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Abstract—A four-component scattering model is proposed to 

decompose polarimetric synthetic aperture radar images. The 

covariance matrix approach is used to deal with the 

non-reflection symmetric scattering case. This scheme includes 

and extends the three-component decomposition method dealing 

with the reflection symmetry condition that the co-pol and the 

cross-pol correlations are close to zero. Circular polarization 

power is added as the fourth component to the three component 

scattering model which describes surface, double bounce, and 

volume scattering. This circular polarization term is added to 

take account of the co-pol and the cross-pol correlations which 

generally appear in complex urban area scatttering and 

disappear for natural distributed scatterer.  
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I.  INTRODUCTION 

Terrain and land use classification is one of the most 

important applications of Polarimetric Synthetic Aperture 

Radar (POLSAR) image data takes. Excellent methods have 

been proposed to classify terrain based on polarimetric 

statistical characteristics [1]-[3]. There are two major 

approaches for a 3x3 polarimetric matrix decomposition. One 

is the lexicographic Covariance matrix approach based on 

physically measurable parameters [1], and the other is the 

Coherency matrix based on mathematically orthogonal Pauli 

matrix components [3]. An overview on decomposition 

theorem is given in [3].  

Three-component scattering power model [1] has been 

successfully applied to decompose POLSAR image under the 

reflection symmetry condition SHH SHV
* ≈ SVV SHV

* ≈ 0  
using the covariance matrix. This method is based on simple 

physical scattering mechanisms (surface scattering, double 

bounce scattering, and volume scattering), and is powerful 

for POLSAR image decomposition for natural distributed 

target areas in the P-L-C band. The advantage of this 

scattering model is its simplicity and easy implementation for 

image processing.  

However, for POLSAR image analysis including urban 

area scattering for which the reflection symmetry condition 

does not hold, it is necessary to take the effect of 

SHH SHV
* ≠ 0  and SVV SHV

* ≠ 0  into account. This 

condition is the non-reflection symmetry constraint, with 

which most of the research studies have not been dealing. If 

we examine covariance matrices in urban areas, we encounter 

that SHH SHV
* ≠ 0  and SVV SHV

* ≠ 0 , and SHV
2  is 

rather predominant. In order to accommodate the 

decomposition scheme for the more general scattering case, it 

is necessary to introduce another term into the model which 

corresponds to SHH SHV
* ≠ 0  and SVV SHV

* ≠ 0  in the 

covariance matrix approach.  

We propose to include the circular polarization power term 

as the fourth component for the more general scattering 

mechanism. This circular polarization power term 

corresponds to SHH SHV
* ≠ 0  and SVV SHV

* ≠ 0 , which 

appears in urban area whereas disappears for almost all 

natural distributed scattering. This term is essentially caused 

by the scattering matrix of helices (or equivalently, left or 

right circular polarization states) and is relevant for 

complicated shape man-made structures predominant in 

urban areas. 

The second point is a modification of the volume 

scattering matrix in the decomposition according to the 

relative backscattering magnitudes of SHH
2

 versus 

SVV
2

. In the theoretical modeling of volume scattering, 

a cloud of randomly oriented dipole is implemented with a 

probability function being uniform for the orientation angles 

[1]. However, for vegetated areas scattering from tree trunks 

and branches seems to display a certain characteristic angle 

distribution. A modification in the orientation angle 

distribution is proposed for this formulation. This 

modification yields asymmetric matrices which can be 

adjusted to measurement data with SHH
2 ≠ SVV

2
. 

II. COVARIANCE MATRIX EXAPNSION FOR 

NON-REFLECTION SYMMETRY CONDITION 

To derive polarimetric scattering characteristics contained 

in POLSAR image, it is necessary to evaluate the second 

order statistics of its scattering matrices. Here, we follow the 

scheme [1] and present covariance matrix approach to derive 

a four-component scattering model mathematically. The 



general covariance matrix is defined as 

C
HV =

SHH
2

2 SHH SHV
* SHH SVV

*

2 SHV SHH
* 2 SHV

2
2 SHV SVV

*

SVV SHH
* 2 SVV SHV

* SVV
2

 

