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When bone is rapidly induced by recom-

binant human bone morphogenetic pro-

tein-2 (rhBMP-2), more noncollagenous

proteins (NCPs) are accommodated

among the collagen meshwork. These

NCPs are then removed, resulting in high-

ly mineralized mature bone. However,

few reports have focused on changes in

the bone matrix of rhBMP-2-induced bone.

In the present study, rhBMP-2 with an

artificial carrier was implanted over bone

defects in rat calvariae, and changes in

the distribution of osteopontin (OPN), the

degree of mineralization and speed of

bone formation were investigated histo-

chemically and radiographically. Dome-

shaped areas of newly formed bone

observed at postoperative week 2 were

intensely immunoreactive for OPN and

intensely labeled with calcein, but were

not as radiopaque as the preexisting

bone. At postoperative week 8, intense

immunoreactivity was detected only on

cement lines and in small discrete areas

on the flattened domes. The matrix was

as radiopaque as, and indistinguishable

from, the preexisting bone. Only thin lin-

ear labeling of calcein was found on the

bone surface. These findings suggest

that, in rhBMP-2 induced bone, production

of OPN is increased when the rate of

bone formation is high, and that OPN

produced in the early stage of bone forma-

tion is removed during bone remodeling

to create a highly mineralized mature bone

matrix.
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I. Introduction

Bone morphogenetic proteins (BMPs), members of

the transforming growth factor (TGF)-beta superfamily, are

known to be included among a number of factors that induce

rapid bone formation. Recombinant techniques have made

BMPs accessible for biological and preclinical evaluation

(reviewed in [27]). Local administration of recombinant hu-

man BMP-2 (rhBMP-2) induces ectopic bone formation and

improves the healing of fractures and various bone defects in

animals [1, 15, 16, 28]. Such studies of rhBMP-2 have

demonstrated an increased rate of bone formation at an early

stage of osteogenesis and regeneration. BMP expression has

also been demonstrated during fracture healing [8]. BMPs

accelerate migration, proliferation and differentiation of

bone-forming cells, and stimulate matrix secretion; up-regu-

lation of gene expression and secretion of matrix proteins

such as type I collagen and noncollagenous proteins (NCPs)

have been reported [4, 10, 14]. The collagen fibers in lamel-

lar bone are usually oriented in a preferential direction and

closely packed, whereas in woven bone they appear as irreg-

ular bundles and have comparatively wide interfiber spaces.

NCPs have been demonstrated in the spaces between col-

lagen fibers [5, 13, 17, 18]. Biologically, these matrix pro-

teins mediate various events involving cells and the bone

matrix, including mineralization during bone formation, and
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subsequent bone remodeling. In this context, the distribution

of matrix proteins implies that biological signalling occurs

in bone. However, few reports have focused on the changes

occurring in induced bone matrix, especially changes in the

distribution of NCPs, the degree of bone mineralization, and

the speed of bone formation.

Therefore, the present study was designed to clarify the

relationship between the distribution of osteopontin (OPN),

one of the major NCPs in bone, and bone mineralization

with reference to the speed of bone formation and remodel-

ing in rhBMP-2-induced bone.

II. Materials and Methods

Twelve 6-week-old male Wistar rats were anesthetized

with diethyl ether and an intraperitoneal injection of 8%

chloral hydrate (0.5 ml/100 g body weight). After shaving

the head, a 3-cm midsagittal incision was made, and the

periosteum and subcutaneous tissue were reflected to expose

the skull. Bone defects 1.0 mm in diameter and 0.5 mm deep

were made on both parietal bones using a round dental burr

(#3, 1.0 mm diameter) operated at low speed while irrigating

the site with sterilized physiological saline. Five micrograms

of rhBMP-2 in a carrier made of polylactic acid-polyglycolic

acid copolymer gelatin sponge complex (PGS) was placed

over each of the two bone defects in the skull. These defects

were to communicate with bone marrow and to provide the

cellular components that participate in bone formation and

remodeling. Then the periosteum and subcutaneous tissues

were replaced, and the surgical wounds were closed with

sutures. The animals were killed 2 and 8 weeks after sur-

gery. Principles of laboratory animal care were followed

and animal experimentation was in compliance with the

“Guidelines for the Care and Use of Laboratory Animals

in Health Sciences University of Hokkaido”.

Histological and histochemical studies

After anesthesia with an injection of pentobarbital, the

rats were fixed by perfusion with 4% paraformaldehyde in

0.1 M cacodylate buffer (pH 7.4). The skulls were quickly

dissected and immersed in the same fixative overnight. The

specimens were rinsed in 0.1 M cacodylate buffer and decal-

cified with 4.13% EDTA for 3 weeks at 4�C. The skulls

were then divided along the sagittal suture, dehydrated in a

series of increasing concentrations of ethanol, and embed-

ded in paraffin. Sagittal sections, 5.0 �m thick through the

middle part of the defect, were selected from serial sections

and stained with hematoxylin and eosin. Certain sections for

immunohistochemical examination were treated with 0.3%

hydrogen peroxide in methanol for 30 min, followed by in-

cubation for 1 hr with PBS containing 5% skim milk. Then

the specimens were incubated with goat anti-rat OPN (Dr.

M. C. Farach-Carson, University of Texas at Houston) at a

dilution of 1:200 in PBS for 2 hr, followed by incubation

with anti-goat Igs (Kirkegaard & Perry laboratories Inc.,

Gaithersburg, MD) at a dilution of 1:100 in PBS for 1 hr.

Immunoreactivity was visualized by incubation in 0.05 M

Tris-HCl buffer (pH 7.6) containing 0.01% 3,3�-diamino-

benzidine and 0.002% hydrogen peroxide. All incubations

were done at room temperature. The sections were counter-

stained with hematoxylin. With a control solution of PBS

without anti-rat OPN, no significant reaction on the sections

was found.

Calcein labeling and contact microradiography

Two of the experimental animals at each time point

were subcutaneously injected with calcein (10 mg/kg;

Wako, Osaka, Japan) [12] 24 hr prior to sacrifice. Following

decapitation, the skulls were fixed in 70% ethanol for 7 days.

The specimens were then divided along the sagittal suture,

dehydrated with ethanol and embedded in methylmethacry-

late (Wako, Tokyo, Japan) without decalcification. The

blocks were unilaterally ground up to the middle of the bone

defect. The calcein labeling was observed by mounting