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Summary

Non-orthogonal spline wavelets are developed for Galerkin BEM. The proposed wavelets

have compact supports and closed-form expressions. Besides of it, one can choose arbi-

trarily the order of vanishing moments of the wavelets independently of order of B-splines.

Sparse coefficient matrices are obtained by truncating the small elements a priori. The

memory requirement and computational time can be controled by changing the order of

vanishing moments of the wavelets. As an iterative technique for solving the boundary

element equations, GMRES(m) method is employed. Diagonal scaling and incomplete LU

factorization (ILU(0)) are considered for the preconditioning. The ILU(0) becomes an ef-

fective preconditioner for higher order vanishing moments. Through numerical examples,

availability of the proposed wavelets is investigated.
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1 Introduction

Boundary element method (BEM) only requires discretization of the boundary. This is

the main advantage of the method. However, its computational cost is more expensive

than that of finite element method, particularly for large-scale problems. This is because

the discretization of the boundary integral equation leads to fully populated coefficient

matrices requiring O(N2) memory storage and O(N3) computational work (N : degrees

of freedom). On the other hand, in the finite element analysis we obtain a sparse stiffness

matrix in spite of the large number of unknowns. In recent years, many researchers have

attempted to overcome this computational difficulty in BEMs, e.g. by a panel clustering

technique[1], a fast multipole method[2] and employment of wavelets. These remedies

reduce the computational work to O(N(logN)α) or O(N1+β) where α ≥ 0 and 0 ≤ β ≤ 1.
In the application of the wavelet to BEM, two features of the wavelet play an important

role in the improvement of the performance, that is, local support and vanishing moments.

The vanishing moments imply the orthogonality of the wavelet basis to all polynomials of

a certain degree or less. In BEMs, the coefficient matrix is defined as an inner product of

the basis and a kernel function. Hence, when the wavelet is used as the basis, due to the

vanishing moment property of the wavelets, asymptotical order of the element is increased

for large distance between the source and integral points. As a result, most of the matrix

entries have small values. This fact enables us to obtain a sparse matrix by truncating

the small elements.

The wavelet basis have been applied to integral equations by two ways. One is the

employment of the wavelets constructed by linear combination of Dirac delta functions,

which have been proposed by Beylkin et al.[3], Alpert et al.[4] and Canning[5]. In this ap-

proach, a discrete wavelet transform is applied to the matrix obtained by the conventional

discretization. The same idea has been used to improve the performance of the BEM for

collocation method[6][7].

The other approach is the application of continuous wavelet to the basis and the weight-

ing function of BEM. This is referred to as the wavelet-BEM. Steinberg et al. [8] and

Sabetfakhri et al. [9] have attempted to employ the Battle-Lemarié wavelet. Wang

[10][11] has proposed the boundary element analysis using the Daubechies wavelet. These

wavelets are classified in orthonormal wavelet. Although the orthonormal wavelets were

employed in many works, they have disadvantages in application to BEM. The Battle-

Lemarié wavelet has an infinite support, though its amplitude shows exponential decay.

On the other hand, the Daubechies wavelet is not given by a closed-form in spite of a

compactly supported wavelet. The authors[7][12] have attempted to use the Haar wavelet.

The Haar wavelet is only a compactly supported wavelet with a closed-form. However,

the order of its vanishing moments is the lowest one. Therefore this basis does not offer

remarkable improvement. In order to avoid those difficulties in the orthonormal wavelets,

Goswami et al.[13] have employed a semi-orthogonal wavelet, in which bases in the same

subspace do not have orthogonality. While for the semi-orthogonal wavelets not all of the

bases satisfy the orthogonality, they have compact support and closed-form. Moreover, the
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semi-orthogonality permits the integral wavelet transform based on a duality principle[14].

However one cannot control the order of vanishing moments.

In the works mentioned above, the basis functions are orthonormal or semi-orthogonal

wavelets. However, the wavelet-BEM owes its effectiveness to the local support and van-

ishing moment property of the wavelet basis. In this context, the orthogonality of the

basis is not a necessary condition.

In the present paper, we develop a non-orthogonal wavelet that is suitable for the bound-

ary element analysis. By using B-splines, this wavelet can be represented in a closed-form.

In addition, no any orthogonality is imposed on the bases. This provides a compact

support. Furthermore, we can choose the order of vanishing moments independently of

the order of B-splines. However, in the application of the present bases we encounter

a difficulty, that is, the components of a known vector in algebraic equations have to be

evaluated by the fast wavelet transform with matrix inversion. This is because the wavelet

transform is not defined as an orthogonal transformation, for the non-orthogonal wavelet.

However, this computational work can be reduced to O(w2N), since the transformation

matrix is a band matrix with band width w.

This paper is organized as follows, in Section 2, we describe a multilevel representation

for the non-orthogonal wavelets and construction of the non-orthogonal spline wavelet.

In wavelet-BEM, since the wavelet expansion is usually defined on a finite interval, a

boundary wavelet is required to guarantee the completeness of the bases. Construction of

the boundary wavelet is then attempted in Section 3. Moreover, we introduce an algorithm

for evaluation of expansion coefficients of a wavelet series. In Section 4, we show boundary

element formulation using the wavelets for 2-D Laplace problem, and a truncation strategy

of coefficient matrix entries is also shown. In Section 5, we discuss the performance of

the method, such as memory requirement and CPU time, based on the numerical results.

Finally, concluding remarks are summarized in Section 6.

2 Development of non-orthogonal wavelets

2.1. Multilevel representation using non-orthogonal wavelets

One of the important features of the wavelets is to develop representation of a function

at various resolution scale based on the multiresolution analysis (MRA) [15][16].

The MRA in the Hilbert space L2(R) is given by a sequence of subspaces Vk with the
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following property:

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R), (1)[
k∈Z

Vk = L
2(R), (2)\

k∈Z
Vk = {0}, (3)

h(ξ) ∈ Vk ⇐⇒ h(2ξ) ∈ Vk+1,
h(ξ) ∈ Vk ⇐⇒ {h(ξ − j), j ∈ Z} ∈ Vk,

(4)

where R and Z are sets of all reals and integers, respectively. h(ξ) is an arbitrary function,

and the symbol represents a closure.

