Measurement of small rotation angles
by using a paraliel interference pattern

Xiaoli Dai, Osami Sasaki, John E. Greivenkamp, and Takamasa Suzuki

We propose a method for measuring rotation angles by using a parallel interference pattern. At two
points on a parallel interference pattern reflected by an object, we detect phase changes in the reflected
parallel interference pattern caused by rotations of the object. A high sensitivity, or a high ratio of the
phase change to the rotation angle, 17 mrad/arcsec, can be achieved by determining the positions of two
detection points. A high spatial resolution of ~0.5 mm is also obtained. We analyze the measurement
error caused by the alignment of the parallel interference pattern and a random measurement error

caused by the phase detection.

The theoretical analyses and the experimental results make the

characteristics of the method clear and show that the method has an accuracy of 0.2 arcsec for small

rotation angles.
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1. Introduction

Several optical methods of angle measurement have
been described. A method based on the internal
reflection effect at an air-glass boundary was pro-
posed.! The moiré technique was applied to detect
the rotation angles of a grating.? Among several
methods, methods based on interferometers3-7 and
autocollimators® have been widely used in practice.
The principle of the methods that use interferom-
eters is the use of two beams that are reflected from
two different points on an object and permitted to
interfere. The optical path difference between the
two beams is then detected to obtain the rotation
angle of the object. The measurement sensitivity
depends on the distance between the two measuring
points on the object. To increase the sensitivity, the
distance between the two measuring points must be
made larger. The methods that use interferometers
have a trade-off between spatial resolution and angu-
lar sensitivity, and they are effective for large objects.
Autocollimators also are used to measure the angles
of large objects. The spatial resolution of an autocol-
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limator must be limited to a few millimeters. This
limit is due not only to our ability to bring light
through the system but also to diffraction. The
system must reimage the point source to a small
image size. Excessive diffraction will decrease the
angular sensitivity. Therefore that the methods that
use interferometers and autocollimators typically have
a low spatial resolution cannot be avoided.

We propose a method that uses a parallel interfer-
ence pattern to measure rotation angles. This paral-
lel interference pattern is reflected by the object, and
the phases of the reflected parallel interference pat-
tern are detected at two points. The change in the
phase difference between the two phase detection
points is a function of the rotation angle of the object.
When the object rotates, the phase difference changes.
The sensitivity of the method depends on the posi-
tions of the two detection points in the reflected
parallel interference pattern. We define an equi-
phase plane as the plane on which the phases of the
interference pattern are constant. As the line con-
necting two detection points becomes parallel to an
equiphase plane, the distance along the line between
the two points becomes longer and the sensitivity
increases. The sensitivity of the method is defined
by the ratio of the phase-difference change to the
rotation angle. A sensitivity of 17 mrad/arcsec for
small rotation angles has been achieved by proper
arrangement of the two detection points, A and B.
The method has a spatial resolution of ~500 pm,
which is an order of the period of the parallel interfer-
ence pattern. After describing the method’s prin-



ciple in Section 2, in Section 3 we analyze value 6,,
measured in the nonideal configuration where the
equiphase plane and the optical surface are unaligned.
In Section 4 we examine two different errors, €; , and
€., that are caused by the nonideal configuration and
random error o in the detection of the phase differ-
ence, respectively. In Section 5 an experimental
setup is presented in which a sinusoidal phase-
modulating laser diode interferometer with a feed-
back control system to eliminate fluctuations in the
phase of the interference signal is used. This feed-
back system decreases random error o greatly.
Optical fibers are used for the two detection points in
the interference pattern. In Section 6 we show that
the experimental results agree well with the theoreti-
cal results concerning measurement errors and the
measurement range. With the method we measure
the small rotation angles of an optical surface with an
accuracy of 0.2 arcsec.

2. Principle
When two collimated laser beams intersect with angle

v, a parallel interference pattern occurs. The period
of the parallel interference pattern is
S= 5o (1
~ 25sin(v/2)
where \ is the wavelength of the laser. We can see

alternate dark and bright planes in the interference
pattern. The fringes exist everywhere that the two
beams overlap. The parallel interference pattern
has a phase distribution. The phase of the bright
plane is 0 or 2w rad, and the phase of the dark plane is
in 7 radians. We define an equiphase plane as a
plane on which the phases of an interference pattern
are constant. Figure 1 shows this parallel interfer-
ence pattern reflected by an optical surface that can
rotate around the y axis. The equiphase planes are
parallel to the axis of rotation. We refer to the plane
perpendicular to the y axis as plane P. For the
reflected parallel interference pattern we are inter-
ested in the two equiphase planes corresponding to
two measurement points whose phases are a4 and as.
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i}j‘i& 1. Parallel interference pattern reflected by an optical sur-
ace.

