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Accurate Estimation of MinimumFilter Length for
Optimum FIR Digital Filters

Koichi Ichige, Member, IEEE, Mamoru Iwaki, Member, IEEE, and Rokuya Ishii, Fellow, IEEE

Abstract-This paper presents an accurate estimation formula
of minimumfilter length for optimum (minimax criterion based)
linear-phase finite impulse response (FIR) low-pass digital filters.
Two estimation formulae have been already proposed; how-
ever, they have some problems which lead to wrong estimation.
Discussing the problems based on our experimental results, a
newestimation formula is newly proposed. The accuracy of the
proposed formula is evaluated in comparison with that of the
conventional formulae. Furthermore, the proposed formula is
applied to the design of high-pass, band-pass, and band-stop
filters. The estimation accuracy is discussed also in this case.

Index Terms-Estimation, filter length, FIR digital filters,
Parks-McClellan algorithm.
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I. INTRODUCTION

HORTERfilters (filters with shorter filter length) have ad-
vantages over longer filters in that they have fewer circuit

elements in a hardware implementation or less computational
cost in a software implementation. Therefore, any filter design
problem can be considered to be an optimization problem to find
a filter satisfying the given specifications with a minimum filter
length. Especially for designing optimum (minimax criterion
based) linear-phase finite impulse response (FIR) low-pass fil-
ters, an iterative optimization algorithm using Remez exchange
method [ 1] (called Parks-McClellan algorithm) has been estab-
lished for those with odd filter length [2], and for those with
even filter length [3]. This algorithm is most widely used for
the design of linear-phase FIRs because of its flexible and ef-
ficient performance. However, the algorithm requires the filter
length of the designed filter to be known in advance, and opti-
mizes the amplitude characteristics in the minimax sense for a
specified filter length.
 Suppose the case to design an FIR digital filter of low-pass
type. Specifications of a target filter are generally given by four
parameters: passband edge frequency 'fp9 stopband edge fre-
quency fs (fp < fs), passband ripple Sp and stopband ripple
8S (usually Sp > Ss). In many practical cases, the above four
parameters of a target filter is first specified, and then many fil-
ters are designed so as to see how long the minimum filter length
N must be. It is hard to know the exact value of the minimum
filter length N which satisfies the given specifications.
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Toconjecture an appropriate filter length from given specifi-
cations in advance, two estimation formulae have been proposed
by Herrmannet al [4], [5] and by Kaiser [6] for designing FIR
low-pass filters. Such estimation formulae would be helpful for
the automated design tools of digital filters such as MATLAB
signal processing toolbox [7]. Those formulae estimate the filter
length moderately well, however, they cannot achieve enough
accuracy because of lack of some considerations especially for
longer filters. It is mentioned here that those formulae have been
proposed in 1970s, at the beginning of digital filters when the
longer filters can hardly be implemented. Since it takes so much
time and trouble to establish a more accurate formula, no other
formula has been proposed, and the conventional formulae are
still used in practice for the estimation. Such a situation must be
improved.

This paper presents an accurate estimation formula of
minimumfilter length for optimum (minimax criterion based)
linear-phase FIR digital filters. This paper consists of the
following sections. Drawbacks of the conventional formulae
are discussed in Section II, and then a newestimation formula
for the case 8P > 8S is developed in Section III based on our
experimental results. The accuracy of the proposed formula is
evaluated in comparison with that of the conventional formulae
in Section IV. Furthermore, the application of the proposed
formula to the design of high-pass, band-pass, and band-stop
filters is discussed in Section V. The accuracy is evaluated
for some example filters. Section VI makes someconcluding
remarks.

II. CONVENTIONAL APPROACHES AND THEIR PROBLEMS

A. Conventional Estimation Formulae

In this subsection, (a) and [a] denote the nearest odd integer
from a and the minimum odd integer not less than a, respec-
tively.

