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Abstract—This paper presents an accurate estimation formula
of minimum filter length for optimum (minimax criterion based)
linear-phase finite impulse response (FIR) low-pass digital filters.
Two estimation formulae have been already proposed; how-
ever, they have some problems which lead to wrong estimation.
Discussing the problems based on our experimental results, a
new estimation formula is newly proposed. The accuracy of the
proposed formula is evaluated in comparison with that of the
conventional formulae. Furthermeore, the proposed formula is
applied to the design of high-pass, band-pass, and band-stop
filters. The estimation accuracy is discussed also in this case.

- Index Terms—Estimation, filter length, FIR digital filters,
Parks-McClellan algorithm.

I. INTRODUCTION

HORTER filters (filters with shorter filter length) have ad-
S vantages over longer filters in that they have fewer circuit
elements in a hardware implementation or less computational
cost in a software implementation. Therefore, any filter design
problem can be considered to be an optimization problem to find
a filter satisfying the given specifications with a minimum filter
length. Especially for designing optimum (minimax criterion
based) linear-phase finite impulse response (FIR) low-pass fil-
ters, an iterative optimization algorithm using Remez exchange
method [1] (called Parks—McClellan algorithm) has been estab-
lished for those with odd filter length [2], and for those with
even filter length [3]. This algorithm is most widely used for
the design of linear-phase FIRs because of its flexible and ef-
ficient performance. However, the algorithm requires the filter
length of the designed filter to be known in advance, and opti-
mizes the amplitude characteristics in the minimax sense for a
specified filter length.

Suppose the case to design an FIR digital filter of low-pass
type. Specifications of a target filter are generally given by four
parameters: passband edge frequency f,, stopband edge fre-
quency fs (fp < fs), passband ripple 6, and stopband ripple
0s (usually 6, > 0,). In many practical cases, the above four
parameters of a target filter is first specified, and then many fil-
ters are designed so as to see how long the minimum filter length
N must be. It is hard to know the exact value of the minimum
filter length NV which satisfies the given specifications.
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To conjecture an appropriate filter length from given specifi-
cations in advance, two estimation formulae have been proposed
by Herrmann et al. [4], [5] and by Kaiser [6] for designing FIR
low-pass filters. Such estimation formulae would be helpful for
the automated design tools of digital filters such as MATLAB
signal processing toolbox [7]. Those formulae estimate the filter
length moderately well, however, they cannot achieve enough
accuracy because of lack of some considerations especially for
longer filters. It is mentioned here that those formulae have been
proposed in 1970s, at the beginning of digital filters when the
longer filters can hardly be implemented. Since it takes so much
time and trouble to establish a more accurate formula, no other
formula has been proposed, and the conventional formulae are
still used in practice for the estimation. Such a situation must be
improved.

This paper presents an accurate estimation formula of
minimum filter length for optimum (minimax criterion based)
linear-phase FIR digital filters. This paper consists of the
following sections. Drawbacks of the conventional formulae
are discussed in Section II, and then a new estimation formula
for the case 6, > &, is developed in Section III based on our
experimental results. The accuracy of the proposed formula is
evaluated-in comparison with that of the conventional formulae
in Section IV. Furthermore, the application of the proposed
formula to the design of high-pass, band-pass, and band-stop
filters is discussed in Section V. The accuracy is evaluated
for some example filters. Section VI makes some concluding
remarks.

1L CONVENTIONAL APPROACHES AND THEIR PROBLEMS

A. Conventional Estimation Formulae

In this subsection, (a) and [a] denote the nearest odd integer
from ¢ and the minimum. odd integer not less than a, respec-
tively.

Herrmann et al. [4], [5] proposed the following estimation
formula:

Doo(8p, 65) _

NG f(bp, 65) - AF +1

NI(AF, 5p7 63) = <
6y

where

Dm(‘spa bs) = {al(logm 5p)2 + a2 log;q 6p + q3} logyq 05
+ {as(logyg 6,)* + as logyg 6 + ae}
f(8p; 6s) =b1 + ba(logyq 6, — logyg 6s)
a1 =5.309 x 1073, ay = 7.114 x 1072
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Fig. 1. Behavior of (a) minimum odd filter length Noas and (b) minimum

(integer) filter length IV in the case §, = 0.01,6, = 0.0001and AF = 0.158.

a3 = —4.761 x 1071, ay = —2.660 x 1073
as = —5.941 x 107, ag = —4.278 x 107*
by =11.01217, by =0.51244.

