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We investigated two geometrical models of skeleton forms of spherical radiolaria. Both models are based
on Voronoi tessellation of given points on a sphere. We allocate a given number of points called “generators”,
which can be related to pore frames, and obtained their Voronoi tessellation and approximated polyhedron. The
first model is based on random allocation of generators, and the second one is based on global minimization of
a potential function whose value is calculated from a generator distribution. Depending on the types of these
generator distributions, we obtained different types of approximated polyhedrons. Using these polyhedrons,
we analyzed the frequency distributions of the number of vertices of the polygons and the total edge lengths.
We then compared the polyhedrons derived by the tessellation with real radiolaria. A comparison of frequency
distributions revealed that the first model is not sufficient for mesh-like radiolaria. However, the second model
had similar distribution to that of another type of spherical radiolaria which has almost regular structure. Under
the condition of same number of generators, the second model produces approximately 6 percent smaller total
edge length than the first model.
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1. Introduction
Skeleton form is an important factor when analyzing the

evolution of an organism for the following two reasons. Be-
cause the skeleton shape is recorded in sedimentary rocks,
its evolutionary history can be directly observed. Also, be-
cause the skeleton is the hardest material which organisms
form, it is thought to relate to some mechanical functions of
the living organism. In order to understand the role of the
skeleton in detail, its geometrical properties must be known.

The present study focuses on a skeleton-forming model
of spherical radiolaria. Radiolaria exhibit a variety of
shapes (De Wever et al., 2001). Their skeletons are used
for determining geological time and environment of past
oceans. Despite their geological importance, their ecology
remains unclear (Matsuoka, 2007).

We considered spherical radiolaria especially single-
layered spherical spumellaria because of the simplicity of
their form. As described above, the skeleton form of radi-
olaria varies greatly, and so it is hard to discuss a general
strategy of skeletogenesis. Fortunately, in some cases of ra-
diolaria, the skeleton is composed of silica; thus, we ignore
reconstruction of the skeleton after it was first formed: the
formation of the initial skeleton is believed to be related to
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the construction plan of the final form.
On the other hand, pattern formation on a sphere has been

widely studied. The surface of the Earth is a representative
example of such pattern formations (Turcotte and Schubert,
2001). Erber and Hockney (1991) reported statistical dis-
tributions of charged particles on a spherical surface. They
obtained these distributions by using the steepest descent
method to minimize the electrostatic (Coulomb) potential
function. Tanemura (1998, 2008) proposed an algorithm
for skeleton formation of spherical radiolaria. His model is
based on a theorem of spherical geometry called Lexell’s
circle. Using this theorem, the algorithm sequentially allo-
cates vertices to compose almost regular polyhedrons. Be-
cause the method consists of repeated improvement of the
local configuration, the obtained configurations are consid-
ered to be local minimum solutions.

In the present study, we applied the concept of the
Voronoi tessellation to skeleton form. We introduced two
types of spherical point distributions for obtaining skeleton-
like polyhedrons and discuss some of the properties of the
obtained ones. Figures 1(a) and (b) show real examples
of radiolaria considered in this study. We recognize them
as extreme cases of radiolarian skeleton structures. Cyr-
tidosphaera reticulata Haeckel (Fig. 1(a)) is an example of
random structure and Acanthosphaera circopora Popofsky
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(a) (b)

Fig. 1. Photographs of spherical radiolaria considered in this study. (a) Cyrtidosphaera reticulata Haeckel. (b) Acanthosphaera circopora Popofsky.
Scale bars indicate 50 µm.

(a) (b) (c)

Fig. 2. Correspondence of spherical points. (a)Example of the generators on the sphere (N = 24). (b) Convex hull of the generators (a). (c) The dual
polyhedron of the polyhedron (b).

(Fig. 1(b)) is that of regular one. Both species are frequently
observed in the sea off Sado Island of Japan. Because many
spherical radiolaria are characterized by intermediate struc-
ture between random and regular structures, the two ex-
treme examples must be described by the same concepts
of geometrical model in order to describe whole skeleton
structures of spherical radiolaria.