   (1) 

where < > denotes the ensemble average in the data 

processing: and the superscript * denotes complex 

conjugation. Under the non-reflection symmetry condition, 

SHH SHV
* ≠ 0  and SVV SHV

* ≠ 0 , we have all non-zero 

terms. Since most of the works have been dealing with the 

reflection symmetry condition, SHH SHV
* ≈ SVV SHV

* ≈ 0, 
we have to develop the corresponding scattering term. The 

basic scattering mechanism related to the non-reflection 

condition  is  found to be helicity (or equivalently, circular 

polarization state) of which covariance form is given as 

 C r – helix
hv = 14

1 j 2 – 1
– j 2 2 j 2
– 1 – j 2 1

    or         

C l – helix
hv = 14

1 – j 2 – 1
j 2 2 – j 2
– 1 j 2 1

            (2) 

This helix (circular polarization) term is assigned to the 

fourth component of scattering mechanism. Since the Trace 

of (2) is unity, the corresponding power can be given by 

taking average of a measured covariance matrix as 

 
fc
4 =

1
2 Im SHH SHV

* + SHV SVV
*   (3) 

where fc is the coefficient to the unit power. The scattering 

power is based on the trace of covariance matrix. 

 

III. FOUR-COMPONENT SCATTERING POWER 

DECOMPOSITION 

We expand the measured covariance matrix using a four 

scattering model, namely, surface scattering, double bounce 

scattering, volume scattering, and the circular polarization 

power term as follows: 

C
HV = fs C surface

hv + fd C double
hv

+ fv C vol
hv + fc C circular

hv

 

= fs

β 2 0 β
0 0 0
β* 0 1

+ fd

α 2 0 α
0 0 0

α* 0 1
  

+ fv C vol
hv
+
fc
4

1 ± j 2 – 1
+− j 2 2 ± j 2

– 1 +− j 2 1

    (4) 

where the first and the second terms are identical with those 

in [1]. For the third term, C vol
hv

 , we choose one of the 

following covariance matrices according to the relative 

measurement value of  SHH
2

 and SVV
2

  

C vol
hv = 1

15

8 0 2

0 4 0

2 0 3

 ,   C vol
hv = 18

3 0 1

0 2 0

1 0 3

  ,

 C vol
hv = 1

15

3 0 2

0 4 0

2 0 8

   .  (5) 

These matrices are derived by the second order statistics 

for randomly oriented wires with appropriate probability 

density functions considering actual tree distribution. This 

choice allows us to make a straightforward best-fit to the 

measured data SHH
2 ≠ SVV

2  .  

Comparing the matrix elements yields the following 5 

equations with 6 unknowns α, β, fs , fd , fv and fc 

SHH
2
= fs β 2 + fd α 2 + 8

15
fv +

fc
4         

(6a)

 SHV
2
= 2
15

fv +
fc
4         

(6b) 

SVV
2
= fs + fd +

3
15

fv +
fc
4           (6c)

 SHH SVV
* = fs β + fd α + 2

15
fv –

fc
4                  

(6d) 

1
2 SHH SHV

* + SHV SVV
* = j

fc
4

.                    (6e) 

Since the left hand side of (6) is a measurable quantity, we 

can determine fc directly with the aid of (3). 

fc = Pc = 2 Im SHH SHV
* + SHV SVV

*
   

= 2 Im SHV
* SHH – SVV   (7) 

Then, (6b) gives the volume scattering coefficient fv directly 

as 

fv =
15
2 SHV

2 –
fc
4  

 (8) 

The remaining 4 unknowns with 3 equations can be 

obtained in the same manner as shown in [1]. The scattering 

powers, Ps, Pd, Pv, and Pc, corresponding to surface, double 

bounce, volume, and circular polarization contributions, 

respectively, are obtained as 

Ps = fs 1 + β 2 , Pd = fd 1 + α 2 , Pv = fv, Pc = fc  (9) 

Pt = Ps + Pd + Pv + Pc = SHH
2
+ 2 SHV

2
+ SVV

2
.   (10) 

The above equations (5)-(10) are the main set of expressions 

for the four-component decomposition. 

