectly conducting
plates with small spacing with respect to the wavelength. The
reason why we consider the two-dimensional tunnel is: 1)
the effect of metallic strip on the propagation loss.can be
obtained, 2) the analysis becomes simpler than that in the
three-dimensional case including computer simulation because
the three-dimensional analysis demands formidable task,

At first, we examine the field distribution of the dominant
mode by the boundary element method [21], [22]. In order
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Fig. 2, Plane view of two-dimensional tunnel and the boundary I".

to simplify the analysis, we assume that the TE;g wave,
the dominant mode in this structure, is incident from the z-
direction. At z = 0, the wave is launched into the- region
where we are concerned. -

If we let the dominant electric field component E, be u,
the wave equation '

2y 0%y

$+82+k0u— M

holds in this two-dimensional structure, where

o = wy/Eofls = o, e
w: angular frequeﬁcy,
A: wavelength in free space,

go: permittivity of free space,

po: permeability of free spaée.

We divide the boundary I" for this structure into Ty (lossy
side walls), T'; (metallic strip walls), T', (hypothetical en-
trance), and I's (hypothetical exit) as shown in Fig. 2. If we
let »* -be the two-dimensional scalar Green’s function for

‘unbounded region, then we obtain the following equation for

the boundary element analysis

ciui—i.—/ ¢*udl = /u*da 3)

r - r

where u; is the value of v at the observation point, and g is the
derivative of u with respect to the normal direction n of the
boundary (See Fig. 3). The coefficient ¢; is unity in the interior
region, while the value on the boundary is determined by the
angle made by the two adjacent boundary elements. Since we
are dealing-with the two-dimensional structure, the Green’s
function v* and its normal derivative ¢* can be written as

u = H(2)(kp7") )
. ou j | .
=G = Zkoﬂf)(kor) cos ¢ )

where H, 2) and H; (2) are the Hankel functions of the second
kind of order 0 and 1, respectively; r is the magnitude of
vector r from the point ¢ to a point on the boundary indicating



80 : IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 34, NO. 2, MAY 1992

Fig. 3. Region () sufouiided by boundary I'.

the distarice, and ¢ is the angle sustained by the vector r and
the normal vector n on the boundary as shown in Fig. 3.

We divide each boundary into line elements and discretize
the integral (3). With unknown function v and ¢ expressed by
polynomial interpolation funetion, (3) can be rewritten in a set
of linear algebraic equations

¢iu; E Hzgug Z G’Uq] ; ' (6)

=1
where n is the total number of nodal points. The inter-
polation function used here is the Lagrangian interpolation
function with one-dimensional, three-noded ¢lements which is
the second-order polynomials as in [26]. These equations (6)
can be combined together and be writtén in a matrix form as,

(] ) = 6] {0} 9

- which enables us to solve it if u or g, or the relation between u

and g on the boundary I is specified. In the following we adopt

boundary conditions and an analysis similar to that presented
by Sakai and Koshiba [21], [22]. The boundary conditions for
this problem are the same as those presented in [21] except
_ for the mietallic pottion I'y.

A. Boundary Condition for the Wall Sections I'y and T',

The boundary on the side wall consists of I'y and T'y. The
boundary condition for this mode is the continuity of tangential
components (£, and H,). This condition can be satisfied by
matching the impedances at side surface walls. To this purpose,
we employ the same technique proposed in [10], [23], i.e.,
the surface 1mpedance method presented by Yasumoto [10] as
below ,

By=+ZH, (o=4 %) ®
The surface impedance for this mode is given by Sakai [21]

T

7, = Zo=, B2 ©)

\/ = sm €0 »
g 2w o f mem s gL gg, 10
€ £0 weq Je ( )

where € is the telative permittivity and o is the conductivity
of the side wall, 4 is the incident angle of the plane wave
which impinges on the side wall.

After having determined the relation among the field com-
ponents of E and H, we obtain the relation for the boundary
element analysis as follows:

g = =jkoy/es = sin® 0 u.

For the boundary section I'j, the electric field vanishes on
the metallic stnp Hetice, u is equal to zero on I'y from the
outset.