In (1), AF denotes the transition width (fs — fp). In addition,
Kaiser [6] also proposed the following formula independently:

+1] NG

In the case 6, = 6,(= 6), (1) and (2) are rearranged as func-
tions of two parameters AF and §

) —201o bpbs — 13
Na(AF, 5, 6,) = { e

Ni(AF, 5):<2°Z%Q—bl.ap+1> 3)

- —20log,n 6 — 13

Ny(AF, §) = [_Mgﬁ_wA—F + 1} . (4)
B. Problemsv

1) Historical Problems: As the estimated value Nl in(1)is
rounded to the nearest odd integer, it is very particular to the
FIRs of odd filter length, and does not consider those of even

1009

filter length. Similarly, Ny in (2) is rounded up to the nearest
odd integer. This means that the estimation formula (2) also does
not include the FIRs of even filter length. Fig. 1(a) shows the be-
havior of the minimum odd filter length N,qq as a function of
f»» which is obtained by actually designing the example filters
used in [4, Fig. 14] for the case 6, = 0.01, 6; = 0.0001 and
AF = 0.158. The estimation formulae (1) and (2) have been
established based on the odd data of Fig. 1 in 1973 and 1974,
respectively. However, a design algorithm for FIRs of even filter
length [3] was proposed in 1973. Fig. 1(b) shows the behavior
of the minimum filter length N as a function of f, for the same
specifications of Fig. 1(a), however N can be even by the algo-
rithm [3]. From Fig. 1, we can see that

N < Nodd, pr € [0, 0.5‘— AF]

Since the design algorithm has already been established for FIRs
of both odd and even filter length, the estimation formulae for
every integer filter length should be newly considered based on
the data of Fig. 1(b) to make the algorithm more useful.

Furthermore, when (1) and (2) were established, FIRs of
longer filter length (approximately more than 150) were not
feasible, hence the formulae must have been formulated only
for the FIRs of short filter length. Actually, as shown later, the
estimation accuracies of (1) and (2) become worse as the filter
length becomes long. Now that FIRs of longer filter length can
be designed, the accuracy for longer filter length should be
improved.

From the above discussions, we can summarize the historical
problems of the conventional formulations (1) and (2) as fol-
lows. ‘

Problem 1: Formulas (1) and (2) are made based on the data
of FIRs of odd filter length only, and do not mention those of
even filter length. '

Problem 2: Formulas (1) and (2) do not correspond to the
FIRs of long filter length.

2) Problems on Formulation: Since specifications of a filter
are given by four parameters: fp, fs, 6p, and &5, the minimum
filter length N can be a function of those four variables. In the
case using AF (= fs — fp) instead of fs, N can be rewritten
as a function of f,, AF, é, and 6,. However, in (1) and (2),
the estimated minimum filter length N1 and ]\72 are written as
functions of three-variables: AF, é,; and 6,. This means that
they are constant irrespective of fp.

If N is really independent of f,, the graph of N versus fp
must be drawn as a horizontal straight line. However, as shown
in Fig. 1, N becomes small as f,, increases. This result leads to
the fact that the minimum filter length N depends on all of the
four variables including f.

Hereafter, [a] and [a] newly denote the nearest integer from
a and the minimum integer not less than a respectively, to deal
with all the integers. The case 6, = 65 (= 6) is studied first.
Fig. 2 shows the behavior of the minimum filter length IV as a
function of f,,. Fig. 2(a) shows the behavior for the case 6 =
0.001 and AF = 0.05, and Fig. 2(b) for the case 6 = 0.0001
and AF = 0.1, where the solid, broken and dotted lines denote
the required minimum filter length IV by trial and error exper-
iments, the estimated filter length ]\71 by (3) and the estimated
filter length N, by (4), respectively. From Fig. 2, we can see that
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Fig. 2. - Behavior of the required filter length /V and the estimated filter length
N; and N, as a function of f,. (a) In the case 6, = 0.1, 6, = 0.001 and
AF = 0.03. (b) In the case § = 0.0001, AF = 0.1.

the conventional formulas (3) and (4) in the case 6, = §, have
the following problems.

