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Abstract
This paper concerns a measure of selective pressure, called “loss of diversity,” that de-
notes the proportion of unselected individuals during the selection phase. We proba-
bilistically calculate the expected value and variance of loss of diversity in tournament
selection, truncation selection, linear ranking selection, and exponential ranking selec-
tion. From numerical results, we observe that in tournament selection, many more
individuals are expected to be lost than with Blickle and Thiele’s static estimate. We
also observe that tournament and exponential ranking schemes potentially bring about
nearly equivalent selection behaviors but have different types of control parameters.
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1 Introduction

Evolutionary Algorithms (EAs) are probabilistic search algorithms that maintain a pop-
ulation of search points and repeatedly evolve the population by selection, recombi-
nation, and mutation operations. Due to their ability to search complex spaces, EAs
have been used in a variety of problems. Starting from the current candidate solutions
in the population, EAs generate new candidate solutions through recombination and
mutation, and then exploit this exploration through selection of better solutions.

Selection operation plays an important role of focusing the search effort on promis-
ing regions in the search space and controlling the speed of convergence; therefore,
some researchers have analyzed common selection schemes such as tournament selec-
tion, fitness-proportionate selection, ranking selection, and truncation selection. For
example, Goldberg and Deb (1991) introduced a measure of selective pressure called
takeover time and compared selection schemes with respect to that measure; the takeover
time is defined to be the number of generations needed for the single best individual
to fill up the whole population when only the selection operation is applied repeatedly.
Blickle and Thiele (1995, 1997) considered fitness distributions to give a unified view
of selection schemes and introduced a natural measure of selective pressure called loss
of diversity; then, for some selection schemes, they calculated expected fitness distribu-
tion after selection, loss of diversity, selection intensity, and selection variance. Schell
and Wegenkittl (2001) viewed the selection process as a two-step procedure consist-
ing of assignment of selection probabilities and sampling according to this probability
distribution; then, they analyzed stochastic properties of sampling methods such as
roulette-wheel sampling and stochastic universal sampling.
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Table 1: Comparison of Blickle and Thiele’s estimates of loss of diversity with experi-
mental values.

Tour- Estimate by Simulation (Average) Blickle &
nament Population Size Thiele’s

Size 2 3 4 5 7 10 20 50 Estimate
1 0.250 0.300 0.321 0.328 0.336 0.347 0.363 0.355 nan
2 0.314 0.370 0.379 0.390 0.411 0.407 0.431 0.426 0.250
3 0.390 0.438 0.460 0.472 0.476 0.493 0.495 0.503 0.385
4 0.445 0.503 0.517 0.533 0.558 0.550 0.551 0.557 0.472
5 0.470 0.549 0.571 0.586 0.595 0.597 0.611 0.605 0.535
6 0.482 0.587 0.611 0.615 0.623 0.625 0.641 0.638 0.582
7 0.493 0.611 0.636 0.644 0.653 0.661 0.656 0.666 0.620
8 0.496 0.626 0.661 0.675 0.680 0.688 0.692 0.693 0.650
9 0.498 0.644 0.684 0.691 0.698 0.706 0.713 0.716 0.675

10 0.499 0.649 0.699 0.707 0.719 0.727 0.728 0.733 0.697
15 0.500 0.664 0.736 0.773 0.781 0.787 0.789 0.796 0.769
20 0.500 0.666 0.747 0.789 0.819 0.820 0.829 0.828 0.811
25 0.500 0.667 0.749 0.796 0.843 0.845 0.854 0.854 0.840
30 0.500 0.667 0.750 0.797 0.849 0.865 0.867 0.873 0.860

Among these theoretical subjects of selection, this paper concerns loss of diver-
sity. As explained by Whitley (1989) and Banzhaf et al. (1998, Section 8.4.3), in order
to maintain exploration ability in evolutionary search, we need to maintain genetic di-
versity in the population. To avoid great computational effort in measuring genetic
diversity, some researchers pay attention to diversity of fitness in the population in-
stead of genetic diversity, under the assumption that fitness differences reflect differ-
ences in genotypes of individuals. Even if we have a good measure of genetic diversity
in the population, the amount of loss of genetic diversity during the selection phase
would generally depend not only upon selection schemes, but also upon arrangements
of genes before selection. For comparing selection schemes, we want a measure that
reflects the amount of loss of genetic diversity during the selection phase and does
not depend on arrangements of genes before selection. Such a measure is given by
Blickle and Thiele (1995, 1997). They defined loss of diversity to be the proportion of
individuals of a population that are not selected during the selection phase. For some
selection schemes, they also give static estimates of loss of fitness diversity based on the
difference of the expected fitness distribution after selection and the original fitness dis-
tribution before selection; of course, these estimates do not coincide with experimental
results on the loss of diversity defined above. Their estimation is only an approxima-
tion to the loss of diversity because they calculate loss of fitness diversity, and because
they implicitly assume that selection is done deterministically based on the expected
distribution of individuals after selection. So, we now probabilistically calculate ex-
pected value and variance of the loss of diversity.

In the following sections, we use the phrase “loss of diversity” to mean the above
measure of selective pressure defined by Blickle and Thiele. Section 2 describes Blickle
and Thiele’s estimates of the loss of fitness diversity and compare their estimates with
experimental results on the loss of diversity. In Sections 3 to 6, we calculate the expected
loss of diversity in tournament selection , truncation selection, linear ranking selection,
and exponential ranking selection, respectively. In Section 7, we calculate variance of
the loss of diversity. We summarize our work in Section 8.
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Figure 1: Blickle and Thiele’s estimates vs. experimental results under fixed population
size.
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Figure 2: Blickle and Thiele’s estimates vs. experimental results under fixed tourna-
ment size.

2 Loss of Diversity

Blickle and Thiele (1995, 1997) gave the definition of loss of diversity and its estimates
for some selection schemes as follows.

DEFINITION 2.1 (Blickle and Thiele): The loss of diversity is the proportion of individuals
of a population that are not selected during the selection phase.

THEOREM 2.2 (Blickle and Thiele, 1997):
(a) For tournament selection with tournament size t, loss of (fitness) diversity is

DT (t) ≈ t−1/(t−1) − t−t/(t−1).
(b) For truncation selection with threshold T , loss of (fitness) diversity is

DΓ(T ) ≈ 1 − T .
(c) For linear ranking selection with lowest reproduction rate η−, loss of (fitness) diversity is

DR(η−) ≈
1

4
(1 − η−).
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(d) For exponential ranking selection with ranking base c, loss of (fitness) diversity is

DE(c) ≈
1 − ln(κ − 1) + ln(κ ln κ)

ln κ
−

κ

κ − 1
,

where κ = cN and N denotes the population size.