If the distance dy between the two equiphase planes is
smaller than period S of the parallel interference
pattern, we have

Qo
do = 2w S, (2)
where
ag = oy — apl. (3)

A top view of this arrangement is shown in Fig. 2.
Phases a4 and ag of the two equiphase planes are
detected at points A and B, respectively. The line
passing points A and B is called a detection line. The
angle between the detection line and the line perpen-
dicular to the reflected parallel interference pattern is
denoted by B. The value of B is less than w/2, which
means that the value of o is not zero. When the
optical surface rotates by a small angle 6, the reflected
parallel interference pattern also rotates by an angle
20. The sign of angle 8 whose rotation direction is
shown in Fig. 2 is assumed to be positive. The
distance between the two equiphase planes passing
the two detection points A and B changes from d, to
d. The phases of the A and B points change to &, and
oy, respectively. If d is smaller than S, we have

d=--8 4
—217’ ()

where
o= |ag — apl. (5)

On the basis of the geometrical relationship between
distances d, and d as shown in Fig. 2, we have

B cos(p — 26)
" cosB

do. (6)
From Egs. (2), {4), and (6), a is expressed as

B cos(B — 26)
T " cos B

Reflected Interference
Pattern

Incident Interference
Pattern 2n

0

Optical surface

Fig. 2. Fundamental configuration for measuring a rotation
angle.
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Measur'ing oy and « before and after the rotation of
the optical surface, respectively, we can measure the
rotation angle 6 as follows:

8 = (B/2) = (1/2)cos™[(a/ cp)cos(B)]. (8)
When rotation angle 6 is small, Eq. (7) reduces to
a = (1 + 26 tan B)ag, (9)
and we have

8 = [(a/ag) — 1]/2 tan B. (10)

We now consider the characteristics of the method.
First, the changing ratio of a to 8, or the sensitivity S,,
is obtained from Eq. (7) as follows:

da  2sin(p — 26)
e — ET:) - cos B Q. (11)
The function S, shows that the sensitivity becomes
higher when values of 8 close to w/2 and approaching
a value of oy near 2w are used after the value of B is
determined. The value of oy becomes close to 2w
when the length of the detection line between points
A and B is increased or the period S of the incident
parallel interference pattern is decreased. The term
sin(B — 26) in function S, indicates that the highest
sensitivity exists when the value of angle 6 is equal to
B/2 — w/4. For the small rotation angle 8, a high
sensitivity is obtained when B is nearly equal to w/2.
Therefore this method is especially suitable for mea-
suring small rotation angles. For small rotation
angles a high sensitivity of 17 mrad/arcsec is achieved
in the conditions of B = 89.9° and oy = = from Eq.
(11).

We now consider the measurement range. In Eq.
(8) the value of 8 is positive when a > ap and the value
of 8 is negative when a < op. This means that we
can measure angle 0 in two directions of rotation.
The maximum and the minimum values of 8 arise
from the condition of « = 27 and a = 0, respectively.
From Eq. (8) the measurement range of the rotation
angle 8 is expressed as

(B/2) - (w/4) < 8 < (B/2) — (1/2)cos™'[(2%/ ctp)cos B].
(12)

Using approximation (10), we give the measurement
range for small rotation angles by

-1/2tanB < 8 < [(27/a) — 1]/2 tan B. (13)

When o is equal to 7 in inequality (13), we have the
same measurement range for the positive and nega-
tive small rotation angles as follows:

18] < 1/2 tan B. (14)
It is clear that the measurement range is very small
for 8 = w/2. This measurement range refers to a
change in tilt between the measurements. A larger
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measurement range for the system is possible when
rotation angle 6 is repeatedly monitored. The angu-
lar rotation velocity is limited to 1/2 tan B per mea-
surement interval.