We introduce a scaling function φ such that

Vk = span{φk,j(ξ), j ∈ Z}, (5)

φk,j(ξ) = 2
k

2φ(2kξ − j) (j, k ∈ Z). (6)

Let us consider the two subspaces Vk and Vk+1. From equations (1) and (5), the scaling

function φk that is the basis in Vk can be expressed as

φk,j(ξ) =
X
l∈Z

al · φk+1,l(ξ) (j ∈ Z), (7)

where al (l ∈ Z) are coefficients determining a hierarchical relation of the scaling functions.
Equation (7) is referred to as the dilation equation or the two-scale relation.

We define the difference between the subspaces Vk and Vk+1 as a subspaceWk. Hence,

the space Vk+1 consists of the subspaces Vk andWk

Vk+1 = Vk +Wk, (8)

where a symbol + denotes direct sum. Note that for the orthonormal or semi-orthogonal

wavelet these subspaces are connected by orthogonal sum ⊕.
From equations (2) and (8), the direct sum of all complementary subspacesWk is dense

in L2(R), that is,

L2(R) =
[
k∈Z

Wk. (9)

Now, let us introduce a wavelet ψ such that

Wk = span{ψk,j(ξ), j ∈ Z}, (10)

ψk,j(ξ) = 2
k

2ψ(2kξ − j) (j, k ∈ Z). (11)

From equation (8), since the spaceWk is the complementary subspace of MRA, the basis

ψk,j inWk is constructed by the bases in the space Vk+1, i.e.,

ψk,j(ξ) =
X
l∈Z

bl · φk+1,l(ξ), (12)
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where bl (l ∈ Z) are constants.
In cases where the MRA is applied to the interval [0, 1], the subspaces Vk are given as a

semi-infinite increasing sequence with initial subspace V0 instead of an infinite sequence,

i.e.,

V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ L2[0, 1]. (13)

Then, equation (9) is rewritten as

L2[0, 1] = V0 +
∞[
k=0

Wk. (14)

We now consider a projection of an arbitrary function f(ξ) on a subspace. When the

projections on the subspaces V0 and Wk (k: a positive integer) are defined as P0f and

Qkf , respectively, from equation (14), f(ξ) can be expressed by superposition of the

projections, namely,

f(ξ) = P0f(ξ) +
∞X
k=0

Qkf(ξ). (15)

In equation (15), the projections P0f and Qkf are given by

P0f(ξ) =

N0X
j=1

c0,jφ0,j(ξ),

Qkf(ξ) =
nkX
l=1

dk,lψk,l(ξ),

(16)

where c0,j and dk,l are expansion coefficients. N0 and nk are the number of bases φ0,j and

ψk,l, respectively.

Substituting equation (16) into (15), we obtain the following representation for the

function f :

f(ξ) =

N0X
j=1

c0,jφ0,j(ξ) +

∞X
k=0

nkX
l=1

dk,lψk,l(ξ). (17)

Equation (17) is called the wavelet series.

2.2. Scaling functions

We use a B-spline as a scaling function [14]. Let φm denote the scaling function associ-

ated with the B-spline of order (m+ 1):

φm(ξ) =
1

m!

m+1X
j=0

(−1)j
µ
m+ 1

j

¶
(ξ − j)m+ , (18)

where
¡
m+1
j

¢
is a binomial coefficient. The polynomial (ξ − j)m+ is termed the truncated

power function, and is defined by

(ξ − j)m+ =

⎧⎨⎩ 0 (ξ < j),

(ξ − j)m (ξ ≥ j).
(19)
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(a) (b) (c)

Figure 1: Examples of the scaling function. (a) Piecewise constant scaling function φ0(ξ).

(b) Piecewise linear scaling function φ1(ξ). (c) Piecewise quadratic scaling function φ2(ξ).

Figure 1 depicts the shape of the scaling functions with m = 0, 1 and 2.

For the scaling functions given by equation (18), we obtain the dilation equation as

follows:

φm(ξ) =
1

2m

m+1X
j=0

µ
m+ 1

j

¶
φm(2ξ − j). (20)

2.3. Wavelets

As shown in the previous subsection, the scaling function is constructed using piecewise

polynomials of degree m. When φm is used as the basis of MRA, the wavelets spanning

the complementary subspaces in MRA are required to have a degree of polynomials which

equals to that of φm. Moreover, in this study, the wavelet has the arbitrary-order vanishing

moments and compact support.

We now define ψmn as the wavelet that consists of (m+1)th-order B-splines and possesses

nth-order vanishing moments, i.e.,Z ∞
−∞

ξk · ψmn (ξ) dξ = 0 (k = 0, 1, . . . , n− 1). (21)

In order to construct the wavelet ψmn , we prepare the following result.

Theorem 2.1. When a function ψmn has nth-order vanishing moments, the function

ψmn+1(ξ) = ψmn (ξ)− ψmn (ξ − γ) (n ≥ 1) (22)

has (n + 1)th-order vanishing moments. In equation (22), γ 6= 0 is an arbitrary real

number.

Proof. It is clear that ψmn+1 has nth-order vanishing moments. On the other hand, from
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equation (22) we haveZ ∞
−∞

ξnψmn+1(ξ) dξ =

Z ∞
−∞

ξn [ψmn (ξ)− ψmn (ξ − γ)] dξ

=

Z ∞
−∞

ξnψmn (ξ) dξ −
Z ∞
−∞
(ξ + γ)nψmn (ξ) dξ. (23)

In the second integration of the right-hand side of equation (23),

(ξ + γ)n = ξn +
nX
i=1

µ
n

i

¶
γn+1−iξi−1. (24)

Substituting equation (24) into (23), we obtainZ ∞
−∞

ξnψmn+1(ξ) dξ

=

Z ∞
−∞
(ξn − ξn)ψmn (ξ) dξ −

nX
i=1

µ
n

i

¶
γn+1−i

Z ∞
−∞

ξi−1ψmn (ξ) dξ = 0. (25)

This completes the proof of Theorem 2.1.

