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Floo甲 lanning Using a Tree Representation
Pei-Ning Guo, Toshihiko Tbkahashi, Chung-Kuan Cheng, Fellow IEEE, and Takeshi Yoshimura Member IEEE

Absnau-We present an ordercd trce (O tree) structurc to rcp.
rcsent mnslicing f,oorplans. The O trec urcs only n(2 + [S rl )
bits for a tloorplen oi n rec{angular blocks. VYe define an ed-
misslble plecement rs t compectcd plecement ln both a rnd
U direcdons. For each admlsible placemenq we crn find an
O-tnee rcprslentation. SYe show that the number of possible
G'tnee combinatlons is O(nt22n-2 /n''t). TLis is yery concise
cumparcd to a scquence pair rcpnesentation thet has O((rr!)')
combinadons. Thc approdmate rado of sequence pair and O-tFee
comblnations is O(ra2 (n / ae)'). The cumplexity of O tree is even
smaller than a blnary tree stmcturc for sllclng ll,oorplan that
has O(nl26n-s /nr'6) comblnrdons. Glven an O trce, lt tekes
only linear dme to construct the placement and its constraint
graph. We have developed a detetminbtic tloorplannlng dgorithn
utilizing the stnrcturc of O trtc. Empirical rcsults on MCNC
(ww.mcnc.org) bendrmerks show promistng perforrrance with
average 16%o lmprovemcnt in wire lenglh end l9o lw dead space
over prcvious central processing unit (CPtry inbnsive cluster
reffnement method.

Irrdcx Tcrms-Buildlng block placement, floorplan, ttoted or-
dercd trre.

I. IvrnooucrloN

A S THE circuit size gets larger, design hierarchy and IP

1fl blocks are intensively and increasingly used to reduce the
design complexity. The floolplan or building block placement
is becorning critical to the performance of hierarchical design
process.

One of the key factors to most floorplanners is the represen-
tation of geometric rclationship. The structure that represents
the geornetric rclation for a floorplan will affect the basic oper-
ations to the stnrcture and determine the inherent complexity to
the approaches using it.

A. Previous Worlcs

For a floorplan with slicing structure [3], we can use a binary
tree representation. The leaves of the binary tree correspond to
the blocks and each internal node defines a vertical or horizontal
merge operation of its two descendents. The number of possible
configurations for the tree is O(n t25n-3 ln''5 ). Note that this
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complexity is an upper bound. There are efforts to identify the
redundancy [5]. Other efforts have been published to extend the
binary tree to the representation of nonslicing stnrcture [9J, [0J.

For nonslicing floorplan, Onodera et al. tl4l classify the
topological relationship benpeen two blocks into four classes
and use the branch-and-bound method to solve the problem.
The solution space for this approach is O(2 @+2)), which
makes the problem too large to handle at a tirne.

In t6l and I7l, sequence pair and bounded slicing grid ap-
proaches were presented to handle nonslicing floorplan with
smaller solution spu"e. These two approaches are diffLrent rep-
resentations, but they are basically based on a constraint graph
to manipulate the transformation between the representation and
their placement, which makes it complicated.

In [6], Murata et a/. propose a sequence pair representation.
They use two sets of permutations to present the geometric re-
lation of blocks. Thus, the combination of the sequence pair is
O((n!)'). From sequence pair to its placement, the transforma-
tion operation takes O(nlg n) time tl ll. In [7J, Nakatake et al.
devised a bounded slicing grid approach. An n by rt, gnd plane
is used for the placement of n blocks. The representation itself

.has much redundancy; one placement may have several choices
of representations.

Xu et al. [8J propose an iterative approach to optimize area
and interconnection by cluster refinement. For a small k such
as the cluster size, the runtime cornplexity for each iteration
is O(nz+k/2). This approach is central processing unit (CPU)
intensive and difficult to handle if we choose a larger cluster
size .