Herrmann et al. [4], [5] proposed the following estimation
formul a :

N^F, 6P,:SS) = lDoo^6t} - f(Sp, 6,) -AF+1
'W

where

DOO($P, ss) = {ai(log10 6P)2 + a2 Iog10 6Pà"+ 0,3} Iog10-68

'+ {a4(log10 8P)2.+ ^5logio SP + a*}

f(8p, 5a).=6i.+ &2(log10 i5p - log10.5s)

ai=5.309x10~3, a2=7.114x10~2

1057-7130/00$10.00 © 2000 IEEE



ICHIGE et al.:ACCURATE ESTIMATION OF MINIMUM FILTER LENGTH FOR OPTIMUM FIR DIGITAL FILTERS

3

ー

9

2

2

ー

L]16uむL)¢芸

7

5

Ll

【｣lL

3

ー

2

2

L))6uaこ8)L!l

9

7

rJl

rL

0 0.1 0.2 0.3

passband edge frequency

(a)

0.4 0.5

0 0.1 0.2 0.3

passband edge frequency

(b)

0.4 0.5

Fig. 1. Behavior
of (a) minimum odd

alter length N.dd and (b)minimum

(integer)filterlengthNinthecase6p - 0･01,6s - 0･0001and△F = 0･158･

α3ニー4･761×10-1) α4ニー2･660×10-3

α5ニー5.941×10-1) α6ニー4･278×10-1

bl-ll.O1217, b2-0.51244･

In (1), △F denotes the transition width (fs
-

fp)･In addition,
Kaiser [6] also proposed the following formula independently :

N2(△F, 6p, 6s) -
14.6AF

In the case 6p - 6s(- 6),(1)and (2) are rearranged as func-

tions of two parameters AF and 6

Nl(△F, 6) -

N2(△F, 6) -

D∞(6,6)
-bl･AF+1

-20logl｡∂
- 13

14.6AF

) (3)

･11･
(4,

B. Problems

1) Historical PT10blems: As the estimated value Nl in (1) is

rounded to the nearest odd integer, it is very particular to the

FIRs of odd丘1ter length, and does not consider those of even

1009

filter length. Similarly, N2 in (2) is rounded up to the nearest

odd integer. This means that the estimation formula (2)also does

not include the FIRs ofeven丘1ter length. Fig. 1(a)shows the be-

havior of the minimum odd filterlength N.dd aS a function of

fp,which is obtained by actually designing the example filters

used in [4,Fig. 14] forthe case 6p
- 0･01, 6s - 0･0001 and

AF = 0.158. The estimation formulae (1) and (2) have been

established based on the odd data ofFig. 1 in 1973 and 1974,

respectively･ However, a design algorithm for FIRs of even filter

length [3】was proposed in 1973･ Fig･ 1(b) shows the behavior

of the miTimum
filterlength N as a function of fp for the same

speci丘catlOnS OfFig. 1(a),however 〟 can be even
by the algo-

rithm [3].From Fig. 1, we can see that

N≦N.dd, ∀fp∈【0,0･5.-△F]･

Since the design algorithm has already been established for FIRs

of both odd and even filterlength, the estimation formulae
for

every Integer filterlength should be newly considered based on

the data of Fig. 1(b) to make the algorithm more useful･

Furtbemore, when (1) and (2) were established, FIRs of
longer丘1ter length (approximately more than 150) were not

feasible, hence the formulae must have been formulated only

for the FIRs of short filterlength･ Actually, as shown later, the

estimation accuracies of (1) and (2) become worse as the filter

length becomes long･ Now that FIRs of longer filterlength can

be designed, the accuracy for longer filter length should be

improved.

From the above discussions, we can suⅡ皿arize the historical

problems of the conventional formulations (1) and (2) as fbト

lows.

Problem 1: Formulas (1) and (2)aremade based on the data

of FIRs of odd丘Iter length only, and do not mention those of

even丘1ter length.

Problem 2I Formulas (I) and (2) do not correspond to the

FIRs of long filterlength.