Finally, this method has a spatial resolution that is
an order of period S of the fringe. It is easy to obtain
values of S of the order of 500 pm as shown in the
experiments. Compared with conventional methods
of angle measurements, the spatial resolution in this
method is much higher. The highest spatial resolu-
tion of an autocollimator is a few millimeters. The
spatial resolutions of the methods in which interfer-
ometers are used are also a few millimeters when
their angular sensitivities are high.

3. Analysis of the Method

With the principle, it is assumed that the equiphase
planes and the optical surface are perpendicular to
plane P as shown in Fig. 1. This arrangement is
ideal. However, in practice it is difficult to adjust the
equiphase planes and the optical surface to be abso-
lutely perpendicular to plane P. As shown in Fig. 3
we have two orthogonal coordinate systems, o-xyz
and o—x'yz’, for an equiphase plane and the optical
surface, respectively. The x—z and x'—z’ planes are
on the P plane. In the ideal configuration the x'—y
plane is the optical surface and the y—z plane is the
reflected equiphase plane. The direction of the z axis
is the propagation direction of the reflected equiphase
plane. Because the equiphase plane is incident on
the optical surface at angle w, the angle between the z
axis and the z' axis is . Now it is assumed that the
incident equiphase planes are inclined toward the P
plane by angle 8, and in addition the optical surface is
inclined toward the P plane by angle ¢ around the x’
axis, as shown in Fig. 3. Angles 8, ¢, and 8 whose
directions are shown in Fig. 3 are positive. We
examine what the measured value 6, is in this
nonideal configuration for the small rotation angle 6.

First, we consider the inclination angle 3 of the
incident equiphase plane. From the laws of reflec-
tion in geometrical optics, it is clear that the inclina-
tion of the reflected equiphase plane is also 3. Let

Fig. 3. Nonideal configuration in which the equiphase plane and
the optical surface are not perpendicular to plane P.



the normal unit vector of the reflected equiphase
plane be 7, as shown in Fig. 4(a). If the vectors n,,
n,, and n,;, are components of the vector 7, in the
directions of the x, y, and z axes, respectively, the
vector 7, is given by

ny = (ny, ny, ny.),

(15)
where

n,, = cosd, n,, = sinJ, n,=0. (16)

To analyze easily how the normal unit vector 7,
changes with the rotation of the optical surface, the
normal unit vector 7, is expressed in the o'—x'yz’
coordinate system as follows:

ﬁl = (nlx') n’ly) nl:')» (17)

Y
ool
20
N
anf'n]x; 1
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Fig. 4, Change of the normal unit vector of the reflected equi-
phase plane. (a) Normal unit vector 7; in the existence of
Inclination angle 3 of the incident equiphase plane. (b) Rotation of
vector 7 by inclination angle ¢ of the optical surface. (c) Rotation
of vector 12, by rotation angle 6 of the optical surface.

where

N, = COS 3 COS w, n,, = cos d sin w.

(18)

ny, = sin §,

Next, when the optical surface inclines toward the P
plane by angle ¢ around the x’ axis, the reflected
equiphase plane rotates by angle 2¢ around the x’
axis. This means that vectors n,, and n,,  rotate by
angle 2¢ around the x' axis in the y—z’ plane, respec-
tively, and vector n,,- does not change, as shown in

Fig. 4(b). So the normal unit vector 71, changes to
Ny = (Rgy, Ngy, Nyy), (19)
where
Ny = Ny, Ngy = Ny, €os 2 — ny, sin 2¢,
Ny = Ny, sin 26 + ny,. cos 2¢. (20)

When the optical surface rotates by angle 8 around
the y axis, the reflected equiphase plane rotates by
angle 26 around the y axis. This means that vectors
n,, and n,, rotate by angle 26 around the y axis in the
x'-z' plane and vector n,, does not change, as shown

in Fig. 4(c). So, the normal unit vector A, changes to
ng = (ngy, ngy, ng;'), (21)
where
N3 = Ny, €OS 20 + n,, sin 20, ng, = Ngy,
ns. = —ng. sin 26 + n,, cos 26. (22)

To obtain an expression about the distance d
between the two equiphase planes containing detec-
tion points A and B, respectively, in the coordinate
system o-xyz, it is necessary to obtain an expression
of the normal unit vector 7i; in the coordinate system

o—xyz, which is expressed as
(23)

A= (nxy ny’ nz)'

Using a coordinate transformation between the o—xyz
and o’'—x'yz’ coordinate systems, we have

n, = ngz, Cos w + ng. sin w

Ny cos 26 cos w + n,. cos 260 sin w

— no, sin 20 sin w + ny, sin 26 cos w, (24)
n, = ng. COS w — Ng, SN ®
= Ny, c0s 20 cos w — 1y, c0s 20 sin w
— ny, sin 26 cos w — n,. sin 20 sin , (25)
(26)

ny = ngy = nzy.