B. Contributions

The results of previous research show that the complexity of
the problem increases a lot from slicing floorplan to nonslicing
floorplan. It is challenging to find a comparable or even bener
representation for nonslicing floorplan.

Oru thought is encouraged by the observation that any floor-
plan is bound on a two-dimensional (2-D) plane and could be
represented by a planar graph. There might be some means to
reduce the redundancy of the floorplan representation.

We first focus on a class of placement defined as admissible.
Given a placement, we can derive an admissible placement by
compacting the blocks to the left and to the bottom edges. fui
admissible placement is a compacted placernent in which all
blocks can neither move down nor move left. A rooted O tree is
devised to represent the admissible placement. In the following,
we describe the advantages of O tree.

o O tree takes only n(2 * lls rrl ) bits to describe, where
n is the number of blocks. Note that a sequence pair takes
2nllgnl bits . Even a binary tree for slicing stmcture takes
n(6 * lls "l ) 

bits.
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o The runtime for transforming an O tree to its representing
placement is linear to the number of blocks, i.e,, O("). For
a sequence pair, its takes O(nlg n) operations to construct
the placement. Note that it also takes O(") operations to
constnrct a slicing structue from a binary tree.

o Given an admissible placernent, there is an O-tree repre-
sentation. The cornbination of O tree is O(n!22n-2 lnt'u).
This is very concise compared wittr the sequence pair. The
combination of a sequence pair is O(("!)'). Thr ratio of
the complexity betrveen a sequence pair and O tree is ap
proximately O(nz@lAe)'). The complexity of O hee is
even lower than a binary tree stnrcture for a slicing floor-
plan that has O(nt2,n-r ln''s) combinations.

. We prove that the transformation between O tree and con-
straint graph can be done in linear time. This shows that
the O tree is equivalent to constraint graph for admissible
placement.

o Another benefit of using O tree is that the compaction op-
eration is already included in the stmcture. One instance
of O tree will map into exactly one placernent. The trans-
formation and its compaction are done at the same time. O
tree needs no extra effort for the computation of compact
operations.

. Because of the simplicity of O tree, we can easily contem-
plate interconnect cost or other considerations as well as
area cost. The optirnized chip size and wire plan can im-
prove the quality and performance of physical layout.

o We use a deterministic algorithm to demonstrate the first
approach using the O-tree strucnre. The algorithm is very
straightforward and very fast. Within a couple of tens of
seconds, we can obtain competitive and even much better
solutions to other CPU-intensive approaches in MCNC
benchmark cases.

The paper is organiznd as the following. Section II states the
floorplanning problem. Section III gives the descriptions of ad-
missible placement and constraint graph. Section IV defines the
properties and operations for O tree. Section V presents a deter-
ministic algorithm based on O [ee. Section VI shows our exper-
imental results for MCNC benchmarks. Further, potential appli-
cations and heuristics based on the O-tree structure that could
improve our basic deterministic version of the approach con-
clude this paper in the last section.

II. hONlnM STATEMENT

A set B - 
{Br, Bz: . . . , Bn} of rectangular blocks lie par-

allel to the coordinate axes. Each rectangular block Bi is defined
by a nrple (hi, ,;),where h; and u; trethe height and the width
of block B;, respectively.

A placement P - 
{(*n, y;), I S i < n} is an assignments

of coordinates to the lower left corners of the rectangular blocks
such that there is no two rectangular blocks overlapping. A rep
resentation of a placement is a set of stnrcrures and operations
that realizes P.

The cost function we use for a placement consists of two
parts: one is the area of the smallest rectangle that encloses
the placement and the other is the interconnection cost between
rectangular blocks.

-> hodzontal con$nalnt

. - f> Ysrtlcal congtnlnt

O borndary node

Fig. l. Constraint graph.