In this study, γ is set to 1/2 and the wavelet ψmn is given by

ψm1 (ξ) = αm1 {φm(2ξ)− φ(2ξ − 1)} , (26)

ψmn (ξ) = βmn

½
ψmn−1(ξ)− ψmn−1

µ
ξ − 1

2

¶¾
(n ≥ 2), (27)

where αm1 and β
m
n are determined as follows:

αm1 =

s
Bm

Cm1
, βmn =

s
Bm

Cmn
, (28)

Bm =

Z ∞
−∞
{φm(ξ)}2 dξ, (29)

Cmn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z ∞
−∞
{φm(2ξ)− φm(2ξ − 1)}2 dξ (n = 1),Z ∞

−∞

n
ψmn−1(ξ)− ψmn−1(ξ −

1

2
)
o2
dξ (n ≥ 2).

(30)

Throughout this paper, n denotes the order of vanishing moments.

Theorem 2.2. The wavelet can be represented in terms of the truncated power functions

by

ψmn (ξ) =
αmn
m!

m+n+1X
j=0

(−1)j
µ
m+ n+ 1

j

¶
(2ξ − j)m+ , (31)

where αmn is a constant calculated by

αmn =

s
Bm

Dmn
= βmn · αmn−1, (32)

Dmn =
1

(m!)2

Z ∞
−∞

nm+n+1X
j=0

(−1)j
µ
m+ n+ 1

j

¶
(2ξ − j)m+

o2
dξ. (33)

Note that Bm can be evaluated by equation (29).

6



Proof. The proof is accomplished by induction on n. First, assume n = 1. From equations

(18) and (26), we have

ψm1 (ξ) = αm1 {φm(2ξ)− φm(2ξ − 1)}

=
αm1
m!

⎧⎨⎩(2ξ)m+ +
m+1X
j=1

(−1)j
µ
m+ 2

j

¶
(2ξ − j)m+ + (−1)m+2(2ξ −m− 2)m+

⎫⎬⎭
=
αm1
m!

m+2X
j=0

(−1)j
µ
m+ 2

j

¶
(2ξ − j)m+ . (34)

Hence, equation (31) holds for n = 1.

Next, assume that equation (31) holds for n = k− 1 ≥ 1. Then it follows from equation

(27) and (31) that

ψmk (ξ) = βmk

½
ψmk−1(ξ)− ψmk−1

µ
ξ − 1

2

¶¾

= βmk ·
αmk−1
m!

⎧⎨⎩
m+kX
j=0

(−1)j
µ
m+ k

j

¶
(2ξ − j)m+ −

m+kX
j=0

(−1)j
µ
m+ k

j

¶
(2ξ − j − 1)m+

⎫⎬⎭
=
αmk
m!

m+k+1X
j=0

(−1)j
µ
m+ k + 1

j

¶
(2ξ − j)m+ . (35)

From equation (35), equation (31) holds for n = k. Hence, the wavelet ψmn (n ≥ 1) can be
expressed as equation (31).

The shape of the wavelets ψ0n, ψ
1
n and ψ

2
n (for n = 1, 2, 3) are shown in Figure 2, Figure

3 and Figure 4, respectively. Moreover, examples of the values of αmn are summarized in

Table 1.

Theorem 2.3. For the proposed non-orthogonal wavelets, the two-scale relation between

the wavelet and the scaling functions is given by

ψmn (ξ) = αmn

nX
j=0

(−1)j
µ
n

j

¶
φm(2ξ − j). (36)

Proof. Equation (36) is proved by induction on n.

First, assume n = 1. From equation (18), we have

ψm1 (ξ) = αm1 {φm(2ξ)− φm(2ξ − 1)}

= αm1

1X
j=0

(−1)j
µ
1

j

¶
φm(2ξ − j). (37)

Hence, equation (36) holds for n = 1.
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(a) (b) (c)

Figure 2: Piecewise constant non-orthogonal wavelets. (a) Wavelet ψ01(ξ). (b) Wavelet

ψ02(ξ). (c) Wavelet ψ
0
3(ξ).

(a) (b) (c)

Figure 3: Piecewise linear non-orthogonal wavelets. (a) Wavelet ψ11(ξ). (b) Wavelet ψ
1
2(ξ).

(c) Wavelet ψ13(ξ).

Next, we assume that ψmn satisfies equation (36) for n = k − 1 ≥ 1. It follows from

equations (27), (31) and (36) that

ψmk (ξ) = βmk

½
ψmk−1(ξ)− ψmk−1

µ
ξ − 1

2

¶¾

= αmk−1β
m
k

⎧⎨⎩
k−1X
j=0

(−1)j
µ
k − 1
j

¶
φm(2ξ − j)−

k−1X
j=0

(−1)j
µ
k − 1
j

¶
φm(2ξ − j − 1)

⎫⎬⎭
= αmk

kX
j=0

(−1)j
µ
k

j

¶
φm(2ξ − j). (38)

Hence, equation (36) holds for n ≥ 1.
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(a) (b) (c)

Figure 4: Piecewise quadratic non-orthogonal wavelets. (a) Wavelet ψ21(ξ). (b) Wavelet

ψ22(ξ). (c) Wavelet ψ
2
3(ξ).

Table 1: Examples of values of αmn (m: degree of polynomials, n: order of vanishing

moments).

m n αmn
1 1

2 1/
√
3

0
3 1/

√
10

4 1/
√
35

1 2/
√
3

1 2 1/
√
2

3 2/5

1
p
33/20

2 2
p
66/95

3
p
11/46

3 Wavelet expansion on a finite interval

The proposed non-orthogonal wavelets form the bases in the space L2(R). Using these

bases, an arbitrary function in L2(R) can be expressed as the wavelet series. On the other

hand, for an interval, one cannot complete the wavelet series by using only these bases.

This is because supports of some bases are truncated at the left or right endpoint of the

interval. Hence, special bases have to be introduced into the wavelet expansion on the

finite interval. These functions are distinguished from the bases given by equations (18)

and (31), and are referred to as the boundary scaling function and the boundary wavelet.

The wavelet expansion has to keep symmetry of an expanded function on a finite interval.
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1 2 3 4 5 2N − 1 2N 2N + 1

(N +m) DOFs

(2N +m) DOFs

N Subintervals

2N Subintervals

– Coaser Level –

– Finer Level –

Figure 5: Finite interval under two-scale subdivision. The number of subintervals and

DOFs are N and (N +m) for coaser scale, 2N and (2N +m) for finer scale, respectively.

