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Abstract— Based on the characteristic function method, an
exact error analysis is presented for low-duty pulsed direct
sequence code division multiple access (DS-CDMA) systems in
flat Nakagami fading channel. The presented method is simple
and good for any arbitrary pulse shape. The computational
involvement of the method is simpler than the method based
on improved Gaussian approximation (IGA), which is the only
reliable method currently available for calculating error proba-
bilities of such systems.

Index Terms— Multiaccess communication, ultra-wideband,
Nakagami fading.

I. INTRODUCTION

RECENTLY, multiple access communications using ultra-
wideband (UWB) signals have received considerable

attention [1]. Several works have been presented on the
topic [1]−[5]. The UWB technology usually transmits signal
with low duty-cycle, whereas, a conventional communication
system like direct sequence code division multiple access
(DS-CDMA) transmits signal continuously i.e. with full duty
[6]−[9]. Motivated by the emergence of UWB, new ideas
regarding pulsed DS-CDMA with low chip-duty have evolved
[2]−[3]. Envisioning the potential application of such signals
in UWB, those have received much interest from the UWB
community [1]−[3]. In [2], Chernoff bounds on bit error
probabilities (BEP) were given for such systems. Later, in [3],
we presented approximate BEP for such systems considering
additive white Gaussian noise (AWGN) channel. The standard,
improved and simplified improved Gaussian approximations:
abbreviated as SGA, IGA and SIGA [6]−[7] respectively
were considered in [3]. It was shown that the simple method
SGA is not accurate for low-duty systems in general. The
other simple method SIGA that was previously accurately
used for conventional DS-CDMA systems [6], has restrictive
region of validity for low-duty systems [3]. However, the IGA
[7] provided accurate results at the expense of much higher
computational complexity [3]. Presently, the method based
on IGA presents the only-available reliable closed-form BEP
expression for such systems [3].

The exact error analysis for such low-duty DS-CDMA
systems is of interest, however, has not yet been addressed.
The exact error analysis has been previously studied for
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impulse radio systems in AWGN [5] and for conventional DS-
CDMA both in AWGN and fading channels [8], [9]. In this
letter, we present a simple exact error analysis for low-duty
DS-CDMA systems considering a general pulse shape and
Nakagami fading channel. The BEP expression obtained from
our method requires less computational complexity than that
is required for the IGA method.

II. SYSTEM MODEL

The pulsed DS-CDMA system uses binary phase shift
keying (BPSK) modulation. A typical representation of the
transmitted signal of an arbitrary user k ∈ (1, 2, . . . ,K) has
the form

sk(t) =
√

Ek

Ns

+∞∑

n=−∞
b(k)
#n/Ns$a

(k)
n ψ(t − nTc) cos(2πft) (1)

where t is time, ψ(t) is the communication pulse with unit
energy and f is the center frequency. The rest of the signal
structure is described as follows:

• Ek is the bit energy of user k.
• Ns is the number of chips or pulses per information bit.

Tc is the chip duration and hence, the bit duration is
Tb = NsTc.

• The pulse ψ(t) transmitted in each chip has a duration
Tp (≤ Tc) and hence the chip-duty, δ = Tp/Tc. Though
it is possible that 0 < δ ≤ 1, low-duty systems with
0 < δ ≤ 0.5 is considered in this letter for simplicity.
Note that the conventional DS-CDMA uses δ = 1.

• {b(k)
i } is the i-th bit of user k which is a random variable

(RV) uniform on {+1,−1}. Here, i = $n/Ns% and $.%
represents floor function.

• {a(k)
n } is the random polarity code for user k which is

also an RV uniform on {+1,−1} and is periodic with
period Ns.

• The processing gain of the system is PG = Ns/δ.
Considering a time-invariant slow flat Nakagami faded

channel, the received signal can be given by

r(t) =
∑K

k=1

√
Ek
Ns

∑+∞
n=−∞ b(k)

#n/Ns$a
(k)
n βk

×ψ(t − nTc − τk) cos(2πft + θk) + n(t) (2)

where τk is the delay of the k-th user signal with respect to
the signal of the desired user 1 (τ1 = 0) and n(t) is AWGN
noise with two-sided power spectral density of No/2. βk is
the fading amplitude having a Nakagami distribution given
by fβk(ν) = 2m

mk
k ν2mk−1

Ω
mk
k Γ(mk)

exp
(
−mkν

2

Ωk

)
, ν ≥ 0, where mk

(0.5 ≤ mk ≤ ∞) is the Nakagami fading parameter for user
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k, Γ(.) is gamma function and Ωk = E[β2
k], E[.] representing

mean value. θk models the phase of user k including the
effect of delay and fading, and is uniformly distributed over
[0, 2π]. Let τk = ∆k + γkTc, where γk is an RV uniform on
{0, 1, . . . , Ns − 1} and ∆k is uniform over [0, Tc].