To show how this theoretical result on tournament selection agrees with experi-
mental results on the loss of diversity, we repeatedly perform the tournament selection
operation and measure the average loss of diversity for various combinations of tourna-
ment size t and population size N . Numerical results of this simulation and estimates
by Theorem 2.2(a) are given in Table 1 and Figures 1 and 2, which show the disagree-
ment of Theorem 2.2(a) with experimental results on the loss of diversity. Looking to
Blickle and Thiele’s estimation, we observe that they start the calculation as follows:

DT (t) =
1

N

∫ fz

f0

(s̄(x) − s̄∗(x))dx,

where s̄(x) denotes the density of individuals with fitness value x before selection,
s̄∗(x) denotes the expected density of individuals with fitness value x after selection,
f0 denotes the least (worst) fitness value, and fz denotes the fitness value such that
s̄(fz)= s̄∗(fz). This estimation is only an approximation, because it corresponds to loss
of fitness diversity, because it ignores the possibility that individuals with fitness value
above fz may be lost during a selection phase, and so on.

To obtain an estimate of the loss of diversity that agrees with practice, we should
not utilize the expected fitness distribution after selection but should probabilistically
calculate the expected number of individuals that are not selected during the selec-
tion phase. In the following sections, we will perform such probabilistic calculation
where we assume individuals are selected one by one, that is, roulette-wheel sampling
is adopted. When an individual is the kth worst one in the population, we say the in-
dividual has rank k. For simplicity, we assume that every individual has a unique rank
number between 1 (worst one) and the population size (best one).

3 Expected Loss of Diversity of Tournament Selection

In usual tournament selection, a prespecified number (called tournament size) of indi-
viduals are randomly drawn from the population with replacement; the best of them is
selected into the mating pool. This process is repeated a number of times equal to the
population size.

LEMMA 3.1: For any nonnegative integer a, we have

N
∑

k=1

ka =































Na+1

a + 1
if a=0

Na+1

a + 1
+

Na

2
if a=1

Na+1

a + 1
+

Na

2
+

aNa−1

12
+ O(Na−2) if a≥2

PROOF: The proof proceeds by induction on a.
Basis, a≤1. It obviously holds.
Induction step, a≥2. First, we obtain

(N + 1)a+1 − 1 =
N
∑

k=1

{(k + 1)a+1 − ka+1}
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=

N
∑

k=1

{

a+1
∑

i=0

(

a + 1

i

)

ka+1−i − ka+1

}

=

N
∑

k=1

{

(

a + 1

1

)

ka +

a+1
∑

i=2

(

a + 1

i

)

ka+1−i

}

.

Thus,

N
∑

k=1

ka =
1

(

a+1
1

)

{

(N + 1)a+1 − 1 −

N
∑

k=1

a+1
∑

i=2

(

a + 1

i

)

ka+1−i

}

=
1

a + 1

{

a+1
∑

i=0

(

a + 1

i

)

N i − 1 −

a+1
∑

i=2

(

a + 1

i

) N
∑

k=1

ka+1−i

}

=
1

a + 1

{

Na+1 +

(

a + 1

a

)

Na +

(

a + 1

a − 1

)

Na−1 + O(Na−2)

−

(

a + 1

2

) N
∑

k=1

ka−1 −

(

a + 1

3

) N
∑

k=1

ka−2

−

a+1
∑

i=4

(

a + 1

i

) N
∑

k=1

ka+1−i

}

.

Using the induction hypothesis, we proceed with the calculation as follows:

N
∑

k=1

ka =
1

a + 1

{

Na+1 +

(

a + 1

a

)

Na +

(

a + 1

a − 1

)

Na−1 + O(Na−2)

−

(

a + 1

2

)(

Na

a
+

Na−1

2
+ O(Na−2)

)

−

(

a + 1

3

)(

Na−1

a − 1
+ O(Na−2)

)

−
a+1
∑

i=4

(

a + 1

i

)

O(Na+2−i)

}

=
Na+1

a + 1
+

1

a + 1

{(

a + 1

a

)

−

(

a + 1

2

)

1

a

}

Na

+
1

a + 1

{(

a + 1

a − 1

)

−

(

a + 1

2

)

1

2
−

(

a + 1

3

)

1

a − 1

}

Na−1 + O(Na−2)

=
Na+1

a + 1
+

Na

2
+

aNa−1

12
+ O(Na−2).

THEOREM 3.2: Let DT (t, N) denote the expected loss of diversity in tournament selection
with tournament size t and population size N . Then

(a) DT (t, N) =
1

N

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

.

(b) lim
N→∞

DT (t, N) =

∞
∑

a=2

(−t)a

a! (at − a + 1)
. Specifically, lim

N→∞

DT (1, N) = e−1 = 0.3678 · · ·
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and lim
N→∞

DT (2, N) =
1

2
(1 − e−2) = 0.4323 · · ·.

PROOF: (a) We now call a (multi)set of t randomly chosen individuals a tournament
group and use Pr(E) to denote the probability of an event E. For any k ∈ {1, 2, 3, . . ., N},
we can calculate the probability pk of the event that occurs when the individual of rank
k is selected in a single selection process:

pk = Pr(k is the highest rank among a (randomly generated) tournament group)

= Pr(a tournament group consists of individuals of rank ≤ k)

−Pr(a tournament group consists of individuals of rank ≤ k − 1)

=
kt − (k − 1)t

N t
. (1)

Thus, the probability of the event that occurs when the individual of rank k is never
selected in N selection processes is

(

1 −
kt − (k − 1)t

N t

)N

;

the expected number of unselected individuals in the selection phase is

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

,

and so

DT (t, N) =
1

N

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

.

(b) We can proceed with calculation of (a) as follows:

DT (t, N) =
1

N

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

=
1

N

N
∑

k=1

(

1 −

(

t

1

)

kt−1

N t
+

(

t

2

)

kt−2

N t
+

O(kt−3)

N t

)N

=
1

N

N
∑

k=1

N
∑

a=0

N−a
∑

b=0

N−a−b
∑

c=0

(

N

a, b, c, N−a−b−c

)(

−t
kt−1

N t

)a((

t

2

)

kt−2

N t

)b(

O(kt−3)

N t

)c

=

N
∑

a=0

N−a
∑

b=0

{

(

N

a, b, N−a−b

)

(−t)a
(

t
2

)b

Nat+bt+1

N
∑

k=1

k
at+bt−a−2b

+

N−a−b
∑

c=1

(

N

a, b, c, N−a−b−c

)

(−t)a
(

t
2

)b

Nat+bt+ct+1

N
∑

k=1

O(kat+bt+ct−a−2b−3c)

}

.

