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Abstract— Simple-to-evaluate and accurate bit error probabil-
ities are presented for impulse radio ultra-wideband multiple
access systems that use time hopping sequences with pulse-
based polarity randomization and binary phase shift keying
modulation. Simplified improved Gaussian approximation is
used. It is shown that despite having the same processing gain,
which is the multiplication of the number of frames per bit and
chips per frame, different combinations of the parameters result
in different performances. The theoretical results are validated
by Monte Carlo simulations.
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I. INTRODUCTION

RECENTLY, time hopping impulse radio (TH-IR) ultra-
wideband (UWB) multiple access communications have

received considerable attention [1]−[3]. Though initially
unipolar communication combined with pulse position mod-
ulation (PPM) was focused in [1]−[3], a system with pulse-
based polarity randomization combined with binary phase shift
keying (BPSK) was recently proposed in [4]. Approximate
closed form error probabilities were given for the system in
[4] that were based on the improved Gaussian approximation
(IGA) previously introduced in [5]. However, the compu-
tational complexity of the method is quite intensive which
increases with the total number of users. In this letter, we
present a simple error analysis for the system that facilitates
to obtain simple-to-evaluate and accurate error probabilities
based on Holtzman’s simplified improved Gaussian approxi-
mation (SIGA) [6].

Previously, the SIGA was extensively used in literature
to obtain expressions for error probabilities in DS-CDMA
(see [7], [8] and the references therein). However, whether
the method can be applied for TH-IR UWB multiple access
system has not yet been investigated. In this letter, we extend
the method for a TH-IR UWB multiple access system that uses
pulse-based polarity randomization. We show that the method
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is also acceptably accurate for the TH-IR UWB multiple
access system.

II. SYSTEM MODEL

The TH-IR UWB system under consideration with pulse-
based polarity randomization and BPSK modulation is similar
to the one in [4]. There are K simultaneous users in the
system. A typical representation of the signal from user k
(k = 1, 2, . . . ,K) has the form

s(k)(t) =

√
Ek

Nf

+∞∑
j=−∞

d
(k)
j b

(k)
�j/Nf�w(t − jTf − c

(k)
j Tc) (1)

where t is time and w(t) is the communication pulse with unit
energy. The rest of the signal structure is described as follows:

• Ek is the bit energy of user k.
• Nf is the number of frames or pulses representing one

information bit. Each frame has one pulse.
• Tf is the average pulse repetition time, also known as

frame time. So, the bit duration is Tb = NfTf .
• Tc is the chip time. Each frame is divided in Nc (Nc ≥ 2)

chips giving Tf = NcTc. The duration of the pulse w(t)
is considered to be equal to Tc.

• {b(k)
i } is the i-th bit of user k which is a random variable

(RV) uniform on {+1,−1}. Here, i = �j/Nf� and �.�
represents floor function.

• {d(k)
j } is the random polarity code which is also a RV

uniform on {+1,−1} and is periodic with period Nf .
• {c(k)

j } is the TH code which is a RV uniform on
{0, 1, . . . , Nc − 1} and is periodic with period Nf .

• The processing gain of the system is PG = NfNc.

III. MULTIPLE ACCESS INTERFERENCE MODELING

Considering an additive white Gaussian noise (AWGN)
channel, the received signal can be given by

r(t) =
K∑

k=1

s(k)(t − τk) + n(t) (2)

where n(t) is AWGN noise with two sided power spectral
density of No/2 and τk is the random delay of the signal
received from user k relative to the desired user 1 (i.e. τ1 = 0)
which is uniformly distributed over [0, Tb]. Let τk = ∆k +
γkTf where, γk is a RV uniform on {0, 1, . . . , Nf − 1} and
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∆k = αk+βkTc where, βk is a RV uniform on {0, 1, . . . , Nc−
1} and 0 ≤ αk < Tc.