2) Problems on FormulationI Since specifications of a filter

are given by four parameters: fp, fs, 6p, and 6s, the minimum
filterlength N can be a function of those four variables･ In the

case using AF(- fs
- fp)instead of fs,N can be rewritten

as a function of fp,△F, 6p and 6s･苧owever,in (1) and (2),

the estimated minimum filterlength Nl and N2are Written as

functions of thre?-variables:△F, 6p, and 6s｡ This means that

theyare constant irrespective of fp･
If N is really independent of fp, the graph of N versus fp

must be drawn as a bodzontal straight line. However, as shown

in Fig･ 1, N becoTe.ssmall as fp increases･ This result leads to

the fact that the mlnlmum filterlength N depends on all of the

four variables including fp･
Hereafter, [a]and ralnewly denote the nearest integer from

α and也e minimum integer not less than α respectively, to deal

with all the integers. The case 6p - 6s (- 6)is studied first･

Fig･ 2 shows the behavior of the minimum filterlength N as a

function of jTp･Fig･ 2(a) shows the behavior for the case 6 -

0.001 and AF - 0.05, and Fig. 2(b) for the case 6 - 0･0001

and AF
- 0.1, where the solid, broken and dotted lines denote

the required minimum filterlength N by trial and error exper-

iments, the e更timatedfllterlength Nl by (3) and the estimated
filterlength N2 by (4),respectively･ From Fig･ 2, we can see that
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F^ig･ 2･ Behavior of the required alter
length Nand the estimated丘1ter length

Nl andN2 aS afunctionoffp. (a)Inthe case6p - 0･1,6s - 0･001and

△F - 0.03. (b)Inthecase∂ = 0.0001,△F - 0.1.

the conventional formulas (3) and (4) in the case 6p
- 6s have

the following Problems.

PT10blem 3: For any △F and 6, the minimum filterlength N

becomes shorter as fp gets close to zero or O･5
- AF･

Problem 4: Let fcdenote the center frequency in the interval

[9,0･5 - △F],i･e･,fc - (0･5- △F)/2･
Forany △F and6,

(3) and (4) tend to give the shorter filter length than actually

required when fp is placed around fc･
The above problems of (1)and (2) are due to the lack of con-

sideration of some slgnificant theoretical properties, which are

mentioned later.

Next, the case 6p ≠ 6B is studied･ Fig･ 3 shows the behavior

of the minimum filterlength N as a function of fp･From Fig･ 3,

we can see that the conventional formulas (1) and (2) have the
followlng Problem.

Problem 5: Forany AF and any 6p > 6s, the minimum filter

length N becomes longer as fp approaches zero, and becomes

shorter as fp appr.oaches O･5 - AF, however (1) and (2)are

constant, irrespectlVe Of fp ･

Since speciflCations of low-pass filtersare glVen by four-pa-

rameters, estimation formulae must be written as four-variable

functions. However, both (1 )and (2)are three-variable functions

ofAF? 6p) and 6s･ As seen in Fig･ 3, the behavior ofN should

be respective to fp･
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Fig･ 3･ Behavior of therequiredminimum^丘1ter
length N (realline),the

estimated filterlengthNl (broken line)and N2 (dotted line)as afunction of
fp. (a)Inthecase∂p = Oll,6s - 0･001and△F - 0･03･(b) Inthecase

6p - O101,6s - 0･0001and△F - 0･05.

III. PROPOSED AppROACH

A. For LowIPass Filters with Identical Passband and Stopband

Ripples

An
accurateestimation

formula N3(fp, △F, 6)is proposed
in this sectlOn. First,the relations between filterparametersare

studied based on experimental results and theoretical consider-
′ヽ

ations. Then the formula N3 is formulated.

1) Relations Between Filter ParameteT7F: In the case 6p -

6s - 6, the required minimum filterlength N3 is determined by

three parameters: fp,fs and 6･ Hence, we express N by

N3 - Fl(fp,fs,6)･

Since fs can be represented by fp and AF, N can also be ex-

pressed by

N3 - F2(fp,AF, 6) - Fl(fp,fp+AF, 6)･ (5)

a) Relation Between
Nc and 6: Let Nc denote the min-

imum filterlength N for fixed fp - fc･First, the relation be-

tween Nc and 6 is studied for various AF.

Fig. 4 shows a behavior of the minimum fllterlength Nc as a

function of ripple 6 for some AF. Here, the followlng Proposi-

tion 1 theoretically holds.
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Fig･ 5･ Behavior of theminimumfi1ter length Nc as a function of AF

(log-to-logscale).