2. Mathematical Model of Spherical Radiolaria
2.1 Basic Concepts

We approximate the skeleton of spherical radiolaria with
edges of convex polyhedron, ignoring section width be-
cause our focus is geometrical features rather than mechan-
ical ones. Throughout this study, we assumed that the ver-
tices of the polyhedron are allocated on the surface of the
unit sphere. In the following, we use the set of given points
on the sphere r,

r = (r1, r2, · · · , rN ), (1)

where ri is a location of the i-th point on the unit sphere and
N is number of the the points. Each ri has three components
(xi , yi , zi ) in Cartesian coordinates and they satisfy the

relation,
x2

i + y2
i + z2

i = 1.

We call each point and the set of the points ”generator” and
”generators”, respectively. The distribution of generators
determines the geometry of convex polyhedron as described
in the following.

One of the basic ideas of polyhedron construction herein
is to make a convex hull of generators randomly allocated
on a sphere. A convex hull of given set r is the set of points
x which satisfies the relation,

x = λ1r1 + λ2r2 + λ3r3 + · · · + λN rN , (2)

where λi ≥ 0 for all i and
∑N

i=1 λi = 1 (Okabe et al.,
2000). In Fig. 2(b), we give an example of the convex
hull of the generators shown in Fig. 2(a). A convex hull
of the generators r is the smallest convex polyhedron which
contain all generators either in or on it. In a case that all
generators are allocated randomly on sphere, all generators
correspond to vertices of their convex hull. The adjacent
vertices of each vertex (generator) are sometimes called
Voronoi neighbors. As mentioned in following results, the



Application of Voronoi Tessellation of Spherical Surface to Geometrical Models of Skeleton Forms of Spherical Radiolaria 47

approximated polyhedron
Voronoi tessellation

Spherical surface

Fig. 3. Concept of approximated polyhedrons. Dashed lines denote the
tessellation and solid lines denote the approximated polyhedron. The
approximated polyhedron is obtained by replacing the arcs of Voronoi
tessellation with lines.

convex hull is not a good model for spherical radiolarian
skeletons because the obtained polyhedrons are different
from the skeleton forms of radiolarian as shown in Fig. 1.

Another way to construct polyhedrons similar to skeleton
forms of spherical radiolarian is to form a dual polyhedron
of a given convex hull. The dual polyhedron, or the polar
polyhedron, has one-to-one correspondences with the orig-
inal one: these are 1) each vertex of the dual polyhedron
corresponds to a face of the original polyhedron, 2) each
edge of the dual corresponds to an edge of the original one,
and 3) each face of the dual corresponds to a vertex of the
original one. The formal definition of a dual polyhedron
is given in textbooks on polyhedron geometry (e.g., that of
Coxeter, 1989). The relationships of generators, their con-
vex hull, and the dual polyhedron are illustrated in Fig. 2.
As shown in Fig. 2, the dual polyhedron is determined when
convex hull of the generators are determined.

In order to construct dual polyhedron, we use the idea
of Voronoi tessellation. It is known that the Voronoi tes-
sellation is one of the method for constructing dual poly-
hedron (Renka, 1984; Okabe et al., 2000). As shown in
Fig. 3, although the boundaries of the Voronoi tessellation
on spherical surface are arcs of great circles, we replaced
these arcs with lines because we are approximating skeleton
forms with polyhedrons. We refer to the resultant polyhe-
dron as an “approximated Voronoi polyhedron” or “approx-
imated polyhedron”. This approximation was carried out
throughout this study. Figure 3 illustrates part of a sphere,
a Voronoi tessellation, and its approximated Voronoi poly-
hedron. We uses the term ”approximated Voronoi polyhe-
dron” because the term ”Voronoi polyhedron” corresponds
to a cell of three dimensional Voronoi tessellation.

Neglecting the difference of edge type, construction of
convex hull using the generators is equivalent to construc-
tion of Delaunay triangulation (Okabe et al., 2000). There-
fore, it is possible to obtain the Delaunay triangulation of

the set by using the algorithm of three dimensional con-
vex hull which we used in this study. Furthermore, Voronoi
tessellation of the generators is obtained from the result of
Delaunay triangulation (Okabe et al., 2000). Therefore, the
procedure to obtain the approximated Voronoi polyhedron
of given generators are summarized as follows. Firstly, we
obtain the convex hull of the generators. Secondary, we
acquire all equations of planes perpendicular to and con-
taining the location vector. Therefore, each plane is cor-
responded to each generator. Finally, we obtain the inter-
section lines of adjacent pairs, Voronoi neighbors in other
words, of the convex hull’s vertices. The lines correspond to
the edges of the approximated Voronoi polyhedron of given
generators. also allocated on the unit sphere. The polyhe-
dron obtained by this procedure is the dual polyhedron of
convex hull because the obtained polyhedron satisfies the
features of dual polyhedron described above.