In finer scale, (2N + 1) knots are required.

This requires to arrange the bases so that the location of them can be symmetry with

respect to center of the interval. In order to accomplish this arrangement, the degree m

of polynomials and the order n of vanishing moments are determined such that a sum

(m+ n) is odd.

3.1. Boundary scaling functions

In this study, a scaling function is given as a B-spline. When we employ φm(ξ) for the

scaling function, m kinds of scaling function are required as the bases at each endpoint of

the interval. These scaling functions are defined as B-splines with multiple knots.

3.2. Boundary wavelets

a. Number of boundary wavelets

To discuss the number of boundary wavelets, let us consider an interval which is divided

by two resolution levels into N and 2N subintervals, as shown in Figure 5.

Assume that φm and ψmn are used as the bases. Then, the DOFs in each scale are

(N +m) and (2N +m), respectively. Since the difference of the DOFs in both scales has

to be equal to the number of added wavelets, N wavelets are necessary to obtain the finer

resolution approximation.

In the finer scale, there are (2N + 1) knots for 2N subdivisions. When these knots are

numbered from the left endpoint in order as shown in Figure 5, the added wavelets are

arranged so that the center of their support may coinside with one of the even knots. This

is because the wavelets always have even (m+n+1) subintervals. Hence, in order to avoid

the truncation of the wavelet support, the wavelet that is the closest to the endpoint of
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Table 2: Number of boundary wavelets Nb.

m

0 1 2 3

1 0 – 1 –

2 – 1 – 1

3 1 – 1 –
n

4 – 1 – 2

5 1 – 2 –

6 – 2 – 2

the interval has to satisfy the following inequality:

2j >
m+ n+ 1

2
, (39)

where 2j denotes a knot number corresponding to the center of the support.

Then, the number of boundary wavelets Nb is determined by

Nb = j
0 − 1, (40)

where j0 is a minimum integer of j ’s satisfying the above inequality (39).

Consequently, in a certain scale, N wavelets consist of 2Nb = 2(j
0−1) boundary wavelets

and (N − 2Nb) wavelets. Examples of the values of Nb are summarized in Table 2.

b. Development of piecewise constant boundary wavelets

In cases where a scaling function and a wavelet are constructed by piecewise polynomials

of degree m = 0, i.e., piecewise constant functions, no boundary scaling functions are

required for construction of the bases. On the other hand, the number of boundary

wavelets is determined based on the order of vanishing moments n. In this study, we

employ the wavelets with higher order vanishing moments than n as the required boundary

wavelets ψ̄0in, that is,

ψ̄0in(ξ) = ψ0n+i(ξ) (i = 1, 2, . . . , Nb). (41)

c. Development of boundary wavelets with m ≥ 1

When the bases are constructed by a scaling function φm and a wavelet ψmn (m ≥ 1),
the boundary scaling functions φ̄mi (i = 1, 2, . . . ,m) are required, besides Nb boundary

wavelets. In this paper, we construct the boundary wavelets for Nb ≤ m. When Nb ≤ m,
the Nb boundary wavelets ψ̄

m
i1 (i = 1, 2, . . . , Nb) having first-order vanishing moments can

be constructed by linear combination of φm and φ̄mi , namely,

ψ̄mi1 (ξ) =

⎧⎨⎩ ᾱmi1
£
φ̄m1 (2ξ) + pi · φ̄mi+1(2ξ)

¤
(i < m),

ᾱmm1
£
φ̄m1 (2ξ) + pm · φm(2ξ)

¤
(i = m),

(42)
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where pi and pm are determined so that the wavelet ψ̄
m
i1 may have the first order vanishing

moment.

Once the wavelets ψ̄mi1 are obtained, the Nb boundary wavelets which have nth-order

vanishing moments can be defined recursively, for n ≥ 2, as

ψ̄min(ξ) = ᾱmin

h
ψ̄mi(n−1)(ξ) + ai,n−1 · ψmn−1(ξ)

i
= ᾱmin

⎧⎨⎩ψ̄mi1 +
n−1X
j=1

ai,jψ
m
j (ξ)

⎫⎬⎭
(n ≥ 2, i = 1, 2, . . . , Nb),

(43)

ᾱmin (i = 1, 2, . . . , Nb) are constants for the normalization:Z ∞
−∞

{φm(ξ)}2 dξ =
Z ∞
0

©
ψ̄min(ξ)

ª2
dξ (i = 1, 2, . . . , Nb). (44)

Moreover, the values of ai,n−1 are determined so that the wavelet ψmin can satisfy the

nth-order vanishing moments,

ai,n−1 = −

Z ∞
0

ξn−1ψ̄mi1 (ξ) dξ +
n−2X
j=1

ai,j

Z ∞
0

ξn−1ψmj (ξ) dξZ ∞
0

ξn−1ψmn−1(ξ) dξ
(i = 1, 2, . . . , Nb).

(45)

The number of boundary wavelets increases as the order of vanishing moments increased.

The development of the boundary wavelets for more general case (Nb > m) remains to be

done at the present time.

Theorem 3.1. From equations (36) and (43), ψ̄min (i = 1, 2, . . . , Nb, n ≥ 2) have the two-scale
relation described in terms of φm and ψ̄mi1 , which contains φ

m and φ̄mi , as follows:

ψ̄min(ξ) = ᾱmin

⎡⎣ψ̄mi1(ξ) + 1

m!

n−1X
k=0

(−1)kφm(2ξ − k)
n−1X
j=k

ai,jα
m
j

µ
j

k

¶⎤⎦ . (46)

Note that αm0 and ai,0 are equal to zero.

Proof. The proof of equation (46) is accomplished by induction on n. If we assume n = 2,

then from equations (36) and (43), we have

ψ̄mi2 (ξ) = ᾱmi2

⎡⎣ψ̄mi1(ξ) + ai,1αm1m!
1X
j=0

(−1)j
µ
1

j

¶
φm(2ξ − j)

⎤⎦
= ᾱmi2

⎡⎣ψ̄mi1(ξ) + 1

m!