Proposition lI For any AF, the minimum filterlength Nc is

oneif∂
= 0.5.

Proof.･Consider a filterH(z) - 0･5 of the minimm fllter
length one. For any AF, the amplitude of the rlPPles caused

by the filterin both the passband and the stopband
TisO･5･ This

m?a.nsthat H(z)
is a filter satisfying 6

= 0･5･ Therefore,the

mlnlmum filterlength is one for any AF when 6
- 0.5. r

The fact of Proposition 1 is also observed experimentally in

Fig. 4. The conventional formulas (3) and (4) lacked considera-

tion to this fact. From Fig. 4, we also have the followlng Obser-

vation.

Observation 1: For any △F, (Nc -

1) is almost a linear

function of loglO 6･

This observation seems to be noticed in Kaiser's formula (4),

however itis missed in Herrmann's formula (3).
b) Relation Between Nc and AF: Next, the relation be-

tween Nc and AF is studied for various 6.

Fig. 5 illustrates the behavior of (Nc - 1)as a function ofAF
for some values of 6. From Fig. 5, the following Observation

seems to hold.

Observation 2I For any 6, it seems that loglO(Nc
-

1) is a
linearfunction of loglO △F with the gradient -1 when

Nc ≧

10.

This is equivalent to the followlng Observation.

lo一l

Observation 3I For any 6, (Nc
-

1)is nearly in inverse proI
portion to △F when Nc ≧ 10･

These are also mentioned in Kaiser's formula (4);however,

the consideration to this observation in the Herrmann's formula

(3)is not in enough detail.

c)
Relation Between N and fp: Next, the relation be-

tween N and fp are studied for some vallues of AF and 6･ As

seen later in Fig. 2, the followlng Seems tO bold.

Observation 4: For any △F and 6, the graph ofN v?rヲusfp

resembles the shape of an arcb･ In other words, the mlnlmum

filterlength N is shorterthan Nc when fp = 0 or fp = 0･5
A

AF.

2) Formulation:

a)
Estimation ofNc for fp

- fc: First, the estimated
ノヽ

value Nc of the miTi?um
fllterlength Nc for fp = fcis formu-

lated. From ProposltlOn 1 and Observation 1, Nc can be written

as a function of 6 as follows:

Nc(6) - ｢a(-logl.6+logl｡0･5)b+ll
- ra(-logl.(26))a+1l, b--1･ (6)

From Observations 2 and 3, Nc should also satisfy, as a function

of AF, that

logl｡ (Nc(△F)-1)-c(logl.(△F))･d, c竺-1

namely

Nc(△F) - ｢10d
･

(△F)c+ ll. (7)

Equations (6) and (7) lead to one possible expression of Nc

Nc(△F, ∂)ラ rp(-logl.(26))q(△F)r+1l･ (8)

Here, the parameters p, q and r in (8)are detemined based on

the following least mean square (LMS) approximatiop criterion

for thousands of combinations of (△F,6, Nc)

∑純~"c12→Tin･
Consequently, the estimation fわrmula Ⅳ｡ is obtained as

Nc(△F, 6) -
1.101卜logl｡(2∂))1･1

AF

ノヽ

b) The Proposed Estimation Formula N3for 6p - 6s -

6: Finally, the approximation function for the arch-like curves

is found so as to determine a new estimation formula N3.

From the experiments of fitting various elementary functions

to the arch-like curves, we found that the following mOdi丘ed

arctangent function (9) is most suitable for approximating them:

9(fp,
AF, 6)

･-芸arctan(v(AF,
∂)･(圭一

v(AF, 6)
:- 2.325 ･

(-logl.6)-0･445
I

(AF)-1･39. (10)