The origin of system o—xyz is point A. Let tbe
coordinates of detection point B be (xg, 9, —2o) In
system o—xyz, where xq > 0,y, > 0,z > O and xy <
APPLIED OPTICS 6383
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20, Yo < 2. By defining vector AB that connects
points A and B, we obtain

d=n-AB = n_x, + n,Yo — n.2,. (27)
When the value of 6 is equal to zero in Egs. (24)-(26),
d in Eq. (27) is d, which is the distance of the two
equiphase planes before the rotation of the optical
surface:

do = (g cOS w + ny, sin w)x, + Ny Yo

— (ng oS @ — Ny, sin w)z,.

(28)

Because this method is very effective for measuring
small rotation angles, as shown in the principle, we
assume that rotation angle 6 is small and use the
approximations such as sin26 = 20, cos 20 = 1.
Equation (27) reduces to

d= do + 29[(—71.?.x sin w + Ng,- COS u))x()

+ (nay €0s w + 1y, sin w)zg). (29)

Using Eqgs. (18) and (20), we reduce Eq. (29) to

d — dy = 282¢{cos 3 + 2 sin &[(xy/20)cos w + sin w]

X (sin & cos ¢ ~ cos d sin b sin w)}.  (30)
Comparing Figs. 2 and 3, in the ideal configuration
we have

dy = x,, tan B = z,/x,. (31)

From Egs. (2), (4), and (31), Eq. (10) is rewritten as

g9 32
- 220 ( )

It is clear from Egs. (30) and (32) that there is no
error caused by the condition where the two points A
and B are not on the x-z plane. This property makes
it easy to obtain a very small x, or d in the experiment.
We obtain value 8,, measured in the nonideal configu-
ration for an actual small rotation angle 6 by using

Eq.(32). Substituting Eq. (30) into Eq. {(32), we have
0, = K6, (33)
where
K = cos d + 2 sin ¢[(cos w/tan B) + sin w)]
X (sin & cos ¢ — cos d sin ¢ sin w). (34)

The value of K is slightly smaller than 1 when B =
w/2. The difference between the values of 6,, and 6

is given by

Ea.‘b = 9,,, - 9 = —R(‘), (35)

whereR =1- K.
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Fig. 5. Ratio R of error e, ., versus incident angle w.

4. Error Analysis

First, we examine how much the measurement error
€6 is in the nonideal configuration. The error ¢; 4 is
proportional to the rotation angles as shown by Eq.
(35), and the ratio R is a significant value. The ratio
R is a function of angles § and ¢ as well as incident
angle w as shown in Eq. (34). Figure 5 shows the
ratio R versus the incident angle w for |3| = 10°, |$| =
10°, and B = 89.9°. We obtain two different curves
that are related to signs of angles  and ¢. This
reason can be found in the last term in Eq. (34).
When the signs of angles 3 and ¢ are the same, the
last term in Eq. (34) becomes small and ratio R is
always less than 0.02. When the signs of angles &
and ¢ are different, ratio R increases for a large angle
w. When angle w is smaller than 20°, R is smaller
than 0.04. It is clear that we should decrease inci-
dent angle w to decrease ratio R. Figure 6 shows
that ratio R versus angle d for & = +=10°, 5°, 0 = 10°,
and B = 89.9°. The value of R decreases greatly as
angle 8 decreases, although R is not decreased notice-
ably by small angle ¢. In the experiments it is
difficult to eliminate small angle &, but small angle 5
is easily adjusted to within +2°. As shown in Fig. 6,
when angle 3 is between —2° and 2°, the ratio error R
is less than 0.005 regardless of the existence of small

®

0.04
lst 90 -10°

b : 0
ANk _G:--i s,

0.01% N

N

0 4 8 12

8 (degree)

Fig. 6. Ratio R of error ¢; 4 versus small inclination angle 3.



angle 4. It is important to adjust inclination angle 5
to be small to decrease the error ratio.