(1D

B. Boundary Condition for the Hypothetical Boundary T'; and
Ty (Entrance and Exit) )

The field in the tunnel can be expanded as a sum of lossy
propagation modes. This field expression is matched to the
incident TE;o mode at the entrance of z = 0. This matching -
operation combines the internal numetical solution to the
exterior analytical solution. Thus, the boundary condition for
Iy can be given as

{a}s = (v + (F Ll 1) (£,
= (Pl LlF I ) (s},

where {u}, and {q}, are row vectors consisting of values on
I';, while [F'], is the matrix

(12)

(o) (o) o ()
o [P B() )|

;ﬁGﬁ) hgw) RKkW-
composed of

fm(x(”)i‘{iff&"fﬁf i,

The first term in right-hand side of (12) corresponds to incident
wave and the second term corresponds to reflected wave. The
row vectot {f}, is of the following form: '

2= (o). () - 2 (e2)]

(15)
where T' detiotes transpose mg ),:c e 33511) are the coor-=

dinates of the nodal points on I's, and [”Yz] is g1ven by the
diagonal matrix

v 0 0
b=, 7 (16)
0 0 ; ’y,;l\ .
with elements '
Yo = = B = o + B a7)

Qum: attenuation constant, 3,,: phase constant,
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Fig. 4. Field péttern in hollow tunnel,

which are the solutions of the characteristic equations derived
from the transverse resonance technique [21], [23]

kma ./ . 9 .
k. tan — = jkoy/es —sin8  (m: o‘dd),
kma ] 2, .
K, cot T = —jkoy/es —sin®d (m: even). (18)

For the exit of the tunnel boundary T's, we assume that there
does not exist a returned wave (i.e., no incoming wave into
the region). Thus, the boundary condition can be written as

{aks = —(IFLslF 15 ) {uls (19

where each vector and matrix are the same as those for the
entrance except that the corresponding values are computed
on the boundary I's.

After having determined v and ¢ on all boundary [' =
T'g + Ty + Ty + I's, one can obtain the field strength u in
the interior region using

Cw=)y /’(qu* —ug*)dT.

k=1 r,

(20)

III. HoLLOW TUNNEL

We carried out a computer simulation for a hollow tunnel
to show the property of the dominant mode including the
field distribution and the attenuation constant in comparison
with an analytical solution. We first determine the electric
field distribution in a tunnel without strips because it is the
fundamental one which we are dealing with: In this calculation,
the boundary condition for I'y is employed instead of the
condition for I'; on the place where the strips are located.
The parameters chosen in the calculation are:

width of the tunnel : a = 1.6)
complex permittivity of the wall : e, = &, — j&; =5 — j.

Fig. 4 shows the three-dimensional display of the electric
field distribution (£,) in the region from z = 0 to z = 16\,
The values are normalized at the -entrance of the tunnel
(i.e., a unit magnitude TE;p mode is incident at z = 0). In

the calculation, the interval of the nodal point is taken less
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Fig. 6. Field strength as a function of normalized transmission distance along
the center line of tunnel.

than A/10. The total number of the nodal points along the
boundary is chosen to be 358. One can see that the whole
pattern is also close to the measured one [20] which has been
measured in a three-dimensional tunnel. The pattern is then
cut in the transverse direction, which results in the cross-
sectional distribution in the hollow tunnel. Fig. 5. shows the
calculated patterns evaluated at z = 0 which are close to a
cosine distribution of the dominant mode. It can be seen that
the electric field at the side wall boundary increases as the
real permittivity decreases which results in large absorption of
power in tunnel wall. E :

Fig. 6 shows longitudinal cut view of the field pattern
(Fig. 4) along the center line of the tunnel. The magnitude
of the electric field in decibels decreases linearly with trans-
mission - distance, providing the attenuation constant. It is
possible to determine the attenuation constant from this slope
straightforwardly. The attenuation constants per wavelength
A are calculated in Table I as a function of permittivity
and are compared with an analytical solution of (18) with
m = 1 and § = 72° (also refer to [2]). There is a good
agreement between this numerical method and the analytical
one. As the permittivity increases, the attenuation decreases.
This is due to the impedance difference at the tunnel wall,
i.e., if the impedance difference becomes larger, then the field
does not penetrate easily into the wall, which results in low
attenuation.
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: and x

TABLE I
ATTENUATION PER WAVELENGTH (dB/)\)

boundary element .

er method analytical method
2.0—-731.0 0.682094 0.684533
3.0—71.0 0.635385 0.633491
4.0 -751.0 0.568122 0.565967
5.0—41.0 0.512694 0.510838
6.0 —71.0 0.469017 0.467458
7.0-71.0 .0.434139 0.432812
8.0—71.0 0.405681 0.404532
9.0 —-71.0 0.381983 0.380970
10.0 — y1.0 0.361890 0.360989

IV. REDUCTION OF PROPAGATION LOSS

Incorporating the boundary condition that the electric field
vanishes on the metallic surface of the strips, the field strength
-in the tunnel now can be analyzed to examine the effect of
strips on the propagation problem. In the calculation, the total
number of the nodal points is chosen to be 482 on the whole
boundary T' which includes 322 points on the boundary T'o,
126 points on the boundary I';, 17 points on the boundary I's,
and 17 points on the boundary I's. The allocation interval of
the nodal points is less than A/10 along the boundaries. The

walls,

= 304. .

tunnel parameters are:

permittivity e = &, — je; = 5 — jJ,
tunnel width a = 1.6, strip width 6 = 0.2,

number of strips = 7, period p = A.

