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   Abstract---Glaciated terrain classification is important for hydrological and climate change 

modeling. For this purpose, fully polarimetric Advanced Land Observation Satellite-Phase Array 

L-band Synthetic Aperture Radar (ALOS-PALSAR) data has been used over Indian Himalayan 

glaciated region.  PALSAR data has been analyzed based on the three and four component 

scattering decomposition methods for glaciated terrain classification. These methods have been 

applied on multi-looked 3×3 coherency matrix of ALOS-PALSAR data. The analysis of these 

methods shows that the Freeman and Durden Three Component Scattering Power 

Decomposition (3-CSPD) method has over estimation problem in volume backscattering 

component as compared to the Yamaguchi Four Component Scattering Power Decomposition 

(4-CSPD) method. After finding suitability of 4-CSPD method over Himalayan glaciated terrain, 

it has been combined with complex Wishart distribution for supervised classification of ALOS-

PALSAR image. By this way, an overall accuracy has been found to be 93.38%. Even this 

procedure shows very high accuracy but discrimination between vegetation and glacier snow/ice 

classes was not properly. To overcome this ambiguity, the probability difference between surface 

backscattering and volume backscattering has been introduced as further steps in classification 

procedure.   

 

Keywords---Decomposition, PALSAR, Himalayan, glaciated terrain.       

 



1. INTRODUCTION 

Satellite remote sensing has great potential in the study of dynamically changing 

environments related to the high altitude cold regions mainly because of its repetitive 

capability and synoptic coverage.  The land-covered features have unique reflectance 

characteristics in different spectral bands of optical sensors, which may provide information 

on physical properties as well as the areal extent of glaciated terrain features under cloud 

free conditions. However, they have some difficulty in rugged high mountainous area: 1) 

optical images are often affected by clouds in mountainous glacier areas. The Himalayan 

region is strongly affected by monsoons, cloud cover is quite common, especially during the 

summer months. The glaciated terrain classification is even hindered in Himalayan region 

due to a lack of cloud-free optical images; 2) the mountain shadow makes it difficult to 

discriminate between glacier areas and non-glacier areas and 3) an ambiguity between snow 

and ice exists because both have similar optical properties in glacial areas (Racoviteanu et. 

al., 2009). Due to the strong spatial and time dependent dynamics of glaciated terrain, 

regular and frequent mapping is necessary to monitor glaciated terrain, and requires sensors 

that are time and weather independent. Synthetic Aperture Radar (SAR) remote sensing with its 

all-weather capability, cloud penetration, and independence of sun illumination can add 

considerable robustness to classify the glaciated terrain (Rott, 1994; Singh and Venkataraman, 

2009). In case of monostatic fully polarimetric SAR data, point targets are characterized by five 

parameters (three amplitude and two relative phases). Therefore SAR full polarimetry techniques 

can lead to a significant improvement in the quality of classification and segmentation results in 

comparison to conventional single-channel SAR. Fully polarimetric SAR also allows a 

discrimination of different types of scattering mechanisms. This becomes possible because the 



received power depends strongly on the actual backscattering process. Received backscattering 

power can be divided into a sum of various backscattering contributions by using polarimetric 

target decomposition methods (Cloude and Pottier, 1996). Thus polarimetric decomposition 

method can be utilized for extracting the corresponding target type in fully polarimetric ALSO-

PALSAR images over glaciated terrain. 

In literatures (Cloude and Pottier, 1996; Yamaguchi, 2007; Lee and Pottier, 2009; Cloude, 

2009) polarimetric target decomposition methods are categorized into two types: The first type is 

coherent decomposition methods which are directly performed on the scattering matrix. The 

second type is incoherent decomposition methods based on the second order statistics of 

polarimetric information, e.g. on the coherency matrix. The incoherent decomposition methods 

(Freeman and Durden, 1998; Yamaguchi et. al., 2006; Yajima et. al., 2008) decompose the 

coherency matrix as the incoherent sum of scattering power of a distributed target. Since most of 

the targets are distributed in natural earth surface, this type of target can be only characterized 

statistically. Singh (2010) proved that incoherent decomposition provides sufficient information 

for classification in glaciated terrain features such as debris covered ice, snow, barren rock, etc, 

using fully polarimetric data.  