Next we consider a random error e, in the measure-
ment of 6 caused by the random error in the measure-
ment of phase differences ¢y and «. From Egs. (2)
and (31), Eq. (10) is rewritten as

0 = S(a — oy)/4mz,. (36)
This equation is better for experiments than Eq. (10)
because values S and z, can be directly adjusted in the
experiments. A standard deviation of ¢, is given by

90\2 - 90 \2 212
7= \ga) % Aoy Tag ’

where o, and o, are standard deviations of a and «,
respectively. Usually the random error in measure-
ment of the phase difference «y is the same as that of
phase difference a. This means that o, = Oy, = O.
From Eq. (36), Eq. (37) reduces to

(37)

oy = SV20/4vzy = V20/8,, (38)
where S, is the sensitivity at 6 = 0 given by Eq. (11).
To decrease the standard deviation oy, we decrease o
or increase the value of z;, although the value of S is
determined by the structure of the interferometer.
The value of z, can be easily changed by moving a
detection point. The value of ¢ can be decreased by
using a feedback control system to eliminate fluctua-
tions of the phases caused by mechanical vibrations.

There are two error sources in the method. Oneis
from a nonideal configuration of the setup, that is,
d=0,d = 0, as given by Eq. (35). Another is from
the measurement error of the phase difference, a and
ap. Hence the error in the measurement of small
rotation angle 6 is

€(0) = €54 + €, (39)

5. Experimental Setup

Figure 7 shows an experimental setup for measuring
rotation angle 6 of the optical surface. A Twyman-
Green-type interferometer is used to generate a paral-
lel interference pattern whose period is S. Mirror 2
in the Twyman-Green-type interferometer is ad-
Justed so that the two collimated laser beams re-
flected by mirrors 1 and 2, respectively, intersect each
other at angle y. The wavelength X of light emitted
from the laser diode is 780 nm. Angle vy is 4.9
arcmin, and space period S is 550 pm. The diameter
of the two laser beams is ~4 mm. Because angle v is
very small, the overlap length of the two laser beams
or the length of the parallel interference pattern is a
few meters. Incident angle w of the equiphase plane
onto the optical surface is 10°.

Experimentally a plane on which the experimental
setup is placed is regarded as plane P. The optical
surface is a flat mirror that rotates around the y axis
perpendicular to plane P. If we remove the optical
surface, the two beams from the beam-splitter cube

Laser
Diode

Modulator

0sC

Feedback
controller

A/D ag @, 0
Converter

Fig. 7. Experimental setup.

separate at a position far from the optical surface, and
we observe two spots on a plane perpendicular to
plane P. The distance between the centers of these
two spots gives us a value of angle y. The distance
between the centers of the spots along a line perpen-
dicular to plane P gives us a value of the misalign-
ment angle 3. We can adjust angles y and 3 by
observing the positions of the two beams.

Because distance d; between the two detection
points, A and B, is less than space S, a pair of optical
fibers is used to detect the interference signals at two
points where the two fibers stick together. The
outside diameters of the fibers are ~1 mm, and their
core diameters are 50 um. Before rotation of the
optical surface, optical fibers are set along the propa-
gation direction of the reflected laser beams to receive
the light at points A and B. The value of 2, corre-
sponds to the distance between points A and B along
the optical fibers, and the values of x, and y, corre-
spond to the distance along the x and y axes, respec-
tively, between the two optical fibers. Angle B is
determined by the values of xy and z;. The values of
xo and y, are 225 pm and 2 mm, respectively. The
value of 2y can be changed. The use of the optical
fibers makes it very easy to move the detection points.

A sinusoidal phase-modulating laser-diode interfer-
ometer is used to measure the phase of the equiphase
plane.® The injection current of the laser diode is
modulated with a sinusoidal wave signal a cos w. for
generating a sinusoidal phase-modulated interfer-
encesignal. Two interference signals, S4(¢) and Sp(t),
are detected at points A and B in the reflected parallel
interference pattern. The time-varying components
of the signals at the two points are written as

(40)
(41)

S.(t)= cos(z cos wt + ay),
Sg(t) = cos(z cos wt + ag),

where z is proportional to amplitude a of the injection
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current and the optical path difference between the
beams that make up the interference pattern. Two
optical fibers are connected with two photodiodes, 1
and 2. Interference signals S,(¢) and Sp(t) are sent
into a computer through an A/D converter.