1X
k=0

(−1)kφm(2ξ − k)
1X
j=k

ai,jα
m
j

µ
j

k

¶⎤⎦ . (47)
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Let us assume that equation (46) holds for n = k − 1 ≥ 2. Then, ψ̄mik is given as

ψ̄mik(ξ) = ᾱmik

(
ψ̄mi1 (ξ) +

1

m!

"
k−2X
l=0

(−1)lφm(2ξ − l)
k−1X
j=l

ai,jα
m
j

µ
j

l

¶

+ ai,k−1 · αmk−1(−1)k−1
µ
k − 1
k − 1

¶
φm(2ξ − k + 1)

#)

= ᾱmik

⎡⎣ψ̄mi1 (ξ) + 1

m!

k−1X
l=0

(−1)lφm(2ξ − l)
k−1X
j=l

ai,jα
m
j

µ
j

l

¶⎤⎦ . (48)

From equations (47) and (48), equation (46) holds for n ≥ 2.

Examples of piecewise linear and quadratic boundary wavelets are shown in Figure 6

and Figure 7.

3.3. Evaluation of expansion coefficients

When we attempt to obtain the wavelet series of a function as equation (17), evaluation

of expansion coefficients c0,j and dk,j is required. In general, these values are computed

using a fast wavelet transform (FWT). For orthonormal bases, this computational work is

O(N2) because of the orthogonality; besides, that can decrease in O(N) if these bases have

local supports. For semi-orthogonal bases, the expansion coefficients can also be rapidly

computed using the dual bases and algorithm as shown in [16].

In this subsection, we develop a fast algorithm for the evaluation of c0,j and dk,j in

non-orthogonal wavelets. In this algorithm, c0,j and dk,j are evaluated based on FWT as

illustrated in Figure 8, like conventional methods. The transformation at every scale is

accomplished by solving linear algebraic equations derived from the two-scale relation of

the bases.

Now, let us seek two-scale relation of the bases spanned subspaces Vk, Vk+1 and Wk.

When projections of f ∈ L2[0, 1] on the subspaces Vk, Vk+1 andWk are defined as Pkf ,

Pk+1f and Qkf , from equation (8) the following basis representation is obtained:

Nk+1X
j=1

ck+1,jφk+1,j(ξ) =
NkX
j=1

ck,jφk,j(ξ) +
nkX
l=1

dk,lψk,l(ξ), (49)

where Nk, Nk+1 and nk are the number of the bases in the subspaces Vk, Vk+1 andWk,

respectively.

Equation (49) is rewritten by

CTk+1Nk+1 = Ĉ
T
k N̂k, (50)

13



(a) (b) (c)

Figure 6: Piecewise linear boundary wavelets. (a) Boundary wavelet ψ̄111. (b) Boundary

wavelet ψ̄112. (c) Boundary wavelet ψ̄
1
13.

(a) (b) (c)

Figure 7: Piecewise quadratic boundary wavelets. (a) Boundary wavelet ψ̄211. (b) Bound-

ary wavelet ψ̄212. (c) Boundary wavelet ψ̄
2
13.

where

Ĉk = {ck,1, dk,1, . . . , ck,Nk−1, dk,nk , ck,Nk
}T ,

Ck+1 = {ck+1,1, ck+1,2, . . . , ck+1,Nk+1
}T ,

(51)

N̂k = {φk,1,ψk,1, . . . ,φk,Nk−1,ψk,nk ,φk,Nk
}T ,

Nk+1 = {φk+1,1,φk+1,2, . . . ,φk+1,Nk+1
}T .

(52)

Moreover, the two-scale relations of the bases can be expressed by

N̂k = BkNk+1, (53)

where Bk is the transformation matrix whose elements are given by equations (20), (31)

and (46).
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{cm+1,j} {cm,j} · · · · · · {ck,j} · · · · · · {c1,j} {c0,j}

{dm,l} · · · · · · {dk,l} · · · · · · {d1,l} {d0,l}

— Scale —
m+ 1 m k 1 0

Figure 8: Fast wavelet transform. Expansion coefficients are evaluated in order as shown

the arrows in this figure.

Substituting equation (53) into (50), the two-scale relation of the expansion coefficients

are described as follows:

BTk Ĉk = Ck+1. (54)

In the present method, the expansion coefficients are computed by solving equation (54)

with respect to Ĉk, which requires matrix inversion. However its computational cost can

be reduced to O(w2N), since the transformation matrix Bk is a band matrix with band

width w.

4 Formulation for boundary element analysis

4.1. Boundary element formulations for 2-D Laplace problems

In 2-D Laplace problem, a boundary integral equation is represented by

c(x)u(x) +

Z
Γ
q∗(x,y)u(y) dΓy =

Z
Γ
u∗(x,y)q(y) dΓy (x, y ∈ Γ), (55)

where u and q are the potential and the flux, respectively. u∗ and q∗ are the fundamental

solutions corresponding to u and q. c is the free term, and Γ is the boundary.

To discretize equation (55), we now introduce the wavelet series into the approximation

of the solutions u and q, that is,

ũ(ξ) =
nb·nsX
j=1

û0,jφ0,j(ξ) +
mrX
k=0

nb·nkX
l=1

ũk,lψk,l(ξ),

q̃(ξ) =
nb·nsX
j=1

q̂0,jφ0,j(ξ) +
mrX
k=0

nb·nkX
l=1

q̃k,lψk,l(ξ),

(56)

where û0,j , q̂0,j , ũk,l and q̃k,l are the expansion coefficients, and mr is the finest scale. ns

and nk (k ≥ 0) are the number of bases φ0,j and ψk,l, respectively. nb is the number of

finite intervals on boundary.

Substituting equation (56) into equation (55), we obtain a residual r 6= 0 defined by

r(x) := c(x)ũ(x) +

Z
Γ
q∗(x,y)ũ(y) dΓy −

Z
Γ
u∗(x,y)q̃(y) dΓy. (57)

The boundary element equation is derived based on the Galerkin method, i.e.,Z
Γ
r · wi dΓ = 0 (i = 1, 2, . . . , N), (58)
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where wi (i = 1, 2, . . . , N) are the weighting functions and consist of the bases φ0,j and

ψk,l as

{wi| i = 1, 2, . . . , N} =
©
φ0,j , ψk,l| j = 1, 2, . . . , ns, k = 0, 1, . . . ,mr, l = 1, 2, . . . , nk

ª
.