In this work, the Yamaguchi four-component scattering power decomposition (4-

CSPD) method (Yamaguchi et. al., 2006; Yajima et. al., 2008) is applied to identify glaciated 

terrain features in part of Indian Himalaya. The 4-CSPD method decomposes polarimetric 

radar power into surface, double bounce, volume, and helix power scattering. This method is 

an extension of the Freeman and Durden three-component scattering power decomposition 

(3-CSPD) method (Freeman and Durden, 1998) to general scattering case with non-reflection 

symmetry condition. However, the 4-CSPD methods has the following advantages: 1) 



Straightforward implementation; 2) Scattering power calculations are easy; 3) The 

decomposed powers correspond to physical scattering mechanisms, i.e., surface scattering, 

double bounce scattering , volume scattering , helix (circular polarization) scattering; 4) 

Output color-coded images are directly recognizable and easy to understand. Moreover this 

paper presents the 4-CSPD method (Yamaguchi et. al., 2006; Yajima et. al., 2008) suitability as 

compared to the 3-CSPD method (Freeman and Durden, 1998) for glaciated terrain features 

identification. A new methodology has been discussed by combining the complex Wishart 

distribution (Wishart, 1928) and 4-CSPD method for glaciated terrain classification.   

 

2. STUDY AREA  

   The location map is shown in Fig.1. The Alaknanda river catchment, Uttarakhand, India has 

many glaciers. Satopanth and Bhagirath Kharak glaciers are the major glaciers among them in this 

catchment. The Satopanth and Bhagirath Kharak glaciers are approximately 13 and 18.5 km 

long with an average width of 750–850 m, covering an area of 21.17 and 31.17 km
2
 

respectively. The upper Alaknanda river catchment covers an area of 1544.08 km
2
, out of 

which 70.70 and 107.22 km
2
 are covered by the Satopanth and Bhagirath Kharak sub-

watersheds, respectively (Nainwal et al., 2008). 

 The elevation ranges between 2000 m.a.s.l (meters above sea level) and 7000 m.a.s.l. The 

Alaknanda river, which is the main tributary of Ganga river, originates at the snout of the 

Satopanth glacier. The area falls between latitude 30
0
 40’ N and 30

0
 50’ N and longitude between 

79
0
 15’ E and 79

0
 28’ E. Satopanth and Bhagirath Kharak glaciers are shown in Fig. 2(a) to 

(d). This glaciated region includes snow, debris covered glacier, and barren rocks targets. 



 

Fig.1. Location map of study area. 

 

 3. DATA USED 

In this study, we acquired the Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) fully polarimetric, single look complex, level 1.1 data of May 12, 2007 with 21.5
0
 

incident angle and nominal pixel spacing (azimuth x range) 3.54 (m) x 9.36 (m). PALSAR, 

on-board the Advanced Land Observing Satellite (ALOS), was launched on 24 January 2006 

by the Japan Aerospace Exploration Agency (JAXA). It operates in the L-band frequency of 

1.27 GHz (23.6 cm wavelength). It is well known that L-band microwave signals penetrate 

through dry snowpack with negligible volume backscatter from snow. However, if snowpack 

is wet, the situation becomes different.  If the moisture exceeds 1% in highly accumulated 

snowpack, L-band frequency suffers from attenuation in the snowpack while reflection or 

backscatter from the snowpack comes out (Abe et. al. 1990). In general, snow cover area 

becomes wet in May (early summer) over Himalayan snow bound area with significant melting. 



The magnitude of backscatter depends on the snow density and water content, and the depth of 

snowpack. Since the snowpack on May 06, 2007 is rather wet due to the beginning of snow 

melting, the snowpack contains water and is not so transparent for L-band frequency. Snowpack is 

also heterogeneous with snow grain particle compressed during winter season and contains rather 

high density due to snow accumulation and melting cycle.  The co-polarization backscatters 

(HH and VV) increases with snow volume, while the cross-polarization backscatter (HV) 

remains small as compared to co-polarization. Since the HV components contribute only to 

volume scattering, the main polarimetric response from snowpack becomes surface 

scattering in the L-band (Abe et. al. 1990).  Fig. 2(b) shows the Pauli color composite image 

(May 12, 2007) which gives the clear information about single scattering (snow cover area over 

glacier and non glacier), double bounce (dihedral features) and volume scattering (debris covered 

glacier) in the study area. 