Problem 3: For any AF and 6§, the minimum filter length N
becomes shorter as f, gets close to zero or 0.5 — AF.

Problem4: Let f. denote the center frequency in the interval
[0,0.5 — AF), ie., f. = (0.5 — AF)/2. For any AF and 6,
(3) and (4) tend to give the shorter filter length than actually
required when f;, is placed around f..

The above problems of (1) and (2) are due to the lack of con-
sideration of some significant theoretical properties, which are
mentioned later.

Next, the case 6, # 0, is studied. Fig. 3 shows the behavior
of the minimum filter length IV as a function of f,,. From Fig. 3,
we can see that the conventional formulas (1) and (2) have the
following problem.

Problem 5: Forany AF and any 6, > 6, the minimum filter
length N becomes longer as f, approaches zero, and becomes
shorter as f, approaches 0.5 — AF, however (1) and (2) are
constant, irrespective of fj.

Since specifications of low-pass filters are given by four-pa-
rameters, estimation formulae must be written as four-variable
functions. However, both (1) and (2) are three-variable functions
of AF, §,, and §,. As seen in Fig. 3, the behavior of NV should
be respective to fp.
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Fig. 3. Behavior of the required minimum filter length &V (real line), the
estimated filter length NV, (broken line) and N> (dotted line) as a function of
fp-(a) In the case 6, = 0.1, 6; = 0.001 and AF = 0.03: (b) In the case
6, = 0.01,6, = 0.0001 and AF = 0.05.

III. PROPOSED APPROACH

A.’ For Low-Pass Filters with Identical Passband and Stopband
Ripples

An accurate estimation formula N ( fp, AF, 6) is proposed
in this section. First, the relations between filter parameters are
studied based on experimental results and theoretical consider-
ations. Then the formula V: 5 1s formulated.

1) Relations Between Filter Parameters: In the case 0, =
6s = 6, the required minimum filter length N3 is determined by
three parameters: fy,, fs and 6. Hence, we express N by

Fl(.fpa .fsv 6)

Since f, can be represented by f, and AF, N can also be ex-
pressed by

N3v: F2(fp7AFa 5)=F1(fpa fp+AF7 5) ()]

a) Relation Between N, and 6: Let N, denote the min-
imum filter length N for fixed f, = f.. First, the relation be-
tween N, and 6 is studied for various AF'.

Fig. 4 shows a behavior of the minimum filter length N, as a
function of ripple 6 for some AF'. Here, the following proposi-
tion 1 theoretically holds.

N; =
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Proposition 1: For any AF, the minimum filter length N, is
one if 6 = 0.5.

Proof: Consider a filter H(z) = 0.5 of the minimm filter
length one. For any AF, the amplitude of the ripples caused
by the filter in both the passband and the stopband is 0.5. This
means that H(z) is a filter satisfying § = 0.5. Therefore, the
minimum filter length is one for any AF when 6 = 0.5. [ |

The fact of Proposition 1 is also observed experimentally in
Fig. 4. The conventional formulas (3) and (4) lacked considera-
tion to this fact. From Fig. 4, we also have the following obser-
vation.

Observation 1: For any AF, (N, — 1) is almost a linear
function of log;, 6.

This observation seems to be noticed in Kaiser’s formula (4),
however it is missed in Herrmann’s formula (3).

b) Relation Between N, and AF: Next, the relation be-
tween N, and AF is studied for various 6.

Fig. 5 illustrates the behavior of (N — 1) as a function of AF
for some values of ¢. From Fig. 5, the following observation
seems to hold.

Observation 2: For any 6, it seems that logqo(N. — 1) is a
linear function of log,, AF' with the gradient —1 when N, >
10.

This is equivalent to the following observation.
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Observation 3: For any 6, (N, — 1) is nearly in inverse pro-
portion to AF when N, > 10.

These are also mentioned in Kaiser’s formula (4); however,
the consideration to this observation in the Herrmann’s formula
(3) is not in enough detail. ]

¢) Relation Between N and f,: Next, the relation be-
tween N and f, are studied for some values of AF and 6. As
seen later in Fig. 2, the following seems to hold.