III. AoursstBlE PrecnnaENT AND Coxsrneuvr GnepH

A. Constraint Graph

A constraint graph for a placement is a graph G - (V, E),
where the nodes in V are placement blocks with additional four
nodes used for the boundaries of the placement and the edges
in E are the geometric constrains betw@n two blocks. A geo-
metric constraint exists when we can draw a horizontal or ver-
tical line between two blocks without passing through other
blocks.

The edges in E are directed. There are two kinds edges: one
with the direction from a left node to a right node and another
with the direction from a bottom node to a top node. The weight
d(") for an edge e : (B;, Bj) is the separation distance be-
tween two nodes: d(") is equal Jo ri - r; - rx; forhorizontal
edge and y j - A; - h; for vertical edge. The weight d(e) is equal
to zero when rwo nodes Bi and Bi are adjacent to each other;
otherwise, it is positive.

In Fig. l, a constraint graph is shown for the placement of
three blocks a, b, and c. In addition to the three blocks repre-
sented by three nodes, four nodes L, R, T, and B are added to
represent the four boundaries of the placement. The weights of
edges (b, r) , (o, R), and (8, c) are positive, and the others are
?f.lo.

Since we consider geonretric constraints in two dimensions,
the edges in constraint graph can be divided into two sets: .81,
for horizontal constraints and E, for vertical constraints. Then,
we have the horizontal constraint graph G 7, : (V, Ei and the
vertical constraint graph G,, : (V, E"). Both G1 and G, are s-t
planar directed acyclic graphs (s-t PDAG). In Fig. l, horizontal
constraints are drawn in solid lines and vertical constraints in
dotted lines.

Both constraint graphs G n and G, are planar because the
placement is planar and there is no edge crossing other edge.
According to graph theory [5J, the number of edges in a planar
graph is less than or equal to three times of the number of nodes
minus six. Therefore, w€ have the following lemma.

Lemna I: Gn and Go are planar graphs and both sizes lDnl
and lD"lare less than SlVl - 6 for ltrl > 3.

B. L-Compact and B-Compact Placement

A placement is L compact if and only if there is no block that
can shift left from its original position with other components
fixed. In other words, a placement is L compact when it is c di-
rection compacted to the left edge. The definition of B-compact
placement is similar, substituting "Ieft" with "bottom" and "s
direction" with "y direction."
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not Lompacl
not B-cornpact

B-comprt
not L-corpact

Frg. 2. L-compact, B-compact, and L-B compact placements.

C. LB-Compact Placernent

A placement is LB compact if and only if it is both L com-
pact and B compact. Examples of placement with L-compact,
B-compact, and LB-compact properties are given in Fig. 2.

For any placement, we can fix the bottom and left edges
and perform r direction and y dte*tion compaction iteratively.
The final placement after all compact operations converge is
an LB-compact placernent in respect to the original placement.
Thus, we have the following lemma.

Lcmrna 2: Given any placement Pr, w€ can find a corre-
sponding LB-compact placement P2 by a sequence of r direc-
tion and y direction compactions. The overall uuea of P2 is equal
to or less than the overall area of P1 .

Proof: Neither n direction compaction nor y direction
compaction increases the overall area of placement. Thus, the
overall area of P2 is equal to or less than the overall area of P1 .

D. Admissible Placenunt
' A placement is admissible if it is a LB-compact placement.

w. O Tnee Ar{D Pucrvrsvr

A tree contains a finite set T of one or more nodes. There
is one speciatly designated node called the root of the tree.
The root has zcro or more branches and the branches are di-
rected edges pointed from the root to its children. I.et m
0,  n ,  . . .  ,T^  be  ase to f  t rees .  Weca l lT t ,  . . .  ,T^  the  sub-
tnees of the root.

An O tree is a rooted directed tree in which the order of the
subtrees ?r , . . . , T* is important. When we visit the tree using
depth-first search (DFS), the order of the subtrees ?r, . . . , 7,,,
determines the DFS order when we traverse the tree.