Considering a template of the form

s
(1)
temp(t) =

(i+1)Nf−1∑
j=iNf

d
(1)
j w(t − jTf − c

(1)
j Tc) (3)

the decision statistics for a coherent correlation receiver while
we are detecting the i-th bit of user 1 can be given by [4], [5]

y(1) =
√

E1Nfb
(1)
i +

(i+1)Nf−1∑
j=iNf

K∑
k=2

√
Ek

Nf
a
(k)
j + n (4)

where the right side of (4) has three parts, of which the first
part is the desired signal component, the second part is the
multiple access interference (MAI) component and the third
part n is the AWGN component having variance of σ2

n =
NoNf/2. Here, a

(k)
j is the MAI component on the j-th frame

of user 1 contributed by user k, given by

a
(k)
j = P

(k)
j R̂w(αk)δ̂j(∆k) + Q

(k)
j Rw(αk)δj(∆k) (5)

where R̂w(αk) and Rw(αk) are continuous-time partial auto-
correlation functions of the pulse w(t) defined as R̂w(αk) =∫ Tc

αk
w(t)w(t − αk)dt and Rw(αk) = R̂w(Tc − αk). The

independent RVs P
(k)
j and Q

(k)
j are uniform on {+1,−1},

have zero mean and variances E[(P (k)
j )2] = E[(Q(k)

j )2] = 1
where E[.] represents mean value. By defining l1 = c

(1)
j Tc,

l2 = ∆k + c
(k)
j−γk

Tc and l3 = ∆k − (Tf − c
(k)
j−γk−1Tc), the

functions δ̂j(∆k) = 1, if 0 ≤ l2−l1 < Tc or, 0 ≤ l3−l1 < Tc;
δ̂j(∆k) = 0, otherwise and δj(∆k) = 1 if 0 ≤ l1 − l2 < Tc

or, 0 ≤ l1 − l3 < Tc; δj(∆k) = 0, otherwise.
The MAI variance Ψ =

∑K
k=2 Z(k) is a RV which is a

function of the delays ∆ = [∆1,∆2, . . . ,∆K ] with Z(k) given
by

Z(k) =
(i+1)Nf−1∑

j=iNf

Z
(k)
j (6)

with

Z
(k)
j =

Ek

Nf
E

[(
a
(k)
j

)2

| ∆k

]
(7)

where the expectation in (7) is taken over the RVs P
(k)
j and

Q
(k)
j given ∆k (and hence αk).
Synchronous system. The system is frame synchronous if

∆k = 0 and bit synchronous if ∆k = γk = 0. In both cases,
αk = 0 and Rw(0) = 0, R̂w(0) = 1. Here note that the
(j −γk)th frame of user k collides with the jth frame of user
1. However, interference may occur only if the pulses in the
respective frames coincide (or, collide). Hence, we get

Z
(k)
j =

{
Ek

Nf
, coincidence

0, no coincidence
(8)

Note that a coincidence in any frame occurs with a prob-
ability p = 1/Nc, the probability of no coincidence being
1− p. Because the position of pulse in any frame of any user
is selected randomly and independently, we can write

Z(k) =
Ek

Nf
Js (9)

where Js is a RV binomially distributed over {0, 1, . . . , Nf}.
The density function of Js is given by [9]

fJ(j) =
Nf∑
j=0

(
Nf

j

)
pj(1 − p)Nf−j (10)

with p = 1/Nc where

(
Nf

j

)
is binomial coefficient.

Asynchronous system. In asynchronous system, αk is a RV
uniformly distributed over [0, Tc]. Hence, there will usually
be partial coincidences. However, we note that there is only
one pulse in average to interfere with an arbitrary pulse of the
desired user. As a result, Z

(k)
j can be approximately given by

Z
(k)
j =

{(
Ek

Nf

)(
R̂2

w(αk)+R2
w(αk)

2

)
, partial coincidence

0, no coincidence
(11)

However, under the assumption stated above, note that
R̂w(αk) and Rw(αk) over the same frame duration are mu-
tually exclusive. Here a partial coincidence in any frame may
occur with a probability p = 2/Nc and the probability of no
coincidence is 1− p as before. Using the knowledge from the
synchronous system, Z(k) can be approximately given by

Z(k) =
(

Ek

Nf

)(
R̂2

w(αk) + R2
w(αk)

2

)
Jas (12)

where Jas is a RV binomially distributed over {0, 1, . . . , Nf}.
The density function of Jas is given by (10) with p = 2/Nc.

IV. ERROR PROBABILITIES

If the mean µ and the standard deviation σ of the MAI vari-
ance Ψ are known, the simple-to-evaluate bit error probability
(BEP) according to the SIGA can be given by [6]

PSIGA
e =

2
3
Q

(√
E1Nf

µ + σ2
n

)
+

1
6
Q

(√
E1Nf

µ +
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3σ + σ2
n

)

+
1
6
Q

(√
E1Nf

µ −√
3σ + σ2

n

)
(13)

where Q(x) = (2π)−1/2
∫ ∞

x
exp(−u2/2)du.

Synchronous system. By noting that E[Js] = Nf/Nc and
E[J2

s ] = Nf/Nc(Nf/Nc − 1/Nc + 1) [9], the mean of Ψ
can be given by µ =

∑K
k=2 E[Z(k)] =

∑K
k=2 Ek/Nc and the

standard deviation, σ = [
∑K

k=2(E[(Z(k))2] − E[Z(k)]2)]1/2

can be given by

σ =
1

Nc

[(
Nc − 1

Nf

) K∑
k=2

E2
k

]1/2

(14)

Asynchronous system. For asynchronous system, E[Jas] =
2Nf/Nc, E[J2

as] = 2Nf/Nc(2Nf/Nc − 2/Nc + 1) [9]
and the mean of Ψ is given by µ =

∑K
k=2 E[Z(k)] =

2mw

∑K
k=2 Ek/Nc where mw = 1
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Fig. 1. Bit error probability versus total users K for Nf = 4, 7 and Nc = 5
at SNR, Eb/No = 14 dB. Asynchronous system with Ek = Eb, k =
1, 2, . . . , K is considered.

where ww = 1
Tc

∫ Tc

0
R̂4

w(α)dα = 1
Tc

∫ Tc

0
R4

w(α)dα. Note that

here we have used the fact 1
Tc

∫ Tc

0
R̂2

w(α)R2
w(α)dα = 0.

The BEP based on the well-known standard Gaussian
approximation (SGA) is given by the 1st Q-function of (13)
without the multiplication factor 2/3.

V. NUMERICAL EXAMPLES AND CONCLUSION

In this section, the results presented in the previous section
are evaluated by illustrative examples. Only asynchronous
system with perfect power control (i.e. Ek = Eb, k =
1, 2, . . . ,K) is considered. Theoretical results from SIGA are
verified by Monte Carlo simulations and are compared with
those from SGA. Though the method can be used for any
pulse shape w(t) = v(t)/

√Ev , we use two types of pulses
namely 1) the received monocycle pulse where v(t+Tc/2) =
[1 − 4π(t/tm)2]exp[−2π(t/tm)2] with tm = 0.39Tc which
was previously used for TH-IR UWB in [1], [4] and 2)
rectangular pulse where v(t) = 1, 0 ≤ t < Tc; v(t) = 0,
otherwise. The energy of v(t) is Ev =

∫ +∞
−∞ v2(t)dt. The

partial autocorrelations of w(t) are given by 1) R̂w(α) =
(1/Ev)[1 − 4π(α/tm)2 + (4/3)π2(α/tm)4]exp[−π(α/tm)2]
and 2) R̂w(α) = (Tc − α)/Ev respectively and Rw(α) =
R̂w(Tc −α) in both cases. Fig. 1 shows the BEP versus total
users K for Nf = 4 and 7 with Nc = 5 and signal-to-noise
ratio (SNR), Eb/No = 14 dB. The results from SIGA closely
match with those from simulation for both pulses and can
be considered to be reliable approximations. The SGA, on the
other hand, is optimistic for small to medium number of users.
Note that the MAI variance converges to a Gaussian RV for
large number of users [5] and hence the SGA is accurate in
that region.

Fig. 2 presents the BEP versus processing gain, PG =
NfNc for K = 10 and Eb/No = 16 dB considering only
monocycle pulse. As expected, performance improvement is
seen with increase in the PG. The effects of Nf and Nc on
the multiple access performance looks similar from the view
point of SGA. However, except in small PG, the actual system
performance becomes different for different combinations of
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Fig. 2. Bit error probability versus processing gain PG = Nf Nc for
total users, K = 10, SNR, Eb/No = 16 dB with various Nf and Nc.
Asynchronous system with Ek = Eb, k = 1, 2, . . . , K is considered.

Nf and Nc despite having the same PG. The PG is increased
by 1) increasing Nc keeping Nf fixed at 6 and 2) increasing
Nf keeping Nc fixed at 2. As seen, better performance is ob-
tained in the second case. It is evident that the SIGA accurately
tracks this performance difference, whereas the SGA becomes
increasingly optimistic. It can be concluded here that the use
of long repetition code brings more performance improvement
than decreasing signal duty-cycle (= 1/Nc) to increase the
PG.

The simple-to-evaluate SIGA previously used mainly for
DS-CDMA is found to be reasonably accurate for TH-IR
UWB multiple access system as well. This rediscovers the
inherent similarity between UWB and CDMA.
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