The coefficients in (10) are also determined based on LMS ap-

proximation criterion･ In this case, several hundred thousands

of combinations of (fp,AF, 6, N) were used to determine the

coefFICients. This approximation problem is formulated as

Ⅳ3-〟 ー mln.
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Finally we obtain the estimation formula N3 in (ll), shown at

the bottom of the page.The formula (11) is a function of tbree-

variables: fp,△F and 6･

B. For any L,ow-Pass Filter

Using (ll),we expand a new estimation formula N4 Which

corresponds to the case 6p ≠ 6s･

1) Relations Between Filter Parameters: In the case 6p ≠
6s
, the minimum fllterlength N4 is determined by four param-

eters: fp, fs, 6p, and 6s. Hence, we express N4 by

N4 - Gl(fp, fs, 6p, 6s)･

Since fs can be represented by fp and AF, N can also be ex-

pressed by

N4 - G2(fp, △F, 6p, 6s)- Gl(fp, fp+△F, 6p, ∂s)･

We assume that the minimum filter length N4 for 6p ≠ 6s is

represented in a formofan addition of the formula N3 for 6p
-

6s in (5) and the distance DN, i.e.,

N4(fp, AF, 6p, 6s)
- N3(fp, △F, 6p)+DN(fp,

△F, 6p, ∂s)I

First weaim to formulate the approximation DN for the dis-

tance DN.

2) Formulation^ of DN: we
do not optimize the approxi-

mate distance DN for DN, however optlmize the whole filter

length N4 - N3 + DN for the required filterlength N4･ This

approximation problem can be formulated as

∑lN4-Nl2-min･

Furthermore, the approximation DN must satisfy

DN-0? 6p-6s

(12)

soastobeN4 - N3.

Now we study the behavior of the distance DN. For example,

Fig. 6 shows the behavior of the required filterlength N4 for

the case AF - 0･05) 6p - 0･01, 6s - 0･00001, therequired

filterlength N3 forthe case AF - 0･05) 6p - 6s - 0･01, and

their distahce DN as a function of fp･From Fig･ 6, we have the
following Observation.

ObseTVation 5.･ The distance DN gets smaller as fp become

larger. Especially when fp get close to O･5
- AF, the distance

DN decreases rapidly. This behavior of DN resembles the be-

havior of N3 if fp is larger than fc･
It would be mentioned here that the similarbehavior were ob-

served for other speci丘cations･ This observation suggests that

the modifiedarctangent function like 9 0f (9) may be suited for

approximatlng DN･ From the experiments of fitting various el-

60

40

L])6ueこOII!1

0 0.1 0.2 0.3

passband edge frequency

0.4

Fig･ 61 Behavior of the minimum filterlength N4 for the case AF - 0･05,

∂p = 0･01, 6s - 0･00001,theminimumfilterlength N3 forthe case △F -

0･0･5,∂p - ∂s = 0･01,and theirdistance DN as afunction offp･

ementary functions to the curves of DN, we found that the foil

lowlng modified arctangent function h is most suitable･ These

approximate functions can be written as

DN(fp, △F, 6p, 6s)

･- ｢N-(△Fフ6p,∂s)
･

(h(fp,△F, 1･1)

h(0.5-AF-fp,AF,0･29)
- I

h(fp,AF, c)
2
- I

arctan
7T 0.5-AF

3) Formulation of Nm: The
function Nm(AF, 6p, 6s)in

(13) is an approximation for Nm which is n^early the same牙S

DN(fc, △F, 6p1 6s)･This approximation Nm works like Nc

for the formula N3 in (11).Now the behavior of Nm is studied,

and its approximation 礼 is formulated･

a)
Relation Between Nm and △F: First, the relation be-

tween Nm and AF is studied for various 6p and 6s･ Fig･ 7 illus-

trates the･behavior of Nm as a function of AF for some values

of 6p and 6s･ From Fig･ 7, the following Observation seems to

hold.

Observation 6: For any 6p and 68, it seems that loglO Nm

is a linear function of loglO AF with the gradient -1･
This is

equivalent to the fbllowlng Observation･

Observation 7: For any 6p and 6s, Nm. is nearly in inverse

proportion to AF.

b) Relation'Between Nm and log(6p/6s):Next, the rela-

tion
between Nm and a function log (6p/6s)is studied for var-

ious AF, 6p and 6B･ Fig･ 8 illustrates the behavior of Nm as a

function of log (6p/∂s)for some values of 6p and △F･ From
Fig. 8, we have the following Observation･