A. Tree Encoding with (7, n)

To encode a rooted O tree with n nodes ll2), we need a
2(n - 1) bit strin gT to identify the branching stmcture of a tree
and a permutation ?r as the labels of n nodes. The bit string ? is
a realization of the tree structtue. We write a "0" for a traversal
which descends an edge and a "L" when it subsequently ascends
that edge in tree. The permutation er is the label sequence when
we traverse the tree in DFS order. The first element in permuta-
tion zr is the root of tree. The following example demonstrates
the encoding of an eight-node rooted O tree.

Given an eight-node tree as shown in Fig. 3, its root node
has three subtrees nooted at a,b, and c. We can represent it by
(0011010001l0ll, adbcegf).Staning from the root, we visit
node a first and record a bit '(0" to ? and a label '(a)' to r. Then,
we visit node d and record a bit 6(0" to T and a label "d" to r.
On the way back to the root from nodes d and o, we record two

L+ompact
nd B-compacl

Fig. 3. Encoding of an eight-node ree.

bits "l1" toT. Then, we visit subtrees b and c in sequence and
record the remaining of T and ?r, respectively. The length of the
bit stringT is 14.

B. Space Needed to Store (T, n)

Given a tree with n nodes in addition to its root, each label
of node can be encoded into a flg "l 

bit string. Therefore, we
need n(2 + flg "l ) b to store (7, o), where 2n, bits for T and
n flg nl bits for zr.

C. Count of Possible (7, n) Configurations

The total number of possible (T, r)'s for a n -node tree is the
product of possible configurations of bit strin gT and permuta-
tion zr. For permutation n, the number of possible configurations
is equal to n!. For bit stringT, it is the bit sring with n0s and
nl' s that presents an unlabeled n-node O tree. In t13], the pos-
sible configurations for an unlabeled n-node O trees is

by Stirling's approximation

nt  x ' f f i  (? \ "
r r /  Q )

Applying (2), we can derive (1) to its asymptotic form

4n-L /4' .- l \  /2zn-z\

f f i* ,  ( ,pl=o(7. '- , ;  .  (3)

Thus, the total number of possibl e (7, zr)'s for n-node tree is
O(nl22n-2 lnr 

's1 .
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Fig. 4. O tree and its coresponding placement.

D. Horizontal O Tree

A horizontal O tree (7,, n) represents a placement by the fol-
lowing ways. The nodes in (?, zr) is the set of placement blocks
B and an additional left boundary node as the root. The edges
in (7, n) determine the horizontal related positions between
blocks and the permutation ur determines their vertical relation-
ship. The definition is as follows.

The root of the O tree represents the left boundary of the
chip. Thus, we set its r coordinate orool : 0 and its width
ut)root _ 0. The children are on the right side of their parent
with zeto separation distance in o coordinate.Letting Br be the
parent of B i, w€ have

ri : fr; *'tt);' (4)

The permutation T determines the vertical position of the
component when two blocks have proper overlap in their fr-co-
ordinate projections. For each block B;,let ,/t(i) be the set of
block Br with its order lower than Bt in pennutation zr and in-
terval (rr, fr****) overlapsinterval (*t,, n;lw.;,) byanonzero
length. lf {(i) is nonernpty, we have

ν:=混野お)νた
十れ

otherwise

At = 0. (6)

From an horizontal O tree, we can find a placement by visiting
the tree in DFS order. The placement is always B compact by
its definition, but not necessarily L compact. Fig. 4 shows a
placement that is represented by the horizontal O tree in Fig. 3.

E. Vertical O Tree

A vertical O tree is similar to the horizontal O tree describcd
above and uses a bottom edge as the root of tree.

n Admissible O Tree

An O tree is admissible if its coresponding placement is ad-
missible. Fig. 5 and shows two O trees, where (a) is admissible
and (b) is not.

Izmma 3: Given an admissible O tree (AOT), it is equal to
the shortest path spanning tree (SPST) embedded in the con-
straint graph of its corresponding placement.