 

Fig.2. (a) 3-D View of Google Earth image (b) Pauli RGB of PALSAR of May 12, 2007(c) Photo 

of Satopanth (ST) and Bhagirath Kharak (BK) entrance (d) Photo view of Satopanth glacier 



4. METHOD AND TECHNIQUE 

4.1. Decomposition Method 

     Once scattering matrix S is acquired with fully polarimetric radar, we can define the scattering 

vector k as 
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where SHH, SVV, SHV are elements of scattering matrix S assuming the reciprocal condition of SHV 

= SVH. 

 

     The coherency matrix is given as 
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where *
T
 denotes complex conjugation and transposition, and ‹•› denotes ensemble average in an 

imaging window. 

 

      The four-component scattering power decomposition method divides the measured coherency 

matrix into 4 sub-matrices representing physical scattering mechanisms (Yamaguchi et. al., 2006; 

Yajima et. al., 2008)    
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where fs, fd, fv and fc are coefficients to be determined. [Ts], [Td], [Tv] and [Tc] are expansion 

coherency matrices corresponding to surface, double bounce (DB), volume, and helix scattering, 

respectively. 

The single-bounce scattering model is represented by surface scattering phenomena from 

slightly rough surface in which the cross-polarized component is negligible. The expansion 

coherency matrix for surface scattering is  
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The double-bounce scattering model is based on the hypothesis of double reflections from 

right angle structures.  Double-bounce structure includes road surface—building wall, 

ground-trees, and man-made targets etc.. The expansion coherency matrix for double bounce 

scattering is  
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Volume scattering can be observed if SAR beam penetrates into a medium. Scattering by 

trees or branches, subsurface or snow/ice layers etc. are examples of volume scattering. For 

the volume scattering model, we choose one of the following matrices according to the 

magnitude balance of |SHH|
2 

and |SVV |
2 

(Yamaguchi et al., 2006)
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Helix scattering power is equivalent to circular polarization power. This term appears in 

urban and mountainous area for L-band data. The helix scattering expansion matrix, which 

takes into account of non-reflection symmetry condition, is 
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The corresponding scattering powers (the surface scattering power Ps, the double bounce 

scattering Pd, the volume scattering power Pv and the helix scattering power Pc) are directly 

obtained from the expansion coefficients when we applied decomposition. The decomposition 

takes account of an imbalance of the co-polarized channel power. For the case of |10log 

(‹|SVV| 
2 

›/ ‹|SHH|
2
›) | < 2 dB, the decomposed power expression becomes as (Yamaguchi, 

2007): 
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3.2. Complex Wishart Classifier  

The complex Wishart distribution is expressed as (Wishart, 1928) 
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Where L is the number of looks and p is the polarimetric dimension and [Tm] = E(k k
T*

). Using 

the complex Wishart distribution of the coherency matrix <T>, an appropriate distance measure, d, 

can then be calculated according to Bayes maximum likelihood classification as (Lee and Pottier, 

2009) 
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   Thus leading to a minimum distance classification independent of the number of looks used to 

form the multi-looked coherency matrix <T> (Lee and Pottier, 2009): 
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3.3. Decomposed Power Probability  

The 4-CSPD method decomposes total backscattering power into surface scattering (Ps), double 

bounce backscattering (Pd), volume backscattering (Pv), and helix backscattering (Pc). Total 

backscattering power (TP) can defined as 

     cvds PPPPTP      (14) 



With the help of equation (7), we can define the probability of surface backscattering and volume 

backscattering decomposed components as  
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Therefore from (8) and (9) 
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Eq. (17) helps us to determine the dominated scattering component from surface scattering 

and volume scattering in the 4-CSPD method’s decomposed image. If ΔPs-v is positive, we 

determine that surface scattering is the dominant contribution. On the other hand, if ΔPs-v is 

negative, we determine that volume scattering is the dominant contribution. The threshold 

has not been started from zero because we want to take into account the noise variation in 

case that both the probabilities are close to zero. 
 