(59)

Finally, we obtain the following linear algebraic equations like conventional BEMs:

Az = b, (60)

where z is the unknown vector, and b is the known vector calculated by using the known

expansion coefficients evaluated by the above algorithm. A is a matrix whose elements

are given by either gij or hij . Here, the matrix elements gij and hij are calculated by

gij =

Z
Γi

wi

Z
Γj

u∗wj dΓ2,

hij =
1

2

Z
Γi

wiwj dΓ+

Z
Γi

wi

Z
Γj

q∗wj dΓ2 (i, j = 1, 2, . . . , N).

(61)

4.2. Truncation of matrix entries

In wavelet BEM, most of coefficients gij and hij have small values because of the van-

ishing moment property of the bases. This allows us to generate the sparse coefficient

matrix A by truncation of its small entries. Particularly, when we derive the boundary

element equations by the Galerkin method, we obtain more sparse matrices than that

for the collocation method. However, the discretization by the Galerkin method causes

increase in the computational work, since the matrix entries are calculated through double

integrations. For the present scaling function and wavelet, its cost increases remarkably.

This is because these bases are constructed by a number of piecewise polynomials. In

order to reduce the work, we generate a sparse matrix by omitting the computation of the

small entries. To do so, selection of the small elements is carried out a priori based on

estimation of those values.

The absolute values of gij and hij of equation (61) can be approximated asymptotically

as

|gij | ' ḡij =
¯̀nβi+1
i

¯̀nβj+1
j {n(βi + βj)− 1}!
(m+ 1)2−βi−βj

·
½

αmn
(m+ n+ 1)n+1

¾βi+βj
· 2
− 2n+1

2
(ki+kj)

r
n(βi+βj)
0

,

|hij | ' h̄ij =
¯̀nβi+1
i

¯̀nβj+1
j {n(βi + βj)}!

(m+ 1)2−βi−βj
·
½

αmn
(m+ n+ 1)n+1

¾βi+βj
· 2
− 2n+1

2
(ki+kj)

r
n(βi+βj)+1
0

,

(62)

where r0 is the distance between supports of wi and wj , and ¯̀ is the length of the support

of φ0. k is the resolution scale, and k = 0 for w(ξ) = φ(ξ). Moreover, β is the parameter

whose value is equal to 0 for w(ξ) = φ(ξ) or 1 for w(ξ) = ψ(ξ).

From equation (62), if r0 À 1, then ḡij is greater than h̄ij . This is because h̄ij has

higher asymptotical order of 1/r0 than that of ḡij . Hence, when ḡij satisfies the following
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∆u = 0

u = x2 − y2

q̄ = 0

ū = x2 − 1

ū
=
1
−
y
2

q̄
=
0

10

1

x

y

(a)

∆u = 0

u = x3 − 3xy2

q̄ = 0

q̄ = −6x

q̄
=
3
−
3
y
2

ū
=
0

10

1

x

y

(b)

Figure 9: Boundary conditions and exact solution in examples. (a) Ex.1. (b) Ex.2.

inequality, the coefficients gij and hij are not computed:

ḡij < η · gmax, (63)

where gmax is the maximum value of |gij | evaluated for wi = φi and wj = φj . η is a

threshold parameter.

When ḡij does not satisfy inequality (63), the matrix elements are calculated by equation

(61). Furthermore, if the elements satisfy the following conditions, they are truncated after

the calculation;

|gij | < η · gmax, |hij | < η · hmax, (64)

where hmax is the maximum value of |hij | defined like gmax.

5 Numerical results

In this section, we investigate the computational performance of the boundary element

analysis and discuss the efficiency of the proposed non-orthogonal wavelets through nu-

merical results.

5.1. Analytical conditions

The present method was applied to 2-D Laplace problems with boundary conditions and

exact solution as shown in Figure 9. In both examples, the boundary was divided into

four finite intervals, and the piecewise constant and the piecewise linear non-orthogonal

wavelets were employed for the bases. The order of vanishing moments of them was set to

n = 1 or 3 for piecewise constant wavelets, and n = 2 or 4 for piecewise linear wavelets. The

boundary element equations were solved using the preconditioned GMRES(10) [17], and

diagonal scaling or incomplete LU factorization (ILU(0)) was used for the preconditioning.

The iteration was stopped when the convergence condition ||r||/||b|| < 1.0 × 10−10 (r:

17



residual vector of the iterative solution) was satisfied.

In this experiments, the computational performance of the wavelet-BEM is investigated

under the optimal threshold parameter. The optimal threshold parameter is selected

from 10 values of η = 1.0 × 10−δ (δ: integer from 2 to 11), such that, in a certain

DOF, the memory requirement becomes the smallest without deterioration of the accuracy.

The accuracy of the boundary element solution is estimated by L2 norm of the error

corresponding to the potential on boundary. In general, the optimal threshold parameter

should be determined a priori so that the truncation error will be comparable to the

discretization error [18]. Although determination of the optimal value is necessary in

a practical use of the wavelet-BEM, this is out of scope this paper. This issue will be

discussed in [19] by the authors.

5.2. Piecewise constant wavelets

In the case of the piecewise constant wavelets, the wavelet expansion is defined on L2[0, a]

where a = 1 for n = 1 and a = 3 for n = 3. Note that the interval [0, a] is defined on an

intrinsic coodinate corresponding to each subboundary.

The scaling functions {φk,j , j = 1, 2, . . . Nk} and those dilation equations are expressed
as

φk,j(ξ) = 2
k

2 (j − 1 ≤ ξ ≤ j), (65)

φk,j =
1√
2
{φk+1,2j−1 + φk+1,2j} (j = 1, 2, . . . , Nk), (66)

where Nk = 2
k · a.

The wavelets {ψk,l, l = 1, 2, . . . , nk} where nk = 2k · a are given by

ψk,l(ξ) =
1√
2

1X
i=0

(−1)iφk+1,2l+i−1(ξ) (l = 1, 2, . . . , nk), (67)

for n = 1, and

ψk,1(ξ) =
1√
35

4X
i=0

(−1)i
µ
4

i

¶
φk+1,i+1(ξ),

ψk,l(ξ) =
1√
10

3X
i=0

(−1)i
µ
3

i

¶
φk+1,2l+i(ξ) (l = 2, 3, . . . nk − 1),

ψk,nk(ξ) =
1√
35

4X
i=0

(−1)i
µ
4

i

¶
φk+1,Nk+1−i(ξ) = ψk,1(a− ξ),

(68)

for n = 3. Note that the wavelet with n = 1 is the Haar wavelet.