Proof: Without loss of generality, we can assume that
a horizontal O tree OTn is admissible and has an admissible
placement by definition. Supposing OTn is not an SPST of the
horizontal constraint graph Gn of its corresponding placement,
we can find an edge e = (B* B i) in OTn that is not in the

(∞11∞1101,adbel

adrfigtile

(a)

(010010101 l,abdsc)

rct adrtrsiHe

(b)

Fig. 5. Illustration of (a) admissible and O) not admissable O tree.

SPST of Gr,. Since edge e is not shortest, we can compact the
placement between block Bl and block Bi, which contradicts
the assumption. Thus, OTn is a SPST of G6.

Corcllary: Given an admissible placement, we can constnrct
a horizontal constraint graph. The SPST of the graph is the hor-
izontal O tree of the placernent. The snme result applies to ver-
tical O tree, too.

G. O Tree to lts Onhogonal Constraint Graph

Given an O tree, we can build up its orthogonal constraint
graph by using DFS and maintaining a contour structure. Based
on the definition of O tree, we develop algorithm O tree to its
orthogonal constraint graph (OT2OCG), which first finds the
coresponding placement of the O tree by solving (4H6) and
then builds up its orthogonal constraint graph.

Algorithm oTzoCG
Input : o-t.ree ( T[0: 2n - U, tI[O: n])
OrEDut: orthogonal constraint graph
G : (V, E) and placement rlL:nl , ylL:nl

V - tI  + {V", V};

perm =  L ;
contour = NULL;
current,-contour -  0;
f o r  c o d e  :  0  E o  2 n - L

if Tloodel - 0
current-block - tI [per:m] ;
t f  current-eontour :  0

then r lcurrent-bTocki = r

lcurrent-contour) *w [current-cont,ourl  ;
e lee n lcurrent-b7ock)  :  0 ;

end i f

U lcurrent-bfockl  -

f ind-maxJ ( contour, current-blockl
update-  constra int -graph(G, contour ,

current-bTockl
upda t e-c on t our ( con tour,

current-bl-ock )
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cunent block

n€Mr @ntour

old contour

blocks that deterrnine the y pos of new block
and edges pointing to new b,lock added to constraint graph

Fig. 6. Constraint graph and contour for OT2OCG.

current_contour :  current_block;
e lge

current_contour = prev Ieurrent_con-
t.our I ;

end tf
end for

A contour structure is used in OT2OCG algorithm to reduce
the runtime for finding the y coordinate of a block while solving
(5) and (6).The runtirne is linear to the number of blocks without
the contour structure. By maintaining a contour structure, the
amonized cost of finding any gr coordinate becomes a constant
time.

The contour stnrcture is a double-linked list of blocks that de-
scribes the contour line in current compact direction. We use a
variabl e current contour to record the block where we want to
insert next block to in the contour. Fig. 6 shows howTtnd_maxg
determines the g coordinate of current block, how updnte_con-
staintgaph adds edges in the constraint graph, and how zp-
date-contour updates the contour structure when we add a new
block to the placernent.

I-emma 4: The runtime for algorithm OT2OCG is linear to
the number of blocks.

Proof: Without loss of generality, assume we can con-
stnrct a vertical constraint graph from a horizontal O tree by
OT2OCG. Suppose we have n blocks.

I ) For the loop in algorithm OT2OCG, we visit each node
exactly twice: one at the node's encode "O" and the other
at encode "1." The loop executes exactly 2 n tirnes.

2) In the loop, we perform three operations: find_m&t_U,
update -contour, and update -constraint 4raph for each
block B; inserted.

3) With maintaining contour structure and current_contour
pointing to the current starting point in the contour, we
can keep tracing the contour until the y coordinate is )
fr; * ttti.

4) By (3), we need to pass only a limited set of blocks to
three operations in (2) instead of passing lr/.@ I number
of blocks. The number of blocks accessed is equal to the
number of edges inserted in vertical constraint graph.