Observation 8: Forany 6p, 6s and AF, Nm is almostalinear

function of log (6p/6s)･

N3(fp･ △F, 6):- ｢Nc(△F,6) 9(fp,△F,6)
+g(0･5

- △F- fp,△F,6)+ 1
(ll)
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0.02 0.03
Transition width

0.05 0.07 0.1

Fig. 7. Behaviorofthe function Nm for some 6p and 6s as afunction ofl/△F
(log-to-)ogscale)･

0 0.5 1 1.5 2 2.5 3

log(6p/6B)
I

Fig. 8. Behavior
offunction Nm as a function of log(∂p/∂s)･

Based on Observations 7, 8, and some more experiments, we

formulate the approximation Nm as

Nm(△F, 6p, 6s)-p
loglO(6p/6s)
AF ･(-logl.6p)q･

(14)

The coefficients p and q in (14) are also determined
based on

LMS approximation critedon in (12)･ In this case, millions of

combinations of (fp,AF, 6p, 6s, N)are used to determine the

coefficients. Finally, we have

p- 0.52, q-0･17･

4) The ProposedEstimation Formula N4for 6p ≠6s: As a
ノヽ

result, the proposed estimation formula N4 Can be summarized

as follows:

N4(fp, △F, 6p, 6s)

三-N3(fp,△F,6p)+DN(fp,△F,6p,∂s)
(15)

DN(fp, AF, 6p, 6s)

=

~一
Nm(AF, 6p, 6s).(h(fp,AF, Ill)

h(0･5-△F- fp,△F,0･29)-1

0

0
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Fig･ 9･ Behavior oftheminimum Blter lengthN and the estimated filterlength

N3 aS afunction offp. (a)
Inthe case ∂ - 0･01 and △F

= 0･05･ (b)Inthe

case∂
= 0.0001and△F = 0.1.

Nm(△F, 6p, 6s)

:= 0.52
logl.(6p/6s)
AF

h(fp,AF, c)
2
- ･

arctan
7r i

C

AF

･ (-loglO 6p)0･17

(去
The formula N4 is a four-variable function of fp,△F, 6p, and
6s.

ⅠV EvALUATION

A. For Low-Pass Filters with Identical Passband and Stopband

Ripples

The proposed estimation fわrmula (11) is evaluated in com-

parison with the conventional formulas (3) and (4)･Fig･ 9 shows
血e behavior of the minimum丘1ter length 〟 and the estimated

values Ni (i- 1, 2, 3) as afunction offp･ Fig･ 9(a) shows the
behavior for the case 6 - 0.001 and △F - 0.05, and Fig. 9(b)
forthe case 6 - 0.0001 and AF - 0.1. Fig. 9 demonstratesthat

′ヽ

the estimated filterlength N3 is better than the conventional es-

timations by (3) and (4),whichare irrespective of fp･
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Fig. 10. Bthaviorofthe distances △Ni (i = 1, 2, 3) as afunction of6
(log-to-1inearscale).(a)Inthe case AF -0･0･5. (b)Inthe case AF - 0･03･

The estimation performances of (3) and (4)are evaluated by

the following distance ANi(i - 1, 2, 3),defined by the nor-

malized Ll norm:

ANi(AF, 6) :-
0.5-AF 上o'5-△F･Ni- N[dfp,

(i-i,2,3). (16)

In (16), ANi means the average distance with respect to fp E

【0,0･5
-

△F],which is a function of△F and 6･

Fig. 10showsthebehaviorofthedistances ANi (i- 1, 2, 3)
as afunction of6 for some values ofAF. In Fig. 10, we can see

that the distance AN3 StaySarOund one and is smaller than both

ANl and AN2 forany AF and 6.

Especially in the case where both AF and 6 get smaller, i･e･,

when the minimum filter length N gets longer, the distances

△Ⅳ1 and △Ⅳ2 become worse. This is because the conven-

tional formulas (3) and (4) do not correspond to the FIRs of

long filterlength and some significant theoretical considerations

were missed. Since the distance AN3 StaySarOund one for any

AF and 6, itis obvious that the proposed estimation formula

(11) makes a good estimation f♭rany case.