The field distribution in the tunnel is shown in Fig. 7(a)
whereé the positions of strips are indicated by small rectangular
boxes. The pattern is not so smooth as those in hollow tunnels
due to standing wave phenomenon created by strips. As can be
seen from this figure, the field strength near the strips becomes
smaller compared to the field near the lossy wall. Apparently,
this is due to the metallic wall, however, one can anticipate
that the field does not penetrate into the surrounding wall due
to strips. This fact indicates that the attenuation of the wave
may be reduced by these strips. In order to examine the effect
on the propagation characteristics, we made cut-views along
the center line (at z = 0) and a gangway (at z = +0.4)
of the tunnel which are shown in Fig. 7(b). In this figure,
the regression lines to the regions with and without strips are
shown for the sake of comparison. One can see that the slope
of the line (attenuation constant) in the region with strip is
flatter than that in the other regions without strip. In other
words, the attenuation constant is reduced by an attachment
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of these strips. Thus it is possible to reduce the attenuation
constant by this method. ;
Another calculated example for § = 0.5 is shown in Fig, 8.
The pattern in the tunnel is slightly different from that in
Fig. 7. The standing pattern depends mainly on strip width.
The variation of the eleciric field intensity due to strips in the
order of several decibels seen in Fig. 7(b) and Fig. 8(b) does

not cause fading effect in radio communications, however, the

smaller, the better. :

- Thete is a high number of parameters such as strip width,
interval, location including periodic of random positioning to
deterimine the effect of strips on the attenuation characteristics.
Thus, we use a simple parameter s for the evaluation

s=6p (0<s<l) (1)
whiere § is the width-of strip and p is the periodic strip interval.
The reason for choosing this parameter is such that if the
side walls aré fully covered with metal, then the attenuation is
approximately zero; on the other hand, if thete is no strip on
the wall, the attenuation becomes that of the hollow tunnel.
It can be anticipated that the attenuation variés with the area
percentage of strip. That is, if we add strips, the attenuation
teduction rate should increase in proportion to the area that we
add. We carried out some calculations on the field distribution
sirilar to Figs. 7 and 8, and examined the efficiency of strips

on the reduction of the attenuation constant based on this idea.
The final result is shown in Fig. 9 where the vertical axis is
measured by the ratio of the attenuation constant c; in tunnels
with strip to ag in tunnels without strip, while the horizontal
axis is measured by the percentage parameter s = §/p. For
the sake of comparison, the ctiteria ling of an approximate
formula

(o) p

is drawn together in Fig. 9. It is seen that the ratio of
the attenuation constant o, /oy is smaller than 1 = s, This
is practically an important result, because the attenuation
reduction by such strips is larger than the expectation. This
teduction rate becomes larger in natrower tunnels and the low
attenuation transmission is achieved in the narrower tunnel
(e, in the lower frequency) where the absolute attenuation
i§ large.

V. LABORATORY EXPERIMENT
In- order to confitm these theoretical results, we carried
out a laboratory measurement on attenuation constant. Fig. 10
shows the block diagram of the measurement scheme. Using
a spectrum analyzet, we measured the field strength in a two-
dimensional tunnel which cotisisted of two conerete blocks and
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Fig. 10. Measurement scheme.

two metallic plates. The tunnel size is 8 cm in width (= 1.6}),
5 cm in height, and 100 cm in length, The number of strips
employed in this tunnel is 3 and 4. The operating frequency is
6 GHz. The field strength along the certer line of the tunnel
was picked up by a small dipole antenna. The results are shown
in Fig, 11 where the calculated patterns are also illustrated. We
notice that the experimental results show a good agreement
between the measured value and the calculated one..

VI. CONCLUDING REMARKS

Based on the boundary element analysis, a technique for
the reduction of the attenuation constant for the dominant
mode in two-dimensional tunnels has been presented. The
electromagnetic field penetration into the surrounding wall is
reduced by metallic strips placed on the walls, which leads to

a reduction of the propagation loss. The attachment of strips

.is particularly effective for the lower frequency region where
the wavclength and tunnel dimension are comparable

a good agreement w1t,h the calCulated ones,
characteristics of the propagation mode can now be made
available by computer simulations. Thus, the most effective
positioning of strips and the best way fo utilize these strips is

now being investigated and will be reported in the future.
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