5) The constraint graph is planar. By lemma l, the number
edges in vertical constraint graph G" - (V, E") is less
than 3 n-6. The overall complexity for OT2OCG is linear
because we add every edge in G., exactly once.

2t5

Thus, the amortized complexity for each update operation of
the constraint graph and contour structure is constant. There-
fore, the algorithm OT2OCG has runrime complexity O(lyl),
which is linear to the number of blocks in placement. Q.E.D.

H. Constraint Graph to lts O tree

Given a constraint graph, we can build its O tree by an SPST
algorithm. Because the constraint graph created by algorithm
OT2OCG is either L or B cornpmt, we can construct an O tree
whose edges all have weights equal to zero.Instead of using a
breadth-frst search algorithm as a traditional approach of SPST,
we use DFS algorithm constraint graph to O tree (CG2OT),
which has the same performance and needs less explicit memory
space. The runtime of this algorithm is linear to the number of
blocks.

Algorirhm CG2OT
Input: constraint graph G - (V, E)
OrtDut: o-tree ?[0: 2n - lJ,  I I [o: n])

set  a l  l  mark t ,o  f  a lse
Pefm :  0 ;
code  :  0 ;
DFS traverse on the graph G

n
p -  paren t  [n ]
tf not mark ["] and the weight

I edge (p, n) ] - 0 then
mark  l " l_  t rue
f l [ pe rm** ]  -  0 ;
T l " o d e * * )  :  n ;
for c in chi ldren ["]

t raverse (" ) ;
end for
I I  [perm++] -  t i

end l f

I. Admissible O Tree

Given any O tree, we can construct an AOT by invoking
OT2OCG and CG2OT iteratively in sequence until convergence
is achieved. Given a horizontal O tree T, we can get a vertical
constraint graph G u by OT2OCG. Becaus e G o is B compact, we
can get a vertical O tree T, by CG2OT. After applying the same
procedures (OT2OCG and CG2OT), we can get a horizontal O
tree that represents an L-compact placement.

All moves in the compaction are monotone because all blocks
are either moving down or moving left. Therefore, the conver-
gence of the above iteration is assured and we can get an AOT.

Algori thm AOT
Input,: O tree T
Ortput : Admissible O-tree
set changed _ t,rue
while changed

set changed = false
set GY = oT2occ(")
set TY : CG2OI(GY)
set Gr - OT?OCG(?9)



OTnr r (0101@101011, abcd€Q

ortt

OTna . (010011001 101, abdofl

OTr,g r (01fi1011 10101, abdc{)

Fig. 7. Illustration of AOT process.

set Tr = Cczor(Gr)
if (T is not equal to Tnl'  then

s e t  T  = T r
set changed = true

end tf
end while
output(")

Example: Assume the (., h) tuples for blocks a, b, c, d, e,
and f ue (12,60), (4,6), (8,6), (3,5), (5,1l), and (l1,3), respec-
tively. An O trce OTnr (010100101011, abcd"f) is not admis-
sible. We run AOT on OTTrr and get a pair of O trees OTa and
OTnz in the first iteration. In the second iteration, we have OTr2
and OTng. Finally, in Fig. 7, the algorithm converges and finds
an AOT OTns (0100011l0l 01, abdecf ).

Izmma 5: All operations OT2OCG and CG2OT in the main
loop are linear. The runtime complexity for each iteration of the
main loop in AOT is linear to the number of blocks n.

V. FLoonpLAN Ar-corurHMs Usnsa O TR.er

We develop a deterministic floorplan algorithm using the O
tree stnrcture described in Section fV. The basic idea is systern-
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atically pernrrbing a given O tree to find an optimized solution
according to a preset cost function.