In order to compare the simulation results with 2D skele-
ton images quantitatively, we estimated the frequency dis-
tribution of polygons from the 2D images. Because the
value of N directly affects the result, estimation of an appro-
priate number is important. The procedure of the estimation
is summarized as follows: First, we approximated the out-
line of the skeleton image by a circle to estimate its radius
and center (Fig. 4a). Second, we drew a smaller circle hav-
ing the same center as the first circle (Fig. 4b). The ratio of
the second radius to the first was defined as ξ . Third, we ap-
proximated the skeleton structure within the smaller circle
using lines (Fig. 4c). The obtained figure can be considered
to be an approximation of part of the structure of the radi-
olarian skeleton (Fig. 4d). Next, we counted the frequency
distribution of polygons within the second circle. Because
the frequencies were obtained using only part of the entire
skeleton, we had to multiply them by a factor. The factor
is based on the ratio of the surface area of the unit sphere
to surface area of the spherical cap whose radius is ξ . In
the case of Fig. 4(b) (Cyrtidosphaera reticulata Haeckel),
ξ = 0.764 and the factor is approximately 5.64.
2.2 Models

Our first model is for mesh-like skeletons. We again
allocated a given number of points randomly on the surface
of the unit sphere and applied Voronoi tessellation in order
to obtain its dual polyhedron. The generators correspond
to the pore frames of radiolaria uniformly distributed on
the sphere. Hereafter, we call an approximated Voronoi
polyhedron obtained from a random generator distribution
a “random approximated Voronoi polyhedron” (RAVP).

In order to consider another type of radiolarian skeleton,
almost regular polyhedrons, we introduce a new model and
examine its applicability. Some radiolaria have skeletons
similar to regular polyhedrons. In our polyhedron model,
such regular structures are expected to appear from the gen-
erators distributed more homogeneously. Here, we intro-
duce generators that interact with each other and seek a po-
tential minimum configuration of points on the surface of
the sphere. In other words, we assumed that the generators
on the sphere interact through some type of potential en-
ergy. The distributions of generators are determined by the
potential function, which is the sum of the potential ener-
gies over all pairs of generators.
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(a) (b) (c) (d)

Fig. 4. Procedure for estimating the frequency distribution of polygons of the image of the real radiolarian. The estimated frequency distribution is the
that of (d) times surface ratio of the approximated sphere (a) to the spherical cap (b). Scale bar indicates 50 µm.

N =100 N =200 N =500 N =1000

Fig. 5. Examples of convex hulls of random generators on a spherical surface (N = 100, 200, 500, and 1000).

N=100 N=200 N=500 N=1000

Fig. 6. Examples of RAVP (N = 100, 200, 500, and 1000). The polyhedrons were generated from the same generators in Fig. 5 and so that they are
dual polyhedrons of those polyhedrons.

Because we consider a spherical skeleton, which does not
have a characteristic direction, all generators can be consid-
ered to be equivalent. In other words, there is no charac-
teristic point among them. This assumption corresponds to
the condition in which each point has the same electronic
charge for the case of a Coulomb potential. We call the new
model “minimum potential approximated Voronoi polyhe-
drons” (MPAVP). The concept of generator distribution of
this model is identical to the Erber and Hockney model (Er-
ber and Hockney, 1991) if we choose the Coulomb poten-
tial as the potential function and use the steepest descend
method to obtain the generator distribution.

We used sums of power functions as the potential func-
tions. The potential functions are defined by

Un(r) =
∑

<i, j>

1∣∣ri − r j

∣∣n , (3)

where the summation is over all pairs. We consider the three
cases n = 1, 6, and 12 in this study. The case n = 1 corre-
sponds to the electrostatic potential (long-range interaction)
and the other cases are frequently used to represent of short-
range interactions.