By applying Lemma 3.1, we continue the calculation:

DT (t, N) =

N
∑

a=0

N−a
∑

b=0

{

(

N

a, b, N−a−b

)

(−t)a
(

t
2

)b

Nat+bt+1

(

Nat+bt−a−2b+1

at + bt − a − 2b + 1
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+
Nat+bt−a−2b

2
+

at + bt − a − 2b

12
N

at+bt−a−2b−1 + O(Nat+bt−a−2b−2)

)

+

N−a−b
∑

c=1

(

N

a, b, c, N−a−b−c

)

(−t)a
(

t
2

)b

Nat+bt+ct+1
O(Nat+bt+ct−a−2b−3c+1)

}

=

N
∑

a=0

N−a
∑

b=0

{

N(N−1)(N−2) · · · (N−a−b+1)

a! b!
(−t)a

(

t

2

)b(

N−a−2b

at + bt − a − 2b + 1

+
N−a−2b−1

2
+

at + bt − a − 2b

12
N

−a−2b−2 + O(N−a−2b−3)

)

+

N−a−b
∑

c=1

(

N

a, b, c, N−a−b−c

)

(−t)a

(

t

2

)b

O(N−a−2b−3c)

}

=

N
∑

a=0

(−t)a

a! (at − a + 1)
+

1

N

{

N
∑

a=0

(−t)a

a! (at − a + 1)
(−1 − 2 − · · · − (a − 1))

+

N
∑

a=0

(−t)a

a!

1

2
+

N
∑

a=0

(−t)a
(

t
2

)

a!(at + t − a − 1)

}

+ O(N−2).

So, we obtain the equation

lim
N→∞

DT (t, N) =

∞
∑

a=0

(−t)a

a! (at − a + 1)
.

Specifically, when t = 1,

lim
N→∞

DT (1, N) =
∞
∑

a=0

(−1)a

a!
= e−1;

when t = 2,

lim
N→∞

DT (2, N) =
∞
∑

a=0

(−2)a

a!(a + 1)
=

1

(−2)

{

∞
∑

i=0

(−2)i

i!
− 1

}

=
1

2
(1 − e−2).

Utilizing Theorem 3.2(a), we can numerically calculate DT (t, N) for every pair
of tournament size t and population size N ; utilizing Theorem 3.2(b), we can also
numerically calculate limN→∞ DT (t, N) for every t. Numerical results of the func-
tion DT (t, N) are summarized in Table 2 and Figures 3 and 4, which agree with re-
sults by simulation in Table 1. Given a population size N , we can adjust DT (t, N)
within a wide interval (3.7, 1− 1

N ) through the tournament size parameter t. The ex-
pected loss of diversity DT (t, N) monotonically increases in t and N . However, in the
subdomain N≥10, the function DT (t, N) only increases slowly in N ; in fact, for any
N≥10, |limx→∞ DT (t, x) − DT (t, N)| ≤0.02. When t = 1, tournament selection acts as
random sampling; even in such a case, about 35% of the population is expected to be
lost for any population size N≥10. When t = 3, about 50% of the population is ex-
pected to be lost for any N≥10. Many more individuals will be lost than with Blickle
and Thiele’s static estimate (Theorem 2.2(a)).

4 Expected Loss of Diversity of Truncation Selection

Mühlenbein and Schlierkamp-Voosen’s (1993) truncation selection has a control param-
eter T ∈ (0, 1] called threshold. Let N denote the population size; then, in this selection
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Table 2: Expected loss of diversity DT (t, N) of tournament selection.

Tour- Population Size
nament N
Size t 2 3 4 5 7 10 20 50 inf

1 0.250 0.296 0.316 0.328 0.340 0.349 0.358 0.364 0.368
2 0.312 0.362 0.383 0.394 0.406 0.415 0.424 0.429 0.432
3 0.391 0.442 0.461 0.471 0.482 0.489 0.497 0.502 0.504
4 0.441 0.504 0.522 0.532 0.542 0.548 0.555 0.559 0.561
5 0.470 0.551 0.570 0.579 0.589 0.595 0.601 0.604 0.606
6 0.485 0.586 0.608 0.617 0.625 0.631 0.637 0.640 0.642
7 0.492 0.612 0.638 0.647 0.655 0.661 0.667 0.669 0.671
8 0.496 0.629 0.663 0.672 0.680 0.686 0.691 0.694 0.695
9 0.498 0.641 0.683 0.693 0.701 0.706 0.712 0.714 0.716

10 0.499 0.650 0.698 0.711 0.718 0.724 0.730 0.732 0.733
15 0.500 0.664 0.737 0.767 0.780 0.784 0.791 0.793 0.794
20 0.500 0.666 0.747 0.789 0.817 0.820 0.827 0.830 0.830
25 0.500 0.667 0.749 0.796 0.837 0.846 0.851 0.854 0.855
30 0.500 0.667 0.750 0.799 0.848 0.864 0.869 0.872 0.873

scheme, an individual is randomly selected from the best dTNe individuals; this type
of selection is repeated N times.

THEOREM 4.1: Let DΓ(T, N) denote the expected loss of diversity in truncation selection
with threshold T ∈ (0, 1] and population size N . Then

(a) DΓ(T, N) =
1

N

{

b(1 − T )Nc + dTNe

(

1 −
1

dTNe

)N
}

.

(b) lim
N→∞

DΓ(T, N) = (1 − T ) + Te−1/T .

PROOF: (a) In truncation selection with threshold T and population size N , individuals
with rank ≤ (1−T )N are necessarily discarded and remaining individuals are assigned
the equal selection probability. So we can calculate the probability pk of the event that
occurs when the individual of rank k is selected in a single selection process:

pk =







0 if 1 ≤ k ≤ b(1 − T )Nc
1

N − b(1 − T )Nc
if b(1 − T )Nc+ 1 ≤ k ≤ N.

(2)

Thus, the probability of the event that occurs when the individual of rank k is never
selected in N selection processes is







1 if 1 ≤ k ≤ b(1 − T )Nc
(

1 −
1

N − b(1 − T )Nc

)N

if b(1 − T )Nc + 1 ≤ k ≤ N ;

the expected number of unselected individuals in the selection phase is

b(1 − T )Nc+ (N − b(1 − T )Nc)

(

1 −
1

N − b(1 − T )Nc

)N

= b(1 − T )Nc+ dTNe

(

1 −
1

dTNe

)N

,
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Figure 3: Expected loss of diversity DT (t, N) of tournament selection under fixed pop-
ulation size N .
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Figure 4: Expected loss of diversity DT (t, N) of tournament selection under fixed tour-
nament size t.

and so

DΓ(T, N) =
1

N

{

b(1 − T )Nc+ dTNe

(

1 −
1

dTNe

)N
}

.