Observation 4: - For any AF and §, the graph of N versus f,
resembles the shape of an arch. In other words, the minimum
filter length N is shorter than N, when f, ~ O or f, ~ 0.5 —
AF.

2) Formulation:

a) Estimation of N, for f, = f.: First, the estimated
value NN, of the minimum filter length N, for j;P = f. is formu-
lated. From Proposition 1 and Observation 1, N, can be written
as a function of 6 as follows:

N.(6) = [a{—1log;, 6 + log;, 0.5}° + 1]
= [a{-logyx(26)}° +1], b1l (6)

From Observations 2 and 3, N, . should also satisfy, as a function
of AF, that

log;g (NC(AF) - 1) =c{log;o(AF)} +d, c~-1
namely

N.(AF) = [10¢ - (AF)® +1]. (7

Equations (6) and (7) lead to one poSsible expression'of N.
N(AF, 6) = [p{—log;(26)}(AF)" +1]. (3)

Here, the parameters p, ¢ and 7 in (8) are determined based on
the following least mean square (LMS) approximation criterion
for thousands of combinations of {AF, §, N}

Z |N, — N_|* = min.
Consequently, the estimation formula Nc is obtained as

. 1.101 {—log;o(26)}*!

N,(AF, §) = <7 +1].

b) The Proposed Estimation Formula N3 for Op = 65 =

6: Finally, the approximation function for the arch-like curves
is found so as to determine a new estimation formula Ns.

From the experiments of fitting various elementary functions

to the arch-like curves, we found that the following modified

arctangent function (9) is most suitable for approximating them:

g(fp’ AFa 6)

2 1 1
= ; arctan {’U(AF, 6) . ('ﬁ - m)} (9)
v(AF, §) := 2.325 - (—logyo 6) 7045 . (AF)~1%. (10)

The coefficients in (10) are also determined based on LMS ap-
proximation criterion. In this case, several hundred thousands
of combinations of { f,, AF, §, N} were used to determine the
coefficients. This approximation problem is formulated as

>

. 2
N3—N‘ — min.
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Finally we obtain the estimation formula Ng in (11), shown at
the bottom of the page.The formula (11) is a function of three-
variables: f,, AF and 6.

B. For any Low-Pass Filter

Using (11), we expand a new estimation formula ]\74 which
corresponds to the case 6, # 6.

1) Relations Between Filter Parameters: In the case 6, #
05, the minimum filter length NV, is determined by four param-
eters: fp, fs, 6p, and 6. Hence, we express Ny by

N4 = Gl(fp7 fsy 6177 5%)

Since f, can be represented by f, and AF, N can also be ex-
pressed by

Ny = Ga(fp, AF, 6,, 62) = G1(fp, fo+ AF, 6p, 64).

We assume that the minimum filter length Ny for §, # 65 is
represented in a form of an addition of the formula N3 for 6
8 in (5) and the distance DN, i.e.,

Na(fp, AF, by, 65)
= N3(fp, AF, 6,) + DN(fp, AF, 6,, ).

First we aim to formulate the approximation DN for the dis-
tance DN.

2) Formulation of DN: We do not optimize the approxi-
mate distance DN for DN, however optimize the whole filter
length Ny = N3+ DN for the required filter length V4. This
approximation problem can be formulated as

> |Ny— NJ* — min. (12)

Furthermore, the approximation DN must satisfy
DN =0, 6&,=26s

so as to be Ny = Na.

Now we study the behavior of the distance DN . For example,
Fig. 6 shows the behavior of the required filter length N4 for
the case AF = 0.05, 6, = 0.01, 6; = 0.000 01, the required
filter length N3 for the case AF = 0.05, 6, = 6; = 0.01, and
their distance DN as a function of f,. From Fig. 6, we have the
following observation.

Observation 5: The distance DN gets smaller as f, become
larger. Especially when f, get close to 0.5 — AF, the distance
DN decreases rapidly. This behavior of DN resembles the be-
havior of N3 if f, is larger than f..