We obtained optimized configurations of spherical points
by using the simulated annealing method [?], which derives
an almost globally optimized generator distribution for a
given potential function. The procedure is summarized as
follows: (A) A given number of random points are gener-
ated on a unit sphere. (B) A parameter β (inverse temper-
ature) is set to an initial value. (C) A candidate point is
selected sequentially from among the current points and is
released to walk at random. (D) The difference between the
potential values of �Un for the candidate and the current
configuration is calculated. (E) A random number ξ in the
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(a) (b)

Fig. 7. Comparison of the simulation result of RAVP for N = 1540 with a real mesh-like radioralia (Cyrtidosphaera reticulata Haeckel). Scale bar
indicates 50 µm.
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Fig. 8. Comparison of N dependence of mean total edge length of convex hulls and Voronoi tessellations (RAVP) with same random generator
distributions.

range [0, 1) is generated, and a new point is chosen accord-
ing to the rule: if ξ ≤ exp(β�Un), the candidate point is
accepted; otherwise, it is rejected. (F) If the system is not
yet stable, return to (C). (G) The parameter β is increased
by �β. (H) (C) through (F) are continued until β reaches
the terminal value.

Rapid annealing causes local minimization. In order to
avoid this, we increase the value of β linearly and set the
increment of increase sufficiently small. Furthermore, we

prepare a sufficient number of Monte Carlo steps for each
β. We chose the initial value of β as 0, the terminal value
as 500, and the increment �β as 10. The number of Monte
Carlo steps was set at 20000; therefore, 20000 × N candi-
dates were tested for each β. The variance of the potential
function was large for small β and decreased to small values
when β became large. A cube was formed for N = 6, and a
dodecahedron for N = 12. These proved the suitability of
our annealing schedule.
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N=32 N=50 N=80 N=100

Fig. 9. Examples of polyhedrons obtained from the MPAVP (n = 1) model (N = 32, 50, 80, and 100).

(a) (b)

Fig. 10. Comparison of an example of a MPVAP (N = 138 and n = 1) with almost-regular type of spherical radiolarian (Acanthosphaera circopora
Popofsky). Scale bar indicates 50 µm.

3. Results
Figure 5 shows some examples of convex hull of genera-

tors randomly allocated on the sphere for different numbers
of points N . The obtained polyhedrons have two features:
most vertices have mainly 6 associated edges, and almost all
the faces are triangles. These results are consistent with Eu-
ler’s theorem of convex polyhedrons. From the viewpoint
of cost minimization of skeleton-forming materials, the re-
sultant skeletons are clearly not optimal. Furthermore, such
polyhedrons are not similar to any types of real spherical
radiolaria. From this, we conclude that this model is not
appropriate for spherical radiolaria.

Figure 6 shows examples of numerical results for the ap-
proximated Voronoi polyhedrons generated by randomly al-
located generators on sphere (RAVP). The generator distri-
butions of the examples were same ones with the point dis-
tributions of examples in Fig. 5. Because of the duality,
the polyhedrons consist mainly of hexagons with vertices
of degree three. one.

Comparison of a numerical result for N = 1540 and a
real sample (Cyrtidosphaera reticulata Haeckel) is shown

in Fig. 7. The value 1540 was estimated from the 2D image
in Fig. 1(a) as mentioned above. The result was similar to a
type of radiolarian that has a mesh-like skeleton intuitively.

In order to consider the features of the random approxi-
mated Voronoi polygons (RAVPs), we compared the mean
total edge lengths of the polyhedrons with those of con-
vex hulls for each N . We generated 100 samples of spher-
ical random points and calculated their convex hulls and
RAVPs. Then, we obtained mean total edge lengths for both
the convex hulls and RAVPs. The results are shown in Fig.
8. The mean total edge length of the RAVP is smaller than
that of the convex hull for all N ’s except for N = 4 and
5. For small values of N , oblate polyhedrons are produced
frequently so that the mean value of the total edge length
of RAVP can also be smaller than those of random convex
hulls.