(b) Utilizing (a), we carry out the following calculation.

lim
N→∞

DΓ(T, N) = lim
N→∞

{

(1 − T ) + T

(

1 −
1

TN

)N
}

= (1 − T ) + T

{

lim
N→∞

(

1 −
1

TN

)TN
}1/T

= (1 − T ) + T
(

e−1
)1/T

= (1 − T ) + Te−1/T .
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Numerical results of the function DΓ(T, N) are summarized in Table 3 and Figures
5 and 6. Given a population size N , we can adjust DΓ(T, N) within a wide interval
(3.7, 1− 1

N ) through the threshold parameter T . The expected loss of diversity DΓ(T, N)
monotonically decreases in T (Figure 5). Due to the ceiling and the floor functions,
DΓ(T, N) is not monotonic in N (Figure 6), but for the subdomain N≥ 20, it only in-
creases slowly in N ; in fact, for any N≥20, |limx→∞ DΓ(T, x) − DΓ(T, N)|≤0.05. When
T =1, truncation selection acts as random sampling; in such a case, Theorem 4.1(b) in-
dicates that for any sufficiently large N , the expected loss of diversity is nearly equal to
e−1, which agrees with DT (1, N) in Theorem 3.2(b).

5 Expected Loss of Diversity of Linear Ranking Selection

In Baker’s (1985) linear ranking selection, each individual is assigned the selection prob-
ability

pk =
1

N

(

η− + (2 − 2η−)
k − 1

N − 1

)

, (3)

where k is the rank of the individual, η− is a prespecified value satisfying 0 ≤ η− ≤ 1
(called the lowest reproduction rate), and N denotes the population size; then, roulette-
wheel sampling with selection probabilities {pk} is repeated N times.

THEOREM 5.1: Let DR(η−, N) denote the expected loss of diversity in linear ranking
selection with the lowest reproduction rate η− ∈ [0, 1] and population size N . Then

(a) DR(η−, N) =
1

N

N
∑

k=1

(

1 −
1

N

(

η− + (2 − 2η−)
k − 1

N − 1

))N

≈







































(

1 −
1

N

)N

if η−=1

N − 1

(2 − 2η−)(N + 1)

{

(

1 −
η−

N
+

1 − η−

N(N − 1)

)N+1

−

(

1 −
2 − η−

N
−

1 − η−

N(N − 1)

)N+1
}

if 0≤η−<1.

(b) lim
N→∞

DR(η−, N) =

{

e−1 if η−=1

1
(2−2η−)

(

e−η− − e−(2−η−)
)

if 0≤η−<1.

PROOF: (a) In linear ranking selection with the lowest reproduction rate η− and popu-
lation size N , the probability pk of the event that occurs when the individual of rank k is
selected in a single selection process is given by Equation (3). Therefore, the probability
of the event that occurs when the individual of rank k is never selected in N selection
processes is

(1 − pk)N ;

the expected number of unselected individuals in the selection phase is

N
∑

k=1

(1 − pk)N ,
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Table 3: Expected loss of diversity DΓ(T, N) of truncation selection.

Thresh- Population Size N
old T 2 3 4 5 7 10 20 50 inf
0.001 0.500 0.667 0.750 0.800 0.857 0.900 0.950 0.980 0.999
0.010 0.500 0.667 0.750 0.800 0.857 0.900 0.950 0.980 0.990
0.100 0.500 0.667 0.750 0.800 0.857 0.900 0.900 0.900 0.900
0.200 0.500 0.667 0.750 0.800 0.717 0.800 0.801 0.801 0.801
0.300 0.500 0.667 0.531 0.613 0.597 0.705 0.708 0.710 0.711
0.400 0.500 0.417 0.531 0.613 0.597 0.623 0.628 0.631 0.633
0.500 0.500 0.417 0.531 0.479 0.505 0.554 0.561 0.565 0.568
0.600 0.250 0.417 0.398 0.479 0.436 0.497 0.505 0.510 0.513
0.700 0.250 0.296 0.398 0.390 0.436 0.450 0.459 0.464 0.468
0.800 0.250 0.296 0.316 0.390 0.382 0.410 0.420 0.426 0.429
0.900 0.250 0.296 0.316 0.328 0.340 0.377 0.387 0.393 0.396
1.000 0.250 0.296 0.316 0.328 0.340 0.349 0.358 0.364 0.368

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probabilistic Estimate(PopSize=2)

(PopSize=3)

(PopSize=10)

(PopSize=50)

(PopSize=infinite)

Threshold  T

Lo
ss

 o
f D

iv
er

si
ty

Figure 5: Expected loss of diversity DΓ(T, N) of truncation selection under fixed pop-
ulation size N .
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Figure 6: Expected loss of diversity DΓ(T, N) of truncation selection under fixed thresh-
old T .
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and so

DR(η−, N) =
1

N

N
∑

k=1

(

1 −
1

N

(

η− + (2 − 2η−)
k − 1

N − 1

))N

.

Replacing the summation by integral, we yield an approximation.

DR(η−

, N) ≈
1

N

∫ N+1/2

1/2

(

1 −
1

N

(

η
− + (2 − 2η

−)
x − 1

N − 1

))N

dx

=



































(

1 −
1

N

)N

if η− = 1

N − 1

(2 − 2η−)(N + 1)

{

(

1 −
η−

N
+

1 − η−

N(N − 1)

)N+1

−

(

1 −
2 − η−

N
−

1 − η−

N(N − 1)

)N+1
}

if 0 ≤ η− < 1

(b) When N → ∞, the error in the above approximation approaches to zero. So, in the
case where η− = 1, we can proceed with the calculation as follows:

lim
N→∞

DR(η−, N) = lim
N→∞

(

1 −
1

N

)N

= e−1.

In the case where 0 ≤ η− < 1, we can proceed as follows:

lim
N→∞

DR(η−

, N)

= lim
N→∞

N − 1

(2 − 2η−)(N + 1)







(

1 −
η−

N
+

1 − η−

N(N − 1)

)

(

(

1 −
η−

N
+

1 − η−

N(N − 1)

)N/η−
)η−

−

(

1 −
2 − η−

N
−

1 − η−

N(N − 1)

)

(

(

1 −
2 − η−

N
−

1 − η−

N(N − 1)

)N/(2−η−)
)2−η−







=
1

2 − 2η−

(

e
−η− − e

−(2−η−)
)

.