Phases a, and ag are measured from the interfer-
ence signals with the technique of a sinusoidal phase-
modulating interferometer.® The phase difference
oo is obtained from a4 and az. When the object
rotates by angle 6, the phase difference o is also
obtained. However, there are fluctuations in the
phase of the interference signal caused by external
mechanical vibrations. If we use a feedback control
system in the interferometer, the fluctuations in the
phase of the interference signal are depressed.!®.!!
A feedback signal sin «, is produced from signal S(¢)
in the feedback controller. The feedback system
controls the injection current of the laser diode so
that a condition of sin oy = 0 is kept against the phase
fluctuations. The random errors in the measure-
ment of phase differences ay, a are greatly decreased.
A standard deviation o of the phase differences is
calculated by measuring them several times. Experi-
mental results show that o can be decreased from 0.1
rad to 2 mrad by using the feedback control system.

6. Experimental Results

Experiments were performed with the experimental
setup in Fig. 7. In the experiments the related
parameters were adjusted to S = 550 pm, w = 10°,
and B = 89.9°, which were obtained at z, = 120 mm,
%o = 225 pm. In the condition of x, = S/2, phase
difference oy was equal to w. Sensitivity S, given by
Eq. (11) is 17 mrad/arcsec for small rotation angles.
Angles ¢ and 6 could be measured with an autocolli-
mator.

First, we investigated error €(8) given by Eq. (39).
Figure 8 shows the experimental results and the
theoretical curve of €, given by Eq. (35). Inclina-
tion angle & was 5°. Inclination angle 3 of the
equiphase plane was adjusted from —6° to 20° at
intervals of ~3°. We rotated the optical surface by
—30 arcsec, measuring the rotation angle with an
autocollimator. The rotation angle was measured
from Eq. (36) for different values of the angle 3, and
we obtained the value of ¢(8), which was the difference

20

e measured value
15— theoretical value
0= -30arcsec
$=5°
1.0

€(0) (arcsec)

0.5+

64 *0 4 8 12 16 20

05 8 (degree)

Fig. 8. Error €(0) of the rotation angles measured at different

values of 3.
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B =89.9°

6, (arcsec)
o

3 2 1 0 1 2 3
6. (arcsec)

Fig. 9. Rotation angles measured within +2 arcsec at B = 89.9°
and ag = 7.

between the measured value 6,, and the actual value
of —30 arcsec. The standard deviation o, of the
random error ¢, given by Eq. (38)is 0.2 arcsecat o = 2
mrad. The measured values agree with the theoreti-
cal values of €; 4 to within 0.2 arcsec. Because angle
d can be easily adjusted to be within +2°, the accuracy
of 0.2 arcsec is achieved in the measurement.

Second, the small rotation angles of the optical
surface were measured within +2 arcsec at intervals
of 1 arcsec in the condition that § was within +2° and
¢ was less than 5°.  The measurement result at g =
89.9°isshown in Fig. 9. Angle 6, is a measured value
with an autocollimator, and 6,, is the measured value
by our method. The black dot at 6. = 0 or 6,, = 0
indicates the initial position of the optical surface.
From the experimental result, we see that the error in
the measurement was within +0.2 arcsec that arises
from error ¢,. Figure 10 shows another measure-
ment result when the value of z;, was changed to
60 mm, that is, 3 = 89.8°. The error in the measure-
ment increased by two, because z, was decreased by
one half. The measurement results agree well with
the theoretical results given by Eq. (38).

Figure 11 shows the values of €(8) = 6,, — 6, for the
small rotation angles measured within +30 arcsec at
intervals of 5 arcsec in the condition that 3 and ¢ were

B = 89.8°

6, (arcsec)
o

302 - 0 1 2 3
8. (arcsec)

Fig. 10. Rotation angles measured within +2 arcsec at B = 89.8°
and ap = 7.