Examples of the resulting polyhedrons of MPAVP, our
another model, are shown in Fig. 9. The obtained poly-
hedrons consist only of nearly regular pentagons and
hexagons. We also observed a striking similarity between
the N = 138 polyhedrons and a real spherical radiolaria
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Fig. 11. Comparison of number of vertices frequency distributions of simulation result with that of radiolarians estimated from 2D images. a) RAVP(Fig.
7, N = 1340) , b) MPAVP (Fig. 10, N=138 and n = 1).

(Acanthosphaera circopora Popofsky) in Fig. 10. The value
138 was chosen by estimation from the 2D image described
above.

The observed skeleton also consists only of pentagons
and hexagons in the case of Acanthosphaera circopora
Popofsky (Fig. 10). According the Euler’s formula, the ex-
act number of pentagons should be 12 under the assumption
that all vertices are degree three. In the shown example, the
estimated number of faces is 138 and the number of pen-
tagons is 11. Nevertheless, although the estimated number
of pentagons is not consistent with analytical estimation, its
value is very similar. For this reason, we conclude that the

estimation procedure works well. All of the pentagons are
isolated in the cases of both the observed skeleton structure
and the simulation result for MPAVP. It is notable that here
we examined only frequency distribution not configuration
(arrangement of polygons).

The estimated frequency distribution of polygons was
compared with the simulation result of RAVP for the case of
(Cyrtidosphaera reticulata Haeckel) (Fig. 10) in Fig. 11(a).
We also showed comparison in cases of MPAVP in Fig.
11(b) mentioned above. In order to avoid the dependence
on the number of generators, we set the number of genera-
tors to 1574, which is the number of faces estimated from
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Fig. 1(a) using our method described in Section 2. Figure
11(a) shows that the two frequency distributions are differ-
ent. In cases that the number of vertices are 6 and 7, the fre-
quencies of RAVP are smaller than those of the estimated
polyhedrons. On the other hand, for both smaller and larger
numbers of vertices, the frequencies of RAVP are larger. In
other words, the deviation from number of vertices 6 of the
numerical result is larger than that of real radiolarian. This
result indicates that the RAVP model is not suitable fully

describing the properties of Fig. 1(a).
Holding the number of generators fixed, we compared

the total edge lengths of the RAVP and MPAVP models.
Figure 12 shows the N dependence of total edge length.
The three models, n = 1, 6, and 12, produced almost
identical values. For large N , the length grows almost
linearly with N . This tendency is also observed for random
Voronoi polyhedrons. We also obtained ratios of the total
edge lengths of the RAVP and MPAVP. Figure 13 shows
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the N dependence of this ratio. For large N , the length
of MPAVP is approximately 6 percent smaller than that of
RAVP. Therefore, from the viewpoint of geometry, MPAVP
is effective for decreasing total edge length.

4. Discussions
We examined the two extreme models of skeleton shapes

of spherical radiolaria and one model (MPAVP) is good
agreement with almost regular structure. The MPAVP
model can describe some types of radiolarian skeletons like
Acanthosphaera circopora Popofsky; however, the RAVP
model is not adequate for describing mesh-like radiolar-
ian, even though Voronoi polyhedrons are similar in form
to real spherical radiolaria from a qualitative point of view.
According to the results, weak interaction, that is, not as
strong as in the MPAVP model, may work for the force be-
tween generators for the case of mesh-like radiolaria. The
appropriate form for the potential energy function of such
a structure remains unclear. One idea of the improvements
may be restriction of ranges of interaction such as restric-
tion of summation of < i, j > in Eq. (4).

One deficiency of our analysis is the existence of an inner
shell: most spherical radiolaria consist of multiple layers of
shells connected by radial beams. Because our simulation
assumes no such beams, our simulation is inconsistent with
the actual construction on the outer shell. The most op-
timistic idea is that the outer shell completely reflects the
structure of inner shell, however, there is no evidence to
support such an idea.

We cannot observe a qualitative difference between our
results and those of Tanemura (16 ≤ N ≤ 40). In other
words, a qualitative difference between local minimization

and global one has not been found. Therefore, the problem
relating to strategy selection for skeletogenesis of spherical
radiolaria remains.

From a biological viewpoint, it is unknown whether the
6 percent difference in total edge length is large or not. In
order to discuss this in detail, the mechanical properties of
the skeleton form must be understood in detail.
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