Numerical results of the function DR(η−, N) are summarized in Table 4 and Fig-
ures 7 and 8. For population sizes N ≥ 10, the function DR(η−, N) only varies within
a narrow interval [0.349, 0.432]. The expected loss of diversity DR(η−, N) monotoni-
cally decreases in η− (Figure 7). The function DR(η−, N) is not necessarily monotonic
in N (Figure 8), but in the subdomain N≥10, it only increases slowly; in fact, for any
N ≥ 10, |limx→∞ DR(η−, x) − DR(η−, N)| ≤0.02. When η− = 1, linear ranking selec-
tion acts as random sampling; in such a case, Theorem 5.1(b) indicates that for any
sufficiently large N , DR(1, N) is nearly equal to e−1, which agrees with DT (1, N) in
Theorem 3.2(b).

6 Expected Loss of Diversity of Exponential Ranking Selection

In exponential ranking selection (Michalewicz, 1992), each individual is assigned the se-
lection probability
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Table 4: Expected loss of diversity DR(η−, N) of linear ranking selection.

Lowest Population Size
Reprod. N

Rate η− 2 3 4 5 7 10 20 50 inf
0.000 0.500 0.444 0.436 0.433 0.431 0.431 0.431 0.432 0.432
0.100 0.452 0.416 0.413 0.412 0.413 0.415 0.417 0.418 0.420
0.200 0.410 0.391 0.392 0.394 0.398 0.401 0.404 0.407 0.408
0.300 0.372 0.369 0.374 0.379 0.384 0.388 0.393 0.397 0.399
0.400 0.340 0.350 0.359 0.365 0.372 0.378 0.384 0.388 0.390
0.500 0.312 0.333 0.346 0.353 0.362 0.369 0.376 0.380 0.383
0.600 0.290 0.320 0.335 0.344 0.354 0.361 0.370 0.375 0.378
0.700 0.273 0.310 0.327 0.337 0.348 0.356 0.365 0.370 0.373
0.800 0.260 0.302 0.321 0.332 0.343 0.352 0.361 0.367 0.370
0.900 0.253 0.298 0.318 0.329 0.341 0.349 0.359 0.365 0.368
1.000 0.250 0.296 0.316 0.328 0.340 0.349 0.358 0.364 0.368
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Figure 7: Expected loss of diversity DR(η−, N) of linear ranking selection under fixed
population size N .
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Figure 8: Expected loss of diversity DR(η−, N) of linear ranking selection under fixed
lowest reproduction rate η−.
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pk =
cN−k

∑N
i=1 cN−i

=











1

N
if c=1

1 − c

1 − cN
cN−k if 0<c<1,

(4)

where k is the rank of the individual, c is a prespecified value satisfying 0 < c ≤ 1
(called ranking base), and N denotes the population size; then, roulette-wheel sampling
with selection probabilities {pk} is repeated N times.

THEOREM 6.1: Let DE(c, N) denote the expected loss of diversity in exponential ranking
selection with ranking base c ∈ (0, 1] and population size N . Then

(a) DE(c, N) =























(

1 −
1

N

)N

if c=1

1

N

N
∑

k=1

(

1−
1 − c

1 − cN
cN−k

)N

if 0<c<1.

(b) lim
N→∞

DE(c, N) =

{

e−1 if c=1
1 if 0<c<1.

PROOF: (a) We can proceed with the proof in a similar manner as with the first half of
the proof of Theorem 5.1 (a).

(b) When c = 1, we can immediately derive the conclusion:

lim
N→∞

DE(c, N) = lim
N→∞

(

1 −
1

N

)N

= e−1.

When 0 < c < 1, we observe that for any fixed positive integer k, we have

lim
N→∞

(

1 −
1 − c

1 − cN
cN−k

)N

= lim
N→∞







(

1 −
1

1−cN

1−c c−(N−k)

)

1−cN

1−c c−(N−k)






1−c

1−cN cN−kN

= lim
N→∞

exp

(

−
1 − c

1 − cN
cN−kN

)

= lim
N→∞

exp

(

−
1 − c

1 − cN
cN−

log N
log(1/c)

−k

)

= 1.

So, we next examine which values of k ∈ [0, N − 1] satisfy the approximation
(

1 − 1−c
1−cN ck

)N

≈ 1. For any small value ε > 0, we can repeatedly transform inequalies:

(

1 −
1 − c

1 − cN
ck

)N

≥ 1 − ε ⇔

(

1

c

)k

≥
1 − c

1 − cN

1

1 − (1 − ε)1/N

⇔ k ≥
1

log(1/c)

{

log
1 − c

1 − cN
− log(1 − (1 − ε)1/N )

}

.
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Now, note that for any real number m, the function (1 + x)m can be represented by an
infinite Maclaurin’s series, (1+x)m = 1+ m

1! x+ m(m−1)
2! x2 + m(m−1)(m−2)

3! x3 + · · · when
−1 < x < 1; by utilizing this mathematical fact, we can give a simple lower bound for
log(1 − (1 − ε)1/N ) :

log(1 − (1 − ε)1/N )

= log

(

1 −

{

1 −
1

N
ε +

1
N

(

1
N − 1

)

2!
ε2 −

1
N

(

1
N − 1

) (

1
N − 2

)

3!
ε3 + · · ·

})

= log

(

1

N
ε +

1
N

(

1 − 1
N

)

2!
ε2 +

1
N

(

1− 1
N

) (

2 − 1
N

)

3!
ε3 + · · ·

)

≥ log
ε

N
.

Thus, we can deduce the claim that for any small value ε > 0 and any nonnegative

integer k ≥ 1
log(1/c)

{

log 1−c
1−cN − log ε

N

}

, the inequality
(

1 − 1−c
1−cN ck

)N

≥ 1 − ε holds,
and hence,

1

N

N
∑

k=1

(

1 −
1 − c

1 − cN
cN−k

)N

=
1

N

N−1
∑

k=0

(

1 −
1 − c

1 − cN
ck

)N

≥
1

N
(1 − ε)

[

N − 1 −
1

log(1/c)

{

log
1 − c

1 − cN
− log

ε

N

}]

= 1− ε −
1 − ε

N
−

1 − ε

N log(1/c)

{

log N − log
1 − cN

1 − c
+ log

1

ε

}

.