0

0

4

3

t]16u¢〓alI!l

0

0 0.1 0.2 0.3

passband edge frequency

(a)

0.4 0.5

O 0.1 0.2 0.3

passband edge frequency

(b)

0.4 0.5

Fig. 1 1. Behavior of the estimated filter
length N4 (real1ine)andthe required

minimum Blter length N (broken line)as a function offp..(a)In the case ∂p -

0.1,6s - 0.001and△F - 0･03.(b)Inthecase∂p = 0･01,∂s - OAOOOl

andAF = 0.05.

B. For Any Low-Pass Filter

The proposed estimation formula (15) is evaluated in com-

parison with the conventional formulae (1) and (2)･

Fig･ 1 1 shows the behavior of the estimated fllterlength N4

by (11) and the required minimum filterlength N as a function

of fp･Specifications ofFig･ 1 1(a)and (b)are the same as those

ofFig. 3(a) and (b),respectively. Figs･ 3 and 1 1 demonstrate that

the proposed estimation formula N4 is better than the conven-

tional estimations by (1)and (2),wbicb are constant irrespective

tofp･
The estimation performance of (1)and (2)is evaluated bythe

following distance ANi(i - 1, 2, 4)defined by the normalized
Ll norm

ANi(AF, 6p, 6s):-
0.5-AF 上o●5~△F･Ni- N･dfp,

(i-1,2,4). (17)

In (17), △Ni means the average distance with respect to fp ∈

[0,0.5
-

AF]. Fig. 12 shows the behavior of the distances ANi

(i- 1, 2, 4) as afunction ofAF for some values of6p and
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Fig･ 12･ Behavior of the distance AN4 0f the proposed estimation
formula

(realline),the distance ANI Of the Herrmann's formula (broken line)and

the distance AN2 0f the Kaiser's
formula (dottedline)as a function of AF

(log-to-1inearscale).(a)Inthe case 6p - 0･1and ∂s = 0･001･ (b)Inthe case

∂p = 0.01and∂s - 0･0001･

6s･ In Fig･ 12, we can see that the distance AN4 Stays less than

two and is smaller than both ANl and
AN2. This means that

the proposed formula N4 makes better estimation than both
Nl

and Ⅳ2.

v MINIMUM FILTER LENGTH FOR ⅢIGH-PASS, BAND-PASS,

AND BAND-STOP FIIXERS

The proposed formula (15) is applied to the
design of

high-pass, band-pass, and band-stop filters･Since the conven-

tional estimation formulae correspond only to the estimation

for low-pass filters design, theyare not applied to the design

of other types of f11ters･ Thus, the proposed formulae
for

high-pass, band-pass, and band-stop filters are evaluated

by comparing the estimated minimum filter length with the

required one for some design examples･ It is mentioned that the

estimation of the minimum filterlength for FIR differentiators

and FIR Hilbert transformers has been studied by Rabiner and

Schafer [8],[9]and itrealizes good accuracy･

A. High-Pass Filters

ln designlng FIR high-pass丘1ters, the proposed estimation

formula (11) can be applied.

TABLE I

GENERAL SpECIFICATIONS OF llIGH-PASS,

BANDIPASS, AND BAND-STOP FILTERS

High-pass B and-pass B and-stop

･passband
[Fp,0.5] 【fpl,fp2]

[0,Fp1]

-[Fp2,0.5]

stopband [0,Fs]
【0,fsi]

[fs2,0.5]
【F81,F82】

pa8Sbahdripple 6p 6p- 6p

stopbandripple 6s 6s ∂■

TABLE II

ExAMPLE SpECIFICATIONS OF HIGH-PASS,

BANl)-PASS, AND BAND-STOP FILTERS

H igh-pa月s B and-pass B and-8tO p

passband 【o.2,0.5】【0.10,0ー15】
【0,0.17】

【0.25,0.5】

stopband 【0,0.1】 _【0,0.08】
【o.2,0.5】

【0.2,0.22】

paB8bandripple .0.01
o'.1 0.01

stopbandripple
0.0001 -0.001-

0.0001
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Let Fs, Fp, 6s and 6p respectively denote the edge
frequency