1t would be mentioned here that the similar behavior were ob-
served for other specifications. This observation suggests that
the modified arctangent function like g of (9) may be suited for
approximating D N. From the experiments of fitting various el-
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ementary functions to the curves of DN, we found that the fol-
lowing modified arctangent function h is most suitable. These
approximate functions can be written as

DN(fp, AF, 6, 85)
- [Nm(AF, 8p, 6) - {h(f,, AF, 1.1)

_h(0.5— AF - fzp,AF,().ZQ) ~1 H a3

h{fp, AF, c)

-——g.arcta L i__.___l_._._
T "1aF '\7, T 05-AF) "

3) Formulation of Ny,: The function Ny,(AF, §,, 8,) in
(13) is an approximation for V,;, which is nearly the same as
DN(f., AF, 6, 65). This approximation N,,, works like N,
for the formula N3 in (11). Now the behavior of IV, is studied,
and its approximation N, is formulated.

a) Relation Between N, and AF': First, the relation be-
tween N, and AF' is studied for various 6, and 0. Fig. 7 illus-
trates the behavior of N, as a function of AF for some values
of 6, and 6,. From Fig. 7, the following observation seems to
hold.

Observation 6:. For any 6, and &, it seems that log;y Np,
is a linear function of log;, AF with the gradient —1. This is
equivalent to the following observation.

Observation 7: For any 6, and 65, Ny, is nearly in inverse
proportion to-AF.

b) Relation Between N,, andlog(6,/6s): Next, the rela-
tion between N,,, and a function log (6,/6,) is studied for var-
ious AF, 6, and §,. Fig. 8 illustrates the behavior of Ny, as a
function of log (6,/6,) for some values of 6, and AF. From
Fig. 8, we have the following observation.

Observation 8: Forany 6,, 65 and AF', Ny, is almosta linear
function of log (6,/6s).

g(fpaAF7 6) +g(05 — AF - vaAFa 6) +1

Ralfy, AF, 6)i= | Ro(AF, 8)-

3 w . 1D



ICHIGE et al.: ACCURATE ESTIMATION OF MINIMUM FILTER LENGTH FOR OPTIMUM FIR DIGITAL FILTERS

Passband ripple=0.1, Stopband ripple=0.01 — |

1000 £ Passband ripF e=0.1, Stogband ripFIe=0.001 ————— E
3 Passband ripple=0.1, Stopband ripple=0.0001 -----: 3
Passband ripple=0.01, Stopband ripple=0.001 - 3
Passband ripple=0.01, Stopband ripple=0.0001 -~~~
100 F=

Nm

10 |

1 R . e
0.01 0.03 0.05 0.07
Transition width

0.02 0.1

Fig.7. Behavior of the function V., for some 6, and §, as a functionof 1/ AF
(log-to-log scale).

100 T T T T T
Passband ripI)Ie=0.1, Transition width=0.02 —
| Passband ripple=0.01, Transition width=0.03 -----
80 - Passband ripple=0.1, Transition width=0.05 ----- 5

Passband ripple=0.01, Transition width=0.07 -~
Passband ripple=0.1, Transition width=0.1

60 )
cor
s

40

20

0

o 05 1 15 2 25 3
log(dp/0:) -

Fig. 8. Behavior of function N,,, as a function of log(6,,/6.).

Based on Observations 7, 8, and some more experiments, we
formulate the approximation NV, as

. log(6p/8s) .

N (AF, 6,,65) =p N

(—logp6,)%.  (14)

The coefficients p and ¢ in (14) are also determined based on
LMS approximation criterion in (12). In this case, millions of
combinations of { f,, AF, 6,, s, N} are used to determine the
coefficients. Finally, we have

p = 0.52, g =0.17.

4) The Proposed Estimation Formula N4 forb, #£65: Asa
result, the proposed estimation formula Ny can be summarized
as follows:

Na( Ips AF, &, 8s)
.= N3(f,, AF, 6,) + DN(f,, AF, 6,, 6,)
DN (fp, AF, &, b5) )
= [Nm(AF, 8p, 6) - {h(f,, AF, 1.1)
h(0.5 — AF — f,, AF,0.29) — 1

: f

15)
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N (AF, 8y, 85)

lo 6,/8s
= 0.52 - ————g“}i;/ ) - (—logyg 6,)° 1.
h(fp: AF> C)
o— g arct L . i — ______1.____
T MIA\AF \Y, T 0s-AF) [

The formula N, is a four-variable function of f,, AF, §,, and
0.