 

IV. DECOMPOSITION ALGORITHM 

When we apply the four component decomposition scheme 

to POLSAR data directly, we sometimes encounter a problem 



in that the coefficients fs or fd become negative for certain 

areas. Since the negative coefficient indicates the 

corresponding power is negative, it is inconsistent with the 

physical phenomenon. A typical feature of such areas is that 

SHV
2

 is rather predominant compared to SHH
2

 

and to SVV
2

. These areas reside within small sections of 

geometrically complicated man-made scattering (cultivated) 

and of forested areas. In order to avoid such inconsistency, 

we devised an algorithm for the four-component 

decomposition which could be applied to general POLSAR 

data image analyses.  

The main point for avoiding the inconsistency is to use the 

following power ratio:  

2 SHV
2

 : SHH
2

or SVV
2

   (11)  

based on statistics [3]-[4] and on our experiences of 

POLSAR image analysis [5]. The theoretical studies showed 

that co-pol radar channel power and cross-pol channel power 

are of the magnitude ratio of 2:1 statistically [3]-[4]. This 

condition is used in the middle stage of the four-component 

decomposition algorithm in Fig.1  

 

Figure 1.   Decomposition Algorithm for four component decomposition. 

V. EXAMPLE 

An X-band Pi-SAR data set was used for the four- 

component decomposition. The Pi-SAR sensor is an airborne 

POLSAR system developed by NICT and JAXA of Japan. 

The resolution in the X-band image is 1.5 m by 1.5 m. The 

area chosen for analysis is Yamakoshi village, Niigata, Japan, 

which has been suffered from a big earthquake occurred on 

Oct. 23, 2004. The Pi-SAR collected fully polarimetric data 

over these areas on Oct. 26 and Nov. 3. An aerial photo on 

Oct. 28 is shown in Fig.2 for reference. A color coded image 

resulted from the four component decomposition with Ps 

(blue), Pd (red), and Pv (green) is shown in Fig.3.  

It is seen that residential houses (red: center in Fig.3) can 

be easily recognized by the decomposition because these 

man-made targets exhibit double bounce reflections. 

Therefore POLSAR image has advantage in identifying the 

man-made targets using color code compared to the photo 

(Fig.2) in which these houses are often missed by eye.  

Since one of the authors was born and grown up in this 

village, it was easy to verify the decomposition result which 

was consistent with physical scattering phenomena. 

Fig.3(a) and (b) show temporal image series. As can be 

seen in the middle right portion of (a), there is a dark region. 

This region was caused by water pod (small dam) at the 

beginning of the earthquake. On the other hand, it 

disappeared in (b) due to run-off during the data take. It is 

seen in (b) that the volume power component Pv is generated 

again in the corresponding area.  

The fourth component, Pc, is shown in Fig.4. This term is 

generated from houses, man-made structures and facets of 

strong reflections. The power is small compared to Ps, Pd, 

Pv. 

 

VI. CONCLUSION 

A four-component scattering model based on the 

covariance matrix is presented for polarimetric SAR data 

decomposition. The four components are single bounce, 

double bounce, volume scattering and circular polarization 

powers. The decomposition scheme incorporates 

non-reflection symmetry condition which has not been dealt 

with. The fourth component, circular polarization power, 

corresponds to the imaginary part of SHH SHV
*

 which often 

appears in complex urban area and disappears in natural 

distributed target. The volume scattering symmetric and 

asymmetric covariance can be chosen to fit the relative 

magnitude between SHH
2

 and SVV
2

 of 

measurement data. This decomposition is applied to an 

disastered area by earthquake using X-band Pi-SAR image. 
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 Figure 2.    Photo (Tanesuhara, Yamakoshi village: Oct.28, 2004) 
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   (a) Oct. 26, 2004      (b)  Nov. 3, 2004  

   Figure 3.  Decomposed and color coded image of Yamakoshi village : Ps (blue), Pd (red), and Pv (green)  

     Chuetsu earthquake occurred on October 23, 2004. 

 

            
   (a) Oct. 26, 2004      (b)  Nov. 3, 2004   

      Figure 4.  Circular polarization power Pc  