5.3. Piecewise linear wavelets

For the piecewise linear scaling functions and wavelets, we consider the wavelet expansion

on finite intervals [0, 2] for n = 2 and [0, 3] for n = 4.
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The scaling functions are expressed as follows:

φk,1(ξ) = 2
k+1

2 (1− 2kξ) (0 ≤ ξ ≤ 2−k),

φk,j(ξ) =
2X
i=0

(−1)i
µ
2

i

¶
(2kξ − i− j + 2)+ (j = 2, 3, . . . , Nk − 1),

φk,Nk
(ξ) = φk,1(a− ξ) (a = 2 (n = 2) or 3 (n = 3)),

(69)

where Nk is equal to 2
k+1 + 1 for n = 2, and 3 · 2k + 1 for n = 4. Then, the dilation

equations are expressed as

φk,1 =
1√
2
φk+1,1 +

1

2
φk+1,2,

φk,j =
1

2
√
2
φk+1,2j−2 +

1√
2
φk+1,2j−1 +

1

2
√
2
φk+1,2j (j = 2, 3, . . . Nk − 1),

φk,Nk
=
1

2
φk+1,Nk+1−1 +

1√
2
φk+1,Nk+1

.

(70)

On the other hand, the wavelets are given by

ψk,1 =

√
6

3
φk+1,1 −

5
√
3

9
φk+1,2 +

2
√
3

9
φk+1,3,

ψk,l =
1

2
φk+1,2l−1 − φk+1,2l +

1

2
φk+1,2l+1 (k ≥ 1, l = 2, 3, . . . , nk − 1),

ψk,nk =
2
√
3

9
φk+1,Nk+1−2 −

5
√
3

9
φk+1,Nk+1−1 +

√
6

3
φk+1,Nk+1

,

(71)

for n = 2, and

ψk,1 = 2

r
3

65
φk+1,1 −

77

30

r
6

65
φk+1,2 +

43

15

r
6

65
φk+1,3 −

17

10

r
6

65
φk+1,4 +

2

5

r
6

65
φk+1,5,

ψk,l =
1√
42
φk+1,2l−2 − 2

r
2

21
φk+1,2l−1 + 3

r
2

21
φk+1,2l

− 2
r
2

21
φk+1,2l+1 +

1√
42
φk+1,2l+2 (l = 2, 3, . . . , nk − 1),

ψk,nk =
2

5

r
6

65
φk+1,Nk+1−4 −

17

10

r
6

65
φk+1,Nk+1−3 +

43

15

r
6

65
φk+1,Nk+1−2

− 77
30

r
6

65
φk+1,Nk+1−1 + 2

r
3

65
φk+1,Nk+1

,

(72)

for n = 4. In equations (71) and (72), nk = 2
k+1(n = 2) and 3 · 2k(n = 4), respectively.

5.4. Compression of coefficient matrices

Figure 10 depicts the memory requirement for the matrix entries. The piecewise constant

wavelets mentioned above were used for the bases. In general, wavelet BEMs show highly
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(a) (b)

Figure 10: Memory requirements for matrix entries. Piecewise constant wavelets are used

for the bases. (a) Ex.1. (b) Ex.2.

compression at a part of the coefficient matrix associated with fine-scale bases[7]. This

effect can be enhanced by increasing the order of vanishing moments of wavelets[13]. The

wavelets used in the previous studies, that is, orthonormal or semi-orthogonal wavelets,

have a feature that the order of vanishing moments cannot be determined independently of

the degree of polynomials. This obliges us to increase the degree of piecewise polynomials

of wavelets, when we want to improve the sparseness of the matrices. On the other hand,

the proposed wavelets allow us to enhance the compression of the matrix by only changing

the order of vanishing moments. This fact is the obvious advantage of the present wavelets.

The rate of the stored matrix elements to all entries under the finest scale of the basis

is summarized in Table 3. Note that the finest scale in the experiments was determined

as mr = 11 (m = 0, n = 1), 9 (m = 0, n = 3), 10 (m = 1, n = 2) and 9 (m = 1, n = 4).

The matrices in the present examples are compressed to about 1% or less for the problems

over 10000 DOF.

5.5. Reduction in CPU time

The CPU time for generating the matrix entries under each DOF in Ex.1 is shown in Fig-

ure 11. Throughout this paper, “conventional” in figures denotes the results corresponding

to the usual boundary element equations in which conventional piecewise constant or lin-

ear functions and Galerkin method are used. The main advantage of the present wavelets

is that one can choose the order of vanishing moments arbitrarily. While a highly com-

pressed matrix can be obtained by increasing the order of vanishing moments, this fact

sometimes leads to the disadvantage; the computational cost for generating the matrix
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(a)

Constant Linear

n = 1 n = 3 n = 2 n = 4

DOFs 16384 12288 16388 12292

Rate of
Compression (%)

1.61 0.30 1.60 0.50

(b)

Constant Linear

n = 1 n = 3 n = 2 n = 4

DOFs 16384 12288 16388 12292

Rate of
Compression (%)

1.21 0.31 1.14 0.32

Table 3: Rate of the stored matrix elements to all entries under the finest scale. (a) Ex.1.

(b) Ex.2.

(a) (b)

Figure 11: CPU time for generating matrix entries in Ex.1. (a) Piecewise constant

wavelets. (b) Piecewise linear wavelets.

entries raises considerably. This is because in the present wavelet the number of knots

of splines increases with an increase in the order of vanishing moments. However, the

numerical results show that the CPU time for computation of the matrix entries becomes

shorter as the order of the vanishing moments increased, except for small DOFs. As a

result, the matrix entries can be efficiently evaluated by truncating the small elements
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(a)

(b)

(c)

(d)

Figure 12: CPU time for solving the boundary element equations. (a) Piecewise constant

wavelets (Ex.1). (b) Piecewise constant wavelets (Ex.2). (c) Piecewise linear wavelets

(Ex.1). (d) Piecewise linear wavelets (Ex.2).

a priori. Moreover, it is advantageous for improvement of sparseness of the matrix to

increase the order of vanishing moments.