Letting N → ∞, we have

lim
N→∞

1

N

N
∑

k=1

(

1 −
1 − c

1 − cN
cN−k

)N

≥ 1 − ε.

Since we can assign an arbitrarily small positive value to ε, we conclude that

lim
N→∞

1

N

N
∑

k=1

(

1 −
1 − c

1 − cN
cN−k

)N

≥ 1.

From this inequality and the trivial fact

lim
N→∞

1

N

N
∑

k=1

(

1 −
1 − c

1 − cN
cN−k

)N

≤ lim
N→∞

1

N

N
∑

k=1

(1− 0)
N

= 1,

we obtain the final conclusion:

lim
N→∞

1

N

N
∑

k=1

(

1 −
1 − c

1 − cN
cN−k

)N

= 1.
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Numerical results of the function DE(c, N) are summarized in Table 5 and Figures
9 and 10. When c = 1, exponential ranking selection acts as random sampling; in such
a case, Theorem 6.1(b) indicates that for any sufficiently large N , DE(c, N) is nearly
equal to e−1, which agrees with DT (1, N) in Theorem 3.2(b). When 0 < c < 1, the
expected loss of diversity DE(c, N) monotonically decreases in c (Figure 9) and rapidly
increases in N (Figure 10). Function DE(c, N) is apt to take a value near 1; even if we
greatly enlarge the population, the number of surviving individuals will only increase
a little. If we want to keep DE(c, N) in a certain moderate level for various population
sizes, we must change the value of ranking base parameter c depending on population
size; in this respect, the exponential ranking scheme has a different type of control
parameter than tournament, truncation, and linear ranking schemes, although Bäck
(1994, 1996) and Julstrom (1999) observed that tournament selection with tournament
size t and exponential ranking selection with ranking base c behave nearly equivalently
if population size N is sufficiently large and c =

(

1 − 1
N

)t.

7 Variance of Loss of Diversity

We now calculate variance of loss of diversity. Given a random variable X , we use
E(X) and Var(X) to denote the expected value and variance of X , respectively.

THEOREM 7.1: Consider an arbitrary selection procedure in which individuals are selected
one by one according to some selection probability distribution. Let pk be the selection probabil-
ity assigned to the individual of rank k, and let N be the population size. Then
(a) the variance of loss of diversity is
Var(LossOfDiversity)

=
2

N2

N
∑

k=1

k−1
∑

m=1

(1 − pk − pm)N −
1

N2

{

N
∑

k=1

(1 − pk)N

}2

+
1

N2

N
∑

k=1

(1 − pk)N .

(b) Var(LossOfDiversity) ≤
1

N2

N
∑

k=1

(1 − pk)N −
1

N2

N
∑

k=1

(1 − pk)2N

(c) lim
N→∞

Var(LossOfDiversity) = 0

PROOF: (a) By using random variables,
L = the number of individuals not selected during the selection phase

and

Lk =

{

1 if the individual of rank k is not selected during the selection phase
0 otherwise,

we calculate the variance of loss of diversity as follows:

Var(LossOfDiversity) = Var
(

L

N

)

= E

(

(

L

N

)2
)

−
{

E
(

L

N

)}2

=
1

N2
E
(

(L1 + L2 + · · · + LN )2
)

−
1

N2
{E(L1 + L2 + · · · + LN )}2

=
1

N2

N
∑

k=1

E(L2
k) +

2

N2

N
∑

k=1

k−1
∑

m=1

E(LkLm) −
1

N2

{

N
∑

k=1

E(Lk)

}2

.
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Table 5: Expected loss of diversity DE(c, N) of exponential ranking selection.

Ranking Population Size N

Base c 2 3 5 7 10 50 200 1000 inf
0.100 0.417 0.576 0.715 0.778 0.829 0.952 0.985 0.996 1.000
0.200 0.361 0.501 0.646 0.719 0.782 0.937 0.980 0.995 1.000
0.300 0.322 0.441 0.582 0.664 0.736 0.921 0.975 0.994 1.000
0.400 0.296 0.393 0.521 0.605 0.686 0.903 0.968 0.992 1.000
0.500 0.278 0.358 0.464 0.543 0.628 0.880 0.960 0.990 1.000
0.600 0.266 0.332 0.414 0.480 0.561 0.850 0.949 0.987 1.000
0.700 0.258 0.314 0.374 0.422 0.486 0.805 0.932 0.982 1.000
0.800 0.253 0.304 0.347 0.376 0.416 0.731 0.902 0.973 1.000
0.900 0.251 0.298 0.332 0.349 0.366 0.577 0.828 0.950 1.000
0.950 0.250 0.297 0.329 0.342 0.353 0.446 0.717 0.912 1.000
0.980 0.250 0.296 0.328 0.340 0.349 0.379 0.523 0.823 1.000
0.995 0.250 0.296 0.328 0.340 0.349 0.365 0.382 0.568 1.000
1.000 0.250 0.296 0.328 0.340 0.349 0.364 0.367 0.368 0.368
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Figure 9: Expected loss of diversity DE(c, N) of exponential ranking selection under
fixed population size N .
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Figure 10: Expected loss of diversity DE(c, N) of exponential ranking selection under
fixed ranking base c.
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Now, we have L2
k = Lk; from the choice of pk, we also obtain

E(Lk) = Pr(the individual of rank k is not selected during the selection phase)

= (1 − pk)N ,

and

E(LkLm) = Pr(the individuals of rank k and m

are both unselected during the selection phase)

= (1 − pk − pm)N .

From these equations, the required equation follows.

(b) If k 6= m, then from the choice of pk’s, it must hold that 1 − pk − pm ≥ 0. So we can
continue calculation of (a) as follows:

Var(LossOfDiversity)

≤
2

N2

N
∑

k=1

k−1
∑

m=1

(1 − pk − pm + pkpm)N −
1

N2

{

N
∑

k=1

(1 − pk)N

}2

+
1

N2

N
∑

k=1

(1 − pk)N

=
1

N2

N
∑

k=1

N
∑

m=1

(1 − pk − pm + pkpm)N −
1

N2

N
∑

k=1

(1 − 2pk + p2
k)N

−
1

N2

{

N
∑

k=1

(1 − pk)N

}2

+
1

N2

N
∑

k=1

(1 − pk)N

=
1

N2

N
∑

k=1

(1 − pk)N
N
∑

m=1

(1 − pm)N −
1

N2

N
∑

k=1

(1 − pk)2N

−
1

N2

{

N
∑

k=1

(1 − pk)N

}2

+
1

N2

N
∑

k=1

(1 − pk)N

=
1

N2

N
∑

k=1

(1 − pk)N −
1

N2

N
∑

k=1

(1 − pk)2N .