ofstopband, that ofpassband (0 ≦ Fs < Fp ≦ 0･5),the stop-

band ripple, and the passband ripple, as shown
in Table I･ In

this case, the estimation of minimum filter length NH
for the

high-pass fllteris glVen by

NH(Fp, △F, 6p, 6s)-N4(0･5⊥Fp,
△FH, 6p, 6s) (18)

whereAFH
- Fp - Fs･

consider designlng the high-pass filterfor which speciflCa-

tions are glVen in Table II･ The estimated
filterlength NH by

(18) is 33, and the required filterlength
NH is 35. The distance

is only two in this case･

B. Band-Pass Filters

In designing FIR band-pass filters,the proposed estimation

formula (11) can be also applied as follows･

Suppose that the specifications of a band-pass filteris glVen

asTableI,whereO ≦ J'sl< fpl ≦ fp2 < fs2 ≦ 0･5and

∂s < 6p･ Inthis case, the estimation of minimum filter length

NBP for the band-pass filteris glVen by

NBP(fpl, fp2,△fl,△f2, 6p, 6s)

=-max(N4(fp2,
△f2… 6p, 6s)

N4(0.5 - fpl,△fl, 6p, 6s)) (19)

whereAfl
- fpl - fsl andAf2

- fs2 - fp2･

For example, We design a
band-pass filterwhich satisfy the

specifications in Table II･ The estimatedfi1ter
length NBP by

(19) is max (38,91) - 91, and the required fllterlength NBP

is 92. The distance is only one in this case･

C. Band-Stop Filters

specifications of a band-stop filteris glVen aS Table I,where

o ≦ FYI <Fsl ≦ Fs2 < Fp2 ≦ 0･5and6s < 6p･Inthiscase,
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TABLE III

ExAMPLE SpECIFICATIONS OF THE PARTICULAR BANDIPASS AND

BAND-STOP Fll:TERS

B and- pass B alld-stop

pa8Sband 【0.20,0.21】
【0,0.2】

[0.3,0.5]

8tOPba.Itd
【0,0.10】

【0.25,.0.5】
【0.25,0.26】

paBSbandripple 0.01 0.01

stopb叩dripple
_0.0001

0.0001

the estimation of minimum filterlength NBS for the band-stop

filteris glVen by:

NBS(Epl, Fp2, △Fl, △F2, 6p, 6s)
-

max‡N4(Fpl,
△Fl, 6p, 6s),

N4(0.5 - Fp2! △F2, 6p, 6s)) (20)

whereAFl - Fsl
-Fpl andAF2

- Fp2
-Fs,I

Ⅲere we design the band-stop丘1ter of which speci丘cations

are given in Table II. The estimated filterlength NBS by (20) is

max(106, 107)
- 107, and the required filterlength NBS is

105. The distance is two in this case.

VI. CoNCLUDING REMARKS

This paper proposed the accurate estimation fbⅢlula (15) of

the minimum filterlength for optlmum FIR low-pass digital fil-

ters. In comparison with the conventional estimation fbmulae

(1) and (2),the proposed formula (15) realizes much better ac-

curacy.- Furthermore, the proposed formula (15) was applied to

the design of high-pass, band-pass and band-stop丘1ters･

The estimation formulae (19) and (20) for band-pass and

band-stop丘1ters stillhave problems which may lead to wrong

est血ation. If we estimate the minimum五1ter length of a partic-

ular band-pass filterwith the narrow passband (or, a band-stop

丘1ter with the naⅡow stopband), the proposed estimation

formulae (19) and (20) tend to give longerfi1ter length than

required.

For example, we design the band-pass丘1ter with the naⅡow

passband for which specifications are glVen in Tablg III･The es-

timation NBP by the proposed formula (19) is max (33,82) -

82, and the required丘1ter length 〟 is 69･ The estimation is 13

longer than the required. The band-stop filter with the narrow

stopband (called notch filter)is also designed･ Specification^s of

the band-stop丘1terare glVen in Table III･The estimation NBS

by the proposed formula (20)is max (66,83) - 83, and the re-

quired 〟 is 65･ The distance is 18 in this case･ Behavior oftbe

minimum filter length of thosefi1ters would
be studied further,

and the accuracy of the estimation must be
improved･
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