1V. EVALUATION

A. For Low-Pass Filters with Identical Passband and Stopband
Ripples ‘

The proposed estimation formula (11) is evaluated in com-
parison with the conventional formulas (3) and (4). Fig. 9 shows
the behavior of the minimum filter length /V and the estimated
values N; (=1, 2, 3) as a function of f,. Fig. 9(a) shows the
behavior for the case § = 0.001 and AF' = 0.05, and Fig. 9(b)
for the case § = 0.0001 and AF = 0.1. Fig. 9 demonstrates that
the estimated filter length N3 is better than the conventional es-
timations by (3) and (4), which are irrespective of f,.
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The estimation performances of (3) and (4) are evaluated by
the following distance AN;(¢ = 1, 2, 3), defined by the nor-
malized L' norm:

1 0.5—AF . ¢
AMME&:iETKﬁA \N; — N|df,,

(i=1,2,3). (6

In (16), AN; means the average distance with respect to f, €
[0, 0.5 — AF], which is a function of AF and 6.

Fig. 10 shows the behavior of the distances AN; (2 = 1, 2, 3)
as a function of § for some values of AF'. In Fig. 10, we can see
that the distance A N3 stays around one and is smaller than both
AN; and AN, for any AF and §.

Especially in the case where both AF and 6 get smaller, i.e.,
when the minimum filter length N gets longer, the distances
AN; and AN, become worse. This is because the conven-
tional formulas (3) and (4) do not correspond to the FIRs of
long filter length and some significant theoretical considerations
were missed. Since the distance A N3 stays around one for any
AF and 6, it is obvious that the proposed estimation formula
(11) makes a good estimation for any case.
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B. For Any Low-Pass Filter

The proposed estimation formula (15) is evaluated in com-
parison with the conventional formulae (1) and (2).

Fig. 11 shows the behavior of the estimated filter length Ny
by (11) and the required minimum filter length V as a function
of f,. Specifications of Fig. 11(a) and (b) are the same as those
of Fig. 3(a) and (b), respectively. Figs. 3 and 11 demonstrate that
the proposed estimation formula N, is better than the conven-
tional estimations by (1) and (2), which are constant irrespective
to fp.

The estimation performance of (1) and (2) is evaluated by the
following distance AN; (i = 1, 2, 4) defined by the normalized
L' norm

1 05-AF
N; B 3 = ST [ ’
AN;(AF, 6y, 65) CE_AF /0 |N; — N|df,
(i=1,2,4). A7)
In (17), AN; means the average distance with respect to f, €

[0, 0.5— AF]. Fig. 12 shows the behavior of the distances AN;
(i =1, 2, 4) as a function of AF for some values of 6, and
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85. In Fig. 12, we can see that the distance ANy stays less than
two and is smaller than both AN; and AN,. This means that
the proposed formula N, makes better estimation than both Ny
and Nz.

V. MINIMUM FILTER LENGTH FOR HIGH-PASS, BAND-PASS,
AND BAND-STOP FILTERS

The proposed formula (15) is applied to the design of
high-pass, band-pass, and band-stop filters. Since the conven-
tional estimation formulae correspond only to the estimation
for low-pass filters design, they are not applied to the design
of other types of filters. Thus, the proposed formulae for
high-pass, band-pass, and band-stop filters are evaluated
by comparing the estimated minimum filter length with the
required one for some design examples. It is mentioned that the
estimation of the minimum filter length for FIR differentiators
and FIR Hilbert transformers has been studied by Rabiner and
Schafer [8], [9] and it realizes good accuracy.

A. High-Pass Filters

In designing FIR high-pass filters, the proposed estimation
formula (11) can be applied.
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TABLE 1
GENERAL SPECIFICATIONS OF HIGH-PASS,
BAND-PASS, AND BAND-STOP FILTERS

High-pass | Band-pass Band-stop
[0, Fp,1
passband [Fp,0.5] [fp1s Fo2) F,,,05]
[0, 2]
F.

stopband [0, Fs] [for,05] [Fsy,Fas)
passband ripple Op dp Oy
stopband ripple ds ds ds