A. Perarbing the O Tree

We can pernrb the O tree by the following steps:

l) select a block Bt in the original O tree (7, r);
2) delete block B; from O tree (7,, r);
3) insert block B; in the position where we can get the best

value of cost function runong all possible inserting posi-
tions in (?, zr) as an external node;

4\ perform l-3 on its orthogonal O tree.
The selection of inserting position from all above will create

many useful configurations for the perilrb operation. We may
also select another method to insert a node to the tree, but it
needs additional operations to split and merge its descending
subtrees. It is our choice not to include them in our approach.

Given any O tree with n nodes, the number of possible in-
serting positions as external nodes is2n - 1.InFig. 8, there are
15 possible inserting positions in an eight-node tree. The op-
eration of finding these positions on (T, zr) is to simply add a
string'Ol" to any position in bit stringT and add the label to
its related position in n.

A pertubed O tree need not be admissible. We can apply AOT
to get an AOT and then evaluate it by the preset cost function to
find which move is the best.

A deterministic algorithm is derived by perturbing O tree in
sequence. We select nodes in sequence and find the best perturb
position for each of them. Given a fixed sequence of node, we
can always find a best O tree and its corresponding placement.
The advantage of deterministic algorithm is that its implemen-
tation is straightforward and easy to comprehend.

Determinist ic Algori thm
Ingut:

array of  b locks wi th width,  height , ,
and p in posi t ions

T/O pad posi t ion and networks
Output:
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TABLE Π

AREA,WIRE IINCrH,AND CPU COMPARISON。 (CPU SECONDS ON 90‐ MHz SPARC 20 WoRKSTAT10N)

ci“饉t
clustcr

rofincmcnt
initial

plrerncnt
dctcrministic

dgcifui

叩 te 4t.4nzrn?A' 63。鯛 300.14 63。3J33m.65

20314fl1t.t' 25.91XXνO.44 23.8r47詢 .99

hP gsult5/l t.0' 14。γ17m.26 9。91′167r6。32

□回u33 t.2v64t(f/3' 1。Oκ l。92。83 1。3響50。9724。3

m i 4 9 37.7n64n t60' 54.“ 7″ll。2 45.5ノ673′177.5

T A B L E  Ⅲ

M I N I M U M  A N D  A V E R A G E  D I S R I B U H O N  W r m  D m R E M  W E I G H T S

blocks wit ,h posit ion and orient.at. ion
Algorltbsr:

ini t iate O tree T and i ts placement
for each block b

set min-cost
remove (7, b)
for  each possib le posi t ion p of  b in

T and T' s orthogonal
set T1 = new O t,ree and placement

for  p
get admissible Tr using AOT
seE c - -  cost  ( " r )

""i,'#li;::;'-'l'o
set min-? - T1

end tf
end for
set T - min-T

end for
Output placement for T

Similar to the method of the deterministic algorithm, we can
get a constnrctive algorithm for initial placement with the fol-
lowing algorithm.

In i t ia t ,e (Construct ive Algor i thm)
s e t ,  O - E , r e e  T -  { }
same as the main loop above, r€Place
cost  O by par t ia l -cosE,  o
OuEput T

There are two fo, loops in the algorithm. The first loop per-
turbs all blocks in placement for total of n times and the second
one evaluates 4 n - 2 possible inserting points in the O tree.
The function AOT in the inner loop contributes O(") tirnes to
the overall procedure. Therefore, the mntirne cornplexity for the
algorithms is O(rrt ).

VI. Expennnel.ITAl Resurrs

The experiments are carried out for the MCNC building block
exirmples. There are five test cases and the number of blocks
range between nine and 49. The largest case ami49 is a circuit
with 49 block,4z UO pads, 408 nets, and 931 pins. The circuit
characteristics in MCNC benchmark are given in Table I.

Our program is written in C language. The core part of O-tree
operation is around 1000lines of codes, and the overall package,
including an X Windows interface, is a little more than 6000
lines of souce codes. The progftm runs on the platform of a
200-MHz Ultra-l Sparc station with 512-MB memory.