(c) From the inequality in (b), we have

0 ≤ lim
N→∞

Var(LossOfDiversity)

≤ lim
N→∞

1

N2

N
∑

k=1

(1 − pk)N ≤ lim
N→∞

1

N2

N
∑

k=1

1 = lim
N→∞

1

N
= 0.

Thus, limN→∞ Var(LossOfDiversity) = 0.

COROLLARY 7.2: (a) For tournament selection with tournament size t and population size
N , the variance of loss of diversity is
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Var(LossOfDiversity)

=
2

N2

N
∑

k=1

k−1
∑

m=1

(

1 −
kt − (k − 1)t

N t
−

mt − (m − 1)t

N t

)N

−
1

N2

{

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N
}2

+
1

N2

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

≤
1

N2

{

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)N

−

N
∑

k=1

(

1 −
kt − (k − 1)t

N t

)2N
}

.

(b) For truncation selection with threshold T and population size N , the variance of loss of
diversity is

Var(LossOfDiversity)

=
dTNe

N2

{

(dTNe − 1)

(

1 −
2

dTNe

)N

− dTNe

(

1 −
1

dTNe

)2N

+

(

1 −
1

dTNe

)N
}

≤
dTNe

N2

{

(

1 −
1

dTNe

)N

−

(

1 −
1

dTNe

)2N
}

.

(c) For linear ranking selection with the lowest reproduction rate η− and population size N , the
variance of loss of diversity is

Var(LossOfDiversity) =
2

N2

N
∑

k=1

k−1
∑

m=1

(

1 −
1

N

(

2η
− + (2 − 2η

−)
k + m − 2

N − 1

))N

−
1

N2

{

N
∑

k=1

(

1 −
1

N

(

η
− + (2 − 2η

−)
k − 1

N − 1

))N
}2

+
1

N2

N
∑

k=1

(

1 −
1

N

(

η
− + (2 − 2η

−)
k − 1

N − 1

))N

≤
1

N2

{

N
∑

k=1

(

1 −
1

N

(

η
− + (2 − 2η

−)
k − 1

N − 1

))N

−

N
∑

k=1

(

1 −
1

N

(

η
− + (2 − 2η

−)
k − 1

N − 1

))2N
}

.

(d) For exponential ranking selection with ranking base c and population size N , if 0 < c < 1
then the variance of loss of diversity is

Var(LossOfDiversity) =
2

N2

N
∑

k=1

k−1
∑

m=1

(

1 −
1 − c

1 − cN
c
N−k −

1 − c

1 − cN
c
N−m

)N

−
1

N2

{

N
∑

k=1

(

1 −
1 − c

1 − cN
c
N−k

)N

}2

+
1

N2

N
∑

k=1

(

1 −
1 − c

1 − cN
c
N−k

)N

≤
1

N2

{

N
∑

k=1

(

1 −
1 − c

1 − cN
c
N−k

)N

−

N
∑

k=1

(

1 −
1 − c

1 − cN
c
N−k

)2N

}

;

if c=1 then the variance of loss of diversity is
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Var(LossOfDiversity)

=
2

N2

N
∑

k=1

k−1
∑

m=1

(

1 −
2

N

)N

−
1

N2

{

N
∑

k=1

(

1 −
1

N

)N

}2

+
1

N2

N
∑

k=1

(

1 −
1

N

)N

≤
1

N2

{

N
∑

k=1

(

1 −
1

N

)N

−

N
∑

k=1

(

1 −
1

N

)2N

}

.

PROOF: Assertions (a), (c), and (d) immediately follow from Theorem 7.1(a) and (b),
and the selection probabilities given in Equations (1), (3), and (4). As for assertion (b),
from Equation (2) we have

pk =







0 if 1 ≤ k ≤ b(1 − T )Nc
1

dTNe
if b(1 − T )Nc + 1 ≤ k ≤ N ;

so we can proceed with calculation of Theorem 7.1(a) as follows:

Var(LossOfDiversity)

=
2

N2

N
∑

k=1

k−1
∑

m=1

(1 − pk − pm)N −
1

N2

{

N
∑

k=1

(1 − pk)N

}2

+
1

N2

N
∑

k=1

(1 − pk)N

=
2

N2

{

1

2
b(1 − T )Nc(b(1 − T )Nc − 1) + dTNeb(1 − T )Nc

(

1 −
1

dTNe

)N

+
1

2
dTNe(dTNe − 1)

(

1 −
2

dTNe

)N
}

−
1

N2

{

b(1 − T )Nc + dTNe

(

1 −
1

dTNe

)N
}2

+
1

N2

{

b(1 − T )Nc + dTNe

(

1 −
1

dTNe

)N
}

=
dTNe

N2

{

(dTNe − 1)

(

1 −
2

dTNe

)N

−dTNe

(

1 −
1

dTNe

)2N

+

(

1 −
1

dTNe

)N
}

.

We can also proceed with calculation of Theorem 7.1(b) as follows:

Var(LossOfDiversity) ≤
1

N2

N
∑

k=1

(1 − pk)N −
1

N2

N
∑

k=1

(1 − pk)2N

=
1

N2

{

b(1 − T )Nc + dTNe

(

1 −
1

dTNe

)N
}

−
1

N2

{

b(1 − T )Nc + dTNe

(

1 −
1

dTNe

)2N
}

=
dTNe

N2

{

N
∑

k=1

(

1 −
1

dTNe

)N

−

N
∑

k=1

(

1 −
1

dTNe

)2N
}

.
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Table 6: The variance of loss of diversity in tournament selection.

Tour- Population Size
nament N
Size t 2 3 4 5 7 10 20 50 200

1 0.250 0.189 0.161 0.143 0.120 0.100 0.070 0.044 0.022
2 0.242 0.190 0.162 0.144 0.121 0.100 0.071 0.045 0.022
3 0.207 0.183 0.155 0.138 0.116 0.096 0.068 0.043 0.021
4 0.161 0.174 0.148 0.130 0.109 0.091 0.064 0.041 0.020
5 0.119 0.160 0.142 0.124 0.104 0.086 0.061 0.038 0.019
6 0.086 0.143 0.136 0.119 0.098 0.082 0.058 0.037 0.018
7 0.062 0.124 0.129 0.115 0.094 0.078 0.055 0.035 0.017
8 0.044 0.105 0.121 0.111 0.090 0.075 0.053 0.033 0.017
9 0.031 0.088 0.112 0.108 0.087 0.072 0.051 0.032 0.016

10 0.022 0.073 0.102 0.103 0.084 0.069 0.049 0.031 0.015
15 0.004 0.027 0.056 0.074 0.077 0.059 0.042 0.027 0.013
20 0.001 0.010 0.028 0.046 0.065 0.055 0.037 0.024 0.012
25 0.000 0.004 0.014 0.027 0.050 0.053 0.034 0.021 0.011
30 0.000 0.001 0.007 0.016 0.036 0.049 0.031 0.020 0.010

Table 7: The variance of loss of diversity in truncation selection.