TABLE 11

EXAMPLE SPECIFICATIONS OF HIGH-PASS,
BAND-PASS, AND BAND-STOP FILTERS

High-pass ] Band-pass | Band-stop
T 10,0.17]

passband [0.2,0.5] | [0.10,0.15] [0.25.0.5]

[0,0-08]
. .2,0.22
stopband [0,0.1] [0.2,0.5] {0.2,0.22)
passband ripple 0.01 0.1 0.01

stopband ripple 0.0001 0.001 0.0001

Let Fy, F,, 65 and 6, respectively denote the edge frequency
of stopband, that of passband (0 < F, < F, < 0.5), the stop-
band ripple, and the passband ripple, as shown in Table 1. In
this case, the estimation of minimum filter length N g for the
high-pass filter is given by :

Ny (F,, AF, 6, 65) = N4(0.5 — F,, AFu, 6p, 65) (18)
where AFy = F, — F.

Consider demgnmg the high-pass filter for which specifica-
tions are given in Table II. The estimated filter length Ng by
(18) is 33, and the required filter length Ny is 35. The distance
is only two in this case.

B. Band-Pass Filters

In designing FIR band-pass filters, the proposed estimation
formula (11) can be also applied as follows.

Suppose that the specifications of a band-pass filter is given
as Table I, where 0 < fs, < fp, < fpy < fs, < 0.5 and
0s < &p. In this case, the estimation of minimum filter length
N Bp for the band-pass filter is given by

NBP(fpl, fpz; Afla Af2a 5pa 55)
= maX{Nél(pr; Afa, 61.77 63)
Ny(0.5 = fp, s Af1, 6p, 65)}

where Afy = fp, — fs, and Afp = fs, = fp,.

For example, We design a band-pass filter which satisfy the
specifications in Table II. The estimated filter length Npp by
(19) is max {38, 91} = 91, and the required filter length Npp
is 92. The distance is only one in this case.

19)

C. Band-Stop Filters

Specifications of a band-stop filter is given as Table I, where
0<F, <F, <F,, <F,, <0.5and §; < p. In this case,
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TABLE 1II
EXAMPLE SPECIFICATIONS OF THE PARTICULAR BAND-PASS AND
BAND-STOP FILTERS

| Band-pass | Band-stop
[0,0.2]
d 0.20,0.21
passban [0-20,021) "1 193 0.5]
{0,0.10]
0.25,0.26
stopband (0.25,0.5] [0.25,0.26]
passband ripple 0.01 0.01
stopband ripple 0.0001 0.0001

the estimation of minimum filter length N ps for the band-stop
filter is given by:

NBS(FPU Fpg, AFl, AFZ; 6p5 bs)
= max {Ny(Fp,, AF1, 6, 65),

N4(05 - sz, AFZ, 6p’ 68)} (20)

where AFy = F, — Fp,, and AF, = F, — F,.

Here we design the band-stop filter of which specifications
are given in Table II. The estimated filter length Ngs by (20) is
max {106, 107} = 107, and the required filter length Nps is
105. The distance is two in this case.

VI. CONCLUDING REMARKS

This paper proposed the accurate estimation formula (15) of
the minimum filter length for optimum FIR low-pass digital fil-
ters. In comparison with the conventional estimation formulae
(1) and (2), the proposed formula (15) realizes much better ac-
curacy: Furthermore, the proposed formula (15) was applied to
the design of high-pass, band-pass and band-stop filters.

The estimation formulae (19) and (20) for band-pass and
band-stop filters still have problems which may lead to wrong
estimation. If we estimate the minimum filter length of a partic-
ular band-pass filter with the narrow passband (or, a band-stop
filter with the narrow stopband), the proposed estimation
formulae (19) and (20) tend to give longer filter length than
required.

For example, we design the band-pass filter with the narrow
passband for which specifications are given in Table III. The es-
timation Nz p by the proposed formula (19) is max {33, 82} =
82, and the required filter length NV is 69. The estimation is 13
_longer than the required. The band-stop filter with the narrow
stopband (called notch filter) is also designed. Specifications of
the band-stop filter are given in Table III. The estimation Nzs
by the proposed formula (20) is max {66, 83} = 83, and the re-
quired N is 65. The distance is 18 in this case. Behavior of the
minimum filter length of those filters would be studied further,
and the accuracy of the estimation must be improved.
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