A coherent correlation receiver is considered. The received
signal is correlated with a template of the form s(1)

temp(t) =∑(i+1)Ns−1
n=iNs

a(1)
n ψ(t− nTc) cos(2πft + θ1). Hence, the deci-

sion statistics, while detecting the the i-th bit of the desired
user 1, can be given by

y(1) =
√

E1Nsb
(1)
i β1 +

∑K
k=2 Ik + η. (3)

The right hand side of (3) has three parts, of which the first part
is the desired signal component, the second part is the multiple
access interference (MAI) component and the third part η is
the AWGN component having variance of σ2

η = NoNs/2.
Here, Ik is the interference from user k, defined as Ik =∑(i+1)Ns−1

n=iNs

√
Ek/Nsβk cosφkW (k)

n , where φk = θk − θ1.
W (k)

n is the MAI component on the n-th chip of the desired
user 1 from user k, which can be given for 0 < δ ≤ 0.5 by
[3]

W (k)
n =






L(k)
n R̂ψ(αk), 0 < ∆k ≤ Tp

0, Tp < ∆k ≤ Tc − Tp

M (k)
n Rψ(αk), Tc − Tp < ∆k ≤ Tc

(4)

where L(k)
n , M (k)

n are RVs uniform on {+1,−1} and R̂ψ(αk),
Rψ(αk) are the partial autocorrelation functions of the base-
band pulse ψ(t), given by R̂ψ(αk) =

∫ Tp

αk
ψ(t)ψ(t − αk)dt

and Rψ(αk) = R̂ψ(Tp −αk). Here, αk in relation to R̂ψ(αk)
and Rψ(αk) are given by αk = ∆k, 0 < ∆k ≤ Tp and
αk = ∆k − (Tc − Tp), Tc − Tp < ∆k ≤ Tc respectively,
while in both cases αk is uniform in [0, Tp] [3]. Note that
W (k)

n assumes any of the three values of right side of (4) with
probability δ, 1 − 2δ and δ respectively from top to bottom.

III. THE EXACT CHARACTERISTIC FUNCTION OF MAI

The conditional characteristic function (CF) of MAI from
an arbitrary user k can be given by

Φ
Ik|αk,βk,φk,L(k)

n ,M(k)
n

(ω)

= E
[
exp (jωIk) | αk,βk,φk, L(k)

n ,M (k)
n

]
(5)

where j =
√
−1. Note that (5) represents the CF conditioned

on the independent RVs αk,βk,φk, L(k)
n and M (k)

n . Putting
the expression of Ik in (5) and taking help from (4), one can
rewrite (5) for 0 < δ ≤ 0.5 as

Φ
Ik|αk,βk,φk,L(k)

n ,M(k)
n

(ω) = (1 − 2δ)

+δ
[
exp

(
jω

√
Ek
Ns

βk cosφkR̂ψ(αk)
∑(i+1)Ns−1

n=iNs
L(k)

n

)

+ exp
(
jω

√
Ek
Ns

βk cosφkRψ(αk)
∑(i+1)Ns−1

n=iNs
M (k)

n

)]
. (6)

We now recall that both L(k)
n and M (k)

n are uniform on
{+1,−1}. Utilizing this information and using the identity

cos z = {exp(jz) + exp(−jz)}/2, we obtain the following
expression from (6):

ΦIk|αk,βk,φk
(ω) = (1 − 2δ)

+δ
[
cosNs

(
ω
√

Ek
Ns

βk cosφkR̂ψ(αk)
)

+ cosNs

(
ω
√

Ek
Ns

βk cosφkRψ(αk)
)]

. (7)

Note that developing of (7) from (6) follows from the
fact that random polarity sequences are considered in this
paper. Hence, the chip polarities for a particular user are
selected independently. Next, using the identities cos2n z =
2−2n

{∑n−1
q=0 2C2n

q cos[2(n − q)z] + C2n
n

}
and cos2n−1 z =

2−(2n−2)
∑n−1

q=0

{
C2n−1

q cos[(2n − 2q − 1)z]} from [10, ap-
pendix G], where Cp

q = p!
q!(p−q)! , cosines having power Ns in

(7) can be rewritten in terms of cosines having unity power.
After so doing, we take the following two actions in sequel.
We first integrate the expressions obtained over the density of
φk, which is uniform over [0, 2π] and use the identity J0(z) =
1
2π

∫ 2π
0 cos(z cosφ)dφ. This provides ΦIk|αk,βk

(ω) in terms
of J0, where J0 is the zeroth order Bessel function of the
first kind. Next, we integrate ΦIk|αk,βk

(ω) over the Nakagami
density of βk to obtain ΦIk|αk

(ω). Again, by employing an
identity given by

∫ ∞

0
J0(zν)fβk(ν)dν = 1F1

(
mk; 1;−Ωkz2

4mk

)
=̂ Fk(z2)

(8)
from [11, (41), (42)], where fβk(ν) is the Nakagami density
of βk and 1F1(:; :; :) is the confluent hypergeometric function,
ΦIk|αk

(ω) can now be given by

ΦIk|αk
(ω) = (1 − 2δ) + δ

2Ns−1

×
[∑Ns

2 −1
q=0 CNs

q

{
Fk(ω2x̂2) + Fk(ω2x2)

}
+ CNs

Ns/2

]
(9)

for Ns being even and by

ΦIk|αk
(ω) = (1 − 2δ)

+ δ
2Ns−1

[∑Ns−1
2

q=0 CNs
q

{
Fk(ω2x̂2) + Fk(ω2x2)

}]
(10)

for Ns being odd, where x̂ = (Ns − 2q)
√

Ek/NsR̂ψ(αk),
x = (Ns − 2q)

√
Ek/NsRψ(αk) and Fk(.) is defined in (8).