Thres- Population Size N
hold T 2 3 4 5 7 10 20 50 200
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.200 0.000 0.000 0.000 0.000 0.018 0.004 0.006 0.004 0.002
0.300 0.000 0.000 0.083 0.048 0.055 0.022 0.019 0.013 0.007
0.400 0.000 0.144 0.083 0.048 0.055 0.043 0.033 0.021 0.011
0.500 0.000 0.144 0.083 0.103 0.084 0.061 0.044 0.028 0.014
0.600 0.250 0.144 0.140 0.103 0.102 0.074 0.053 0.033 0.017
0.700 0.250 0.189 0.140 0.130 0.102 0.084 0.059 0.037 0.019
0.800 0.250 0.189 0.161 0.130 0.113 0.091 0.064 0.040 0.020
0.900 0.250 0.189 0.161 0.143 0.120 0.096 0.068 0.043 0.021
1.000 0.250 0.189 0.161 0.143 0.120 0.100 0.070 0.044 0.022
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Table 8: The variance of loss of diversity in linear ranking selection.

Lowest Population Size
Reprod. N

Rate η− 2 3 4 5 7 10 20 50 200
0.000 0.000 0.157 0.146 0.134 0.116 0.098 0.070 0.044 0.022
0.100 0.147 0.174 0.155 0.140 0.120 0.100 0.071 0.045 0.022
0.200 0.192 0.184 0.161 0.144 0.122 0.102 0.072 0.045 0.023
0.300 0.218 0.189 0.163 0.146 0.122 0.102 0.072 0.045 0.023
0.400 0.233 0.192 0.164 0.146 0.122 0.102 0.072 0.045 0.023
0.500 0.242 0.192 0.164 0.146 0.122 0.102 0.071 0.045 0.022
0.600 0.247 0.192 0.163 0.145 0.121 0.101 0.071 0.045 0.022
0.700 0.249 0.191 0.163 0.144 0.121 0.100 0.071 0.045 0.022
0.800 0.250 0.190 0.162 0.143 0.120 0.100 0.070 0.044 0.022
0.900 0.250 0.189 0.161 0.143 0.120 0.100 0.070 0.044 0.022
1.000 0.250 0.189 0.161 0.143 0.120 0.100 0.070 0.044 0.022

Table 9: The variance of loss of diversity in exponential ranking selection.

Ranking Population Size N
Base c 2 3 5 7 10 20 50 200 1000
0.100 0.186 0.152 0.105 0.079 0.057 0.026 0.011 0.003 0.001
0.200 0.224 0.183 0.123 0.090 0.063 0.032 0.013 0.003 0.001
0.300 0.239 0.194 0.134 0.100 0.071 0.037 0.015 0.004 0.001
0.400 0.246 0.197 0.144 0.110 0.080 0.042 0.017 0.004 0.001
0.500 0.248 0.196 0.149 0.119 0.089 0.047 0.020 0.005 0.001
0.600 0.250 0.194 0.150 0.125 0.098 0.054 0.023 0.006 0.001
0.700 0.250 0.192 0.149 0.126 0.104 0.062 0.027 0.007 0.001
0.800 0.250 0.190 0.146 0.124 0.105 0.071 0.033 0.009 0.002
0.900 0.250 0.189 0.144 0.121 0.102 0.074 0.043 0.012 0.003
0.950 0.250 0.189 0.143 0.120 0.100 0.071 0.047 0.017 0.004
0.980 0.250 0.189 0.143 0.120 0.100 0.070 0.045 0.023 0.006
0.995 0.250 0.189 0.143 0.120 0.100 0.070 0.044 0.022 0.010
1.000 0.250 0.189 0.143 0.120 0.100 0.070 0.044 0.022 0.010
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Figure 11: Possible pairs of expected value and variance of loss of diversity in tourna-
ment selection.
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Figure 12: Possible pairs of expected value and variance of loss of diversity in trunca-
tion selection.
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Figure 13: Possible pairs of expected value and variance of loss of diversity in linear
ranking selection.
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Figure 14: Possible pairs of expected value and variance of loss of diversity in expo-
nential ranking selection.

420 Evolutionary Computation Volume 10, Number 4



Expected Loss of Diversity of Selection Schemes

Tables 6 to 9 give numerical results of standard deviation
√

Var(LossOfDiversity)
in tournament selection, truncation selection, linear ranking selection, and exponential
ranking selection, respectively. Figures 11 to 14 show what pair of values is possible
as a pair of expected value and standard deviation of loss of diversity with fixed pop-
ulation size. In these figures, we observe respective characteristics of four selection
schemes. For example, in Figure 12, we observe that the deviation clearly falls as the
expected value increases, which agrees with the fact that in truncation selection most of
dismissals are performed deterministically. In Figure 13, we observe that both expected
value and deviation only vary within a narrow range; therefore, in linear ranking se-
lection, the speed of evolution will only slightly vary through the lowest reproduction
parameter η−. We also observe that Figure 14 gives almost the same locus as Figure 11;
so exponential ranking and tournament schemes are seen to bring about nearly equiv-
alent selection behaviors via some transformation between control parameters, as Bäck
(1996) and Julstrom (1999) observed.

8 Summary

Although the loss of diversity is considered to be a fundamental measure of selection
pressure, study about this subject was only performed by Blickle and Thiele (1995,
1997); their estimates do not agree with numerical results by simulation. So we proba-
bilistically calculated the expected value and variance of the loss of diversity in tourna-
ment selection, truncation selection, linear ranking selection, and exponential ranking
selection. Our theoretical results agree with numerical results by simulation.

From our results, we understood that even in random sampling, e−1×100≈36.8%
of the population is apt to be lost during the selection phase. From numerical results,
we showed that in tournament selection, many more individuals are expected to be lost
than with Blickle and Thiele’s static estimate. We observed that tournament and expo-
nential ranking schemes potentially bring about nearly equivalent selection behaviors
but have different types of control parameters; we also observed that in linear ranking
selection, the evolution speed will only vary slightly through the lowest reproduction
parameter η−.
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