Figure 12 shows CPU time for solving the boundary element equations. For small

values of n, the convergence of iterative solution is rapid even if the diagonal scaling is

employed as a preconditioner. Although the ILU(0) preconditioning improves convergence

of the solution, it requires longer CPU time than the diagonal scaling because of lower
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(a) (b)

Figure 13: Relation between total CPU time and L2 norm of error in Ex.1. (a) Piecewise

constant wavelets. (b) Piecewise linear wavelets.

sparseness of the matrix.

On the other hand, for the wavelets with greater n, the diagonal scaling is not necessarily

useful preconditioning since a large number of iterations is required. As mentioned above,

the computational work required at each iteration step becomes larger for the ILU(0) than

for the diagonal scaling. However, it can be alleviated by increasing the sparseness of the

matrix. Hence, for larger values of n, the ILU(0) becomes an effective preconditioner.

Throughout these experiments, boundary element equations with the conventional bases

were solved by Gauss elimination since the coefficient matrices are dense. In wavelet-BEM

an iterative solver was employed to the equations with a sparse matrix. As a result, the

CPU time is shortened comparing with the conventional method, particularly in large-scale

problems.

Finally, the relation between the error and the total CPU time in Ex.1 is shown in Figure

13. Since the error seems to be independent of the order of vanishing moments under the

optimal threshold parameter, it can be concluded that the total CPU time required to

obtain solutions with certain accuracy can be reduced by increasing the order of vanishing

moments.

6 Conclusions

We have presented construction of the compactly supported non-orthogonal B-spline

wavelets with arbitrary order of vanishing moments. Efficiency of the proposed wavelets

in boundary element analysis have been discussed. Unlike orthonormal or semi-orthogonal

wavelets, any orthogonality is not required to these wavelets explicitly. However, this

property does not lead to any disadvantages in BE analysis. Through numerical results, it
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is found that we can save both memory requirement and CPU time by using the wavelets

with higher order vanishing moments.

Since the wavelet-BEM deals with sparse matrices, an iterative solver is used to solve

the boundary element equations. Therefore, we should choose a suitable preconditioner

to obtain the solution rapidly. Efficiency of the preconditioner depends on sparseness of

the coefficient matrix and convergence of iterative solution. Through numerical examples,

it is suggested that the diagonal scaling becomes a suitable preconditioner for lower-

order vanishing moments, while the ILU(0) becomes an effective for higher-order vanishing

moments.

By increasing the order of vanishing moments, the number of knots of the spline wavelets

are increased, and then the computational cost for construction of the coefficient matrix

becomes expensive. Hence, it seems to be a drawback in the application of the wavelets

with higher-order vanishing moments. However, truncating the small entries a priori, we

can resolve this fear.

References

[1] Hackbusch W, Nowak ZP. On the fast matrix multiplication in the boundary element

method by panel clustering. Numerische Mathematik 1989; 54: 463—491.

[2] Rokhlin V. Rapid solution of integral equations of classical potential theory. Journal

of Computational Physics 1985; 60: 187—207.

[3] Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numerical algorithms

I. Communications on Pure and Applied Mathematics 1991; 44: 141—183.

[4] Alpert B, Beylkin G, Coifman R, Rokhlin V. Wavelet-like bases for the fast solution

of second-kind integral equations. SIAM Journal on Scientific Computing 1993; 14(1):

159—184.

[5] Canning FX. Sparse approximation for solving integral equations with oscillatory

kernels. SIAM Journal on Scientific and Statistical Computing 1992; 13(1): 71—87.

[6] Rathsfeld A. A wavelet algorithm for the boundary element solution of a geodetic

boundary value problem. Computer Methods in Applied Mechanics and Engineering

1998; 157: 267—287.

[7] Koro K, Abe K, Tazaki H. Application of discrete wavelet transform to wavelet

collocation BEM. Journal of Applied Mechanics 1999; 2: 153—162. (in Japanese)

[8] Steinberg BZ, Leviatan Y. On the use of wavelet expansions in the method of mo-

ments. IEEE Transactions on Antennas and Propagation 1993; 41: 610—619.

[9] Sabetfakhri K, Katehi LBP. Analysis of integrated millimeter-wave and

submillimeter-wave waveguides using orthonormal wavelet expansions. IEEE Trans-

actions on Microwave Theory and Techniques 1994; 42(12): 2412—2422.

24



[10] Wang G. A hybrid wavelet expansion and boundary element analysis of electro-

magnetic scattering from conducting objects. IEEE Transactions on Antennas and

Propagation 1995; 43(2): 170—178.

[11] Wang G. Application of wavelets on the interval to numerical analysis of integral

equations in electromagnetic scattering problems. International Journal for Numerical

Methods in Engineering 1997; 40: 1—13.

[12] Koro K, Abe K. H-hierarchical adaptive BEM with Haar wavelet functions for two-

dimensional Laplace problems. In: Brebbia CA, Power H, editors, Boundary Element

XXI, WIT Press, Southampton UK, 1999: 229—238.

[13] Goswami JC, Chen AK, Chui CK. On solving first-kind integral equations using

wavelets on a bounded interval. IEEE Transactions on Antennas and Propagation

1995; 43(6): 614—622.

[14] Chui CK, Wang J. On compactly supported spline wavelets and a duality principle,

Transactions of the American Mathematical Society 1992; 330 (2): 903—915.

[15] Williams JR, Amaratunga K. Introduction to wavelets in engineering. International

Journal for Numerical Methods in Engineering 1994; 37: 2365—2388.

[16] Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets

on a bounded interval. Applied and Computational Harmonic Analysis 1994; 1: 217—

231.

[17] Saad Y, Schultz MH. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing

1986; 7 (3): 856—869.

[18] Petersdorff T, Schwab C. Wavelet approximations for first kind boundary integral

equations on polygons. Numerische Mathematik 1996; 74: 479—519.

[19] Koro K, Abe K. Determination of optimal threshold for matrix compression in wavelet

BEM. Boundary Elements XXIII, WIT Press, Southampton UK, 2001. (to appear)

25



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