Finally, the unconditional exact CF is obtained by integrating
(9) and (10) over the density of αk. Since αk is uniform over
[0, Tp], the unconditional CF of MAI from the k-th user is
given by ΦIk(ω) = 1

Tp

∫ Tp

0 ΦIk|αk
(ω)dαk. Assuming that the

interference from different users are independent, the exact
CF of total MAI takes the form ΦI(ω) =

∏K
k=2 ΦIk(ω). Fig.

1 shows the exact CF of the MAI considering a Gaussian
pulse shape given by ψ(t+ Tp

2 ) = e−π( t
tm

)2/
√
E , tm = 0.4Tp

for K = 2, implying one interfering user. Here, E is the
energy of e−π( t

tm
)2 . The other parameters are Ns = 7 and

δ = 0.1, 0.2, . . . , 0.5. Same Nakagami parameter (m = m1 =
m2 = 1, 5 ) and same bit energy (Eb = Ω1E1 = Ω2E2 ) are
considered for the two users, and Eb/No is set to 20 dB. Also,
σ2
η = NoNs/2 = 1 is assumed without loss of generality,

implying Eb/No = EbNs/2 [11]. As seen, the shape of the
CF varies considerably with chip-duty.
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Fig. 1. The exact characteristic function of the pulsed DS-CDMA system
with Ns = 7 and chip-duty δ = 0.1, 0.2, . . . , 0.5 for K = 2.

IV. ERROR PROBABILITIES

1) The Exact: The unconditional exact BEP in flat Nak-
agami fading channel can now be given by [11]

Pe =
1
2
− 1

π

Γ(m1 + 1
2 )

Γ(m1)

√
E1NsΩ1

m1

∫ ∞

0
ΦI(ω)Φη(ω)

×1F1

(
m1 +

1
2
;
3
2
;−E1NsΩ1ω2

4m1

)
dω (11)

where Φη(ω) = exp(−σ2
ηω

2/2) is the CF of AWGN. Note
that the exact BEP of (11) is governed by the specific pulse
shape and chip-duty only through ΦI(ω).

2) Based on the SGA: Under the SGA of MAI, the BEP
conditioned on the fading amplitude of the desired user 1 can
be given by PSGA

e|β1
= 0.5 erfc

(
β1

√
0.5E1Ns/

(
σ2
η + µI

))
.

Here, µI is the mean of total MAI variance given by
µI =

∑K
k=2 ΩkEkρψδ, where ρψ = 1

Tp

∫ Tp

0 R̂2
ψ(αk)dαk =

1
Tp

∫ Tp

0 R2
ψ(αk)dαk. Now integrating PSGA

e|β1
over the density

of β1 and employing the identity from [12, p. 20, eqn(45)],
the unconditional BEP under SGA can be given by

PSGA
e =

Λm1

2
√
π

Γ(m1 + 1
2 )

m1Γ(m1)
2F1

(
m1,

1
2
;m1 + 1;Λ

)
(12)

where Λ =
(
1 + E1NsΩ1

2m1(σ2
η+µI)

)−1
and 2F1 is Gauss hyperge-

ometric function.

V. NUMERICAL EXAMPLES AND CONCLUSION

In this section, specific numerical examples are presented
on error performance of the system. Gaussian pulse shape
introduced in a previous section is used. Theoretical results
are confirmed by Monte Carlo simulations. Fig. 2 shows the
BEP versus total users K with Ns = 7 and δ = 0.05, 0.5.
Same Nakagami parameter and bit energy are considered for
all users (m = mk, Eb = ΩkEk, k = 1, 2, . . . , K) by setting
m = 1, 5 and Eb/No = 20 dB. As before, without loss of
generality, σ2

η = 1 is assumed for evaluating (11) [11]. An
absolute match between the BEP from the exact method and
simulations can be seen. The SGA, on the other hand, though
provides reasonably accurate results for m = 1 (Rayleigh
fading), becomes extremely optimistic for the relatively less-
faded channel with m = 5, especially for systems with low
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Fig. 2. BEP versus total users K for Ns = 7, δ = 0.05, 0.5 with m = 1,
5 and Eb/No = 20 dB.

duty. Lowering chip-duty improves performance, since pro-
cessing gain is obtained. However, relatively less performance
improvement is obtained than that is expected by the SGA
in lightly faded channel. The exact method presented in this
letter can be a powerful tool to investigate many such system
trade-offs guaranteeing both credibility and simplicity.
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