1.0

. 05

]

g 0.0 L\ A

- A

& \

w 0.5 "\k

-1.0
-40 -20 0 20 40
6. (arcsec)
Fig. 11. Error ¢(9) of the rotation angles measured within +30

arcsecat B = 89.9° and oy = .

larger angles. In the results the error is approxi-
mately —0.6 arcsec at 6, = 30 arcsec. This means
that error e;, becomes a large value for a larger
rotation angle as given by Eq. (35). From Eq. (39)
€6 in the measurement of the 30-arcsec rotation
angle is between —0.8 and —0.4 arcsec, that is, value
R is between 0.013 and 0.027. From Fig. 6 we
estimate that the values of angle 8 and ¢ are near +8°,
and the 3 sign was different from the ¢ sign. The
experimental results show that the adjustment of
angle d is important in the method. The error in the
measurement of small rotation angles is provided
mainly by errore,. Error ¢; 4 becomes larger than error
¢, for large rotation angles if angle 8 is not small.
If angle 3 is within +2°, error ¢; 4 can be ignored.
Finally we investigated the measurement range.
The rotation angles were measured at intervals of 1
arcmin as shown in Fig. 12. The measurement
range of 8,, is limited by the measurement range of «,
which is from 2w to 0. The measured value of a
corresponding to the value of 6,, is also shown in Fig.
12. The measurement range of 6,, is found by the
fact that the value of a jumps over 2w for large
rotation angles. These o jumps were observed as the
measured values that are not on the linear line as
shown in Fig. 12. When 2z, = 120 mm and x, =
225 pm or B = 89.9°, the measurement range was
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Fig. 12. Measurement range obtained at B = 89.9° and o = .
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Fig. 13. Measurement range obtained at B = 89.8°and o9 = 7.

approximately *3 arcmin. Figure 13 shows the
results at zy = 60 mm and xy = 225 pm or B = 89.8°.
The measurement range was approximately *+6 arc-
min. These measurement ranges obtained from the
experiments show good agreement with the theoreti-
cal ones given by Eq. (14). The measurement range
is wider when angle B is not closer to w/2 or z; is
shorter. These results confirm the limitation on the
rotation of the surface between measurements. The
system measurements range could be greatly in-
creased with multiple measurements.

7. Conclusions

A method for measuring rotation angles by using a
parallel interference pattern has been described.
The principle shows that the method is suitable for
measuring small rotation angles. Using the concept
of the equiphase planes, we analyzed measurement
error €; 4 caused by the nonideal configuration where
the equiphase planes and the optical surface are not
parallel to the rotation axis of the optical surface and
are inclined by angles 3 and &, respectively. The
value of error ¢; 4, is proportional to rotational angle 6,
and error €, can be ignored when angle 3 is within
+2°. The adjustment of 3 is very important in the
method. For small rotation angles of less than ~ 10
arcsec, measurement error ¢, that is caused by the
random error in the measurement of the phase
difference, @ and «p, is dominant. The standard
deviations of these phase measurements is 2 mrad.
These small standard deviations are obtained by
using a sinusoidal phase-modulating laser-diode inter-
ferometer with the feedback control system to elimi-
nate fluctuations in the phase of the interference
signal. The sensitivity S, at B = 89.9°and o9 =  is
17 mrad/arcsec for small rotation angles. Then the
standard deviation of €, is 0.2 arcsec, and a measure-
ment accuracy of 0.2 arcsec is achieved for small
rotation angles. The method as demonstrated has a
high spatial resolution of 0.55 mm, which is the
period of the parallel interference pattern. The mea-
surement range depends on the value of the § angle.
The range is +6 arcmin at a § angle of 89.8°. The
experimental results agree well with the theoretical
6387

1 October 1995 , Vol. 34, No. 28  APPLIED OPTICS



results about the measurement errors and the mea-
surement range.

The method is very suitable for such applications as
the noncontact monitor of surface tilt that keeps
changing with time. In addition to a small measure-
ment area we have the advantage that the period of
the interference pattern does not change after the
surface rotation. This could allow us to measure the
rotation angle repeatedly and obtain a larger measure-
ment range for the system. Then the « phase goes
beyond 2w or 0, and the individual measurement
must be interpreted by using a phase-unwrapping
technique. We will study a larger measurement
range with the method in the near future.
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