We compare the wire length and chip area with the result
of cluster refinement [8]. Table tr shows the results of initial
placernent using the given sequence order and the results after

one run of deterministic rilgorithm. The cost function here is

solely by the wire length, which is the sum of half bounding
box of all nets in the circuit. In each table entry, there are three
numbers: the first number is the chip area (mm2), the second
number is the wire length (mm), and the last number is the CPU
time in seconds.

In Tabl€ II, we achieved results with better wire length for the
three largest cases while their chip area iue comparable. Note
that the CPU time is much less than the cluster refinernent ap-
proach. Comparable results can be reached with only a few min-
utes for the largest case.

circuit

w:却 ・均 =1 w】=中 。5 wl= l  ,w24 [trPrcYO OVOr
CR

(aredwire)

apte 48.3r56。9 317J347 47.“3。2 31■ 70 47.lr50。6 343r5“ 3%′ 1%

20.親4.1 368r426 20。4πXと4 367′447 20。lJ21.4 444/702 1%′23%

h p 9。71′11。2 153r163 9。21ノ10.5 15γ167 9。2".97 16226 4%′ 17%

8口u33 1,2″1。41 51。■572 12Vl.34 51.α59.8 1。Ⅳ l。32 61.1/87.4 ‐3%ノ 203

口Eu49 41.3r49。8 63m34 39.1′42.0 6717777 37.硼 。9 819′1375 協 ノ17%
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Fig. 9. Placement results of random sequence with differcnt weights.

Fig. 10. (a) Placerncnts bcforc imp'rovcrncnt. Area = 4O.8 (5.92 x 6.89). Wire lenglh = 810. @) Plremcnc after deteministic irnprovemc* of otti49. Arca =
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Based on the basic version of initial and deterministic algo-
rithm, we can use a randornly generated sequence instead of the
original sequence in MCNC benchrnarks. In conjunction with
different weights to area and to wire length in cost function, we
have the results that an optimized solution can be found when
the weights are balanced.

In Table III, the distribution for the results of MCNC testcase
using 100 nrns of randornized sequences is given. We use a cost
function like u)L * anea * wz * wirelength, where the weights
ur ond u2 ?ta for area and wirelength, respectively, and the two
tenns area and wirelength are nonnalized. Table III shows three
sets of {u)Lt,r}  values: {0, l  } ,  {0.5, 0.5},  and [ ,  01. Each
table entry has two numbers: the first one is the minimum value

of results among all runs, and the second one is the average of
the results.

Fig. 9 shows the arealwirelength plot for the ami49 circuit.
We run 100 randomircd sequences for different weights in the
cost function. When the weights are 0.5 for both area and wire
length, the plots are very concentrated near the area of 45o line,
where chip size and wire length are almost balanced at that re-
gion.

Comparing the best results with cluster refinement we have
l%o to 23% improvement in the wire length and -37o to 4% im-
provement in area. For hp circuit (see Table II), we can find a
better solution which has 4Vo improvement in area and 17% im-
provement in wire length. On average, we can get aboul I6Vo

x

x
x

x
x

*l W1-Q W2=1
Oi ttl=().s W2=0.5
X! W1=f wZ=1)

x x

' r t  x

r
I

x

町年■ず+ギ+ + +
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improvement in wire length while the chip area is cornparable.
In Fig. 10, the placement after improvement shows a better in-
terconnection than the placement before improvernent.

VII. CoNcr-usloN

We displayed ̂  tree representation of floorplanning. The
method reduces the redundancy by a compaction process. The
exact floorplan topology is defined according to the exact block
width and height. The tree structure is well known in applied
mathematics and computer science and the properties of trees
are very straightforward and simple.

Otr algorithm shows irnprovement in both chip area and wire
length. The implementation of algorittrm is achieved with much
less CPU time. Other measures, such as timing, congestion, and
routability, are now formulated to our approach.
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