 

3.4. Classification Procedure 

    Using 4-CSPD method and Complex Wishart Distribution (CWD), a supervised classification 

methodology has been presented for fully polarimetric SAR images classification. The flow chart 

of developed methodology is shown in Fig, 3.  

The sequence of this procedure is followed as: 

1. First of all, a multi-looked (6 times in azimuth direction and 1 times in range direction) 

coherency matrix has been generated. 



2.  For reduction the speckle noise from the polarimetric SAR data, the polarimetric refined 

Lee filter (Lee et. al, 1999) with window size 7×7 has been applied on coherency matrix. 

3. 4-CSPD method has been applied on de-speckled coherency matrix and 4-CSPD method 

false color composite (FCC) image has been generated. In 4-CSPD method FCC image, 

red color is assigned to double bounce scattering, green color is assigned to volume 

scattering and blue color is assigned to surface scattering. Training samples has been 

allotted on the basis of visually comparing four component color composite image with 

AVNIR-2 snow cover image and field information. 

4. CWD has been applied on despeckled coherency matrix and computed the averaged 

coherency matrices from the assigned classes. These computed mean matrices have been 

used as the class centers. All pixels are classified based on their Wishart distance measure 

and criteria (Eq. (12) and eq. (13)) from class centers.  

5. Finally based on conditional approach, the probability difference (ΔPs-v) has been used for 

resolving volume scattering ambiguity from vegetation and glacier snow/ice. The 

conditional approach is defined as  

EITHER glacier snow/ice class IF (ΔPs-v ≥0.05 && vegetation class) OR classified classes 

OTHERWISE 

i.e. an additional class (glacier snow/ice class) has been added to supervised classified 

image, where is, the probability difference (ΔPs-v) image has ≥0.05 value but 

supervised classified image shows vegetation class. Otherwise supervised classified 

pixels remain same in final classified image.    



 

Fig. 3. Flow chart of PALSAR image classification 

 



4. RESULTS AND DISCUSSION 

    The 3-CSPD and 4-CSPD methods have been applied on L-band PALSAR data over the 

Satopanth and Bhagirath Kharak glaciated region. 3-CSPD and 4-CSPD methods false color 

composite (FCC) images are shown in Fig.4.  In 3-CSPD and 4-CSPD methods FCC images of 

PALSAR data over Satopanth glacier region (Fig. 4), blue to deep blue colour represents surface 

scattering from snow cover over glacier area (accumulation zone) and permanent snow cover at 

mountains peaks. Red colour represents double bounce or dihedral scattering mechanism. Debris 

covered glaciers (ablation area) are shown in green colour. Glacier moraines dam lakes appear in 

deep blue color. 

  The comparison of visual interpretation has been done for both decomposed FCCs with the Pauli 

RGB (Fig. 2(b)) and AVNIR-2 (Fig.4) image. The differences are clearly seen between 3-CSPD 

and 4-CSPD methods FCCs in Fig.5 (enlarged part of red color rectangular area in Fig. 4). Most 

of the differences can be visibly identified in double bounce and surface scattering component and 

these components are clearly exposed (Fig. 5(b)) in 4-CSPD method FCC. Some of these 

differences are indicated by yellow circles number 1, 2 and 3 in Fig. 5(b) (4-CSPD FCC) 

correspond to yellow color circles no. 1, 2 and 3 in Fig. 5(a) (3-CSPD FCC) respectively.  

Furthermore, 4-CSPD method gives very sharp information about dihedral features in the study 

area as compared to 3-CSPD method and Pauli RGB images. Since, the 4
th

 component of four 

component scattering decomposition (4-CSPD) method represents the helical scattering 

phenomena, which occur due slope surface of target. It has been seen in Fig.6 that the helix (Pc) 

scattering component shows high value (> -10 dB) at steep slope and low values (<-20 dB) are 

found over snow covered area. Himalayan topography has gentle to steep slope, which 

behave like oriented target from the direction of radar and oriented target does not hold 



reflection symmetry condition where the 3-CSPD method works, which causes the over 

estimation volume scattering in 3-CSPD method. But in 4-CSPD method, volume scattering is 

reduced by the 4
th

 component where volume scattering is more than helix scattering component. 

The main reason for the reduction of the volume component for the 4-CSPD method is due to 

the reflection symmetric space where the 4-CSPD method works. In other words, it correct 

for rotation along the line of sight (LOS) while it decomposes. Therefore, a 4-CSPD method is 

suitable for fully polarimetric PALSAR data decomposition over Himalayan glaciated terrain as 

compared to 3-CSPD method. 

 

 Fig. 4. ALOS-AVNIR-2 image of May 6, 2007 (upper), and 3-CSD model FCC of May 12, 2007 

PALSAR data (middle) and 4-CSD model FCC of May 12, 2007 PALSAR data (bottom) (Red 

color rectangular on 4-CSD model FCCs enlarged view are shown in Fig. 5) 



 

Fig. 5. (a) 3-CSD Model FCC of May 12, 2007 PALSAR data (b) 4-CSD Model FCC of May 12, 

2007 PALSAR data  

 

Fig. 6. PALSAR classified image of May 12, 2007 

 

  Moreover, using 4-CSPD method decomposed image and complex Wishart distribution, ALOS 

PALSAR data was classified into six major classes (e.g. snow, non snow and unidentified/layover, 



Fig. 7). Classification technique was applied on coherency matrix and training samples were taken 

from the four component color composite image with help of visual interpretation of 4-CSPD 

method FCC and AVNIR-2 image (which are shown in Fig.4).  

 

Fig. 7. Vegetation and ice separating in PALSAR classified image of May 12, 2007 by using 

probability difference between surface scattering and volume scattering probabilities  

 

The most common tool used for assessing the classification accuracy is the confusion (or 

error) matrix (Table 1). The columns in a confusion matrix (Table 1) represent test data that have 

been collected via field observation and interpretation of 4-CSPD method FCC and ALOS 

AVNIR-2 image, while rows represent the labels assigned by the classifier. The main diagonal 

entries of the Table 1 represent the number of pixels that are correctly classified. By this way, 

overall classification accuracy has been found to be 93.38%. While both user’s accuracy and 

producer’s accuracy of vegetation class are more than 80%, but vegetation class from glacier 

snow/ice could not discriminated properly by using alone complex Wishart classifier with defined 

training samples. For further improvement of classified image (Fig.7), a probability difference 



image (ΔPs-v) has been used for separating these classes. The probability difference image shows 

the low value over vegetation area and high value over glacier snow/ice area. By using conditional 

approach, it is possible to resolve the ambiguity between vegetation class (Fig.6) and glacier 

snow/ice (Fig. 7). 

Table 1. A confusion matrix composed of six glaciated terrain classes. 
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Snow 19885 67 73 0 87 65 20177 

Rock 106 1594 0 29 282 0 2011 

DCG 0 0 3629 0 94 469 4192 

DB/Settlement 0 72 0 742 11 0 825 

Vegetation/ice 0 477 224 0 3072 13 3786 

Layover 0 0 32 0 0 735 767 

Column Sum 19991 2210 3958 771 3546 1282 

31758 Producer’s Accuracy 

(%) 

99.46 72.12 91.68 96.24 86.63 57.33 

User’s  

Accuracy (%) 

98.55 79.25 86.58 89.96 89.96 95.86 Overall accuracy 

= 93.38% 

 

5. SUMMARY AND CONCLUSION 

    In this work, full polarimetric PALSAR data has been analyzed of high altitude glaciated terrain 

in Himalayan region based on 3-CSPD and 4-CSPD methods and information of various terrain 

features has been extracted. It has been found that the 4-CSPD method discriminates better terrain 

features like snow cover, dihedral (double bounce) and glacier features as compared to 3-CSPD 

method.  



   The supervised classification procedure shows over all accuracy 93.38% but the ambiguity of 

separating the vegetation from glacier snow/ice has been also found in classified image. Therefore, 

the probability difference (ΔPs-v) has been combined with supervised classification procedure to 

resolve the ambiguity between vegetation and glacier snow/ice. In future work, this methodology 

will be assessed with more time series data to check the resolving capability of the ambiguity 

between vegetation and glacier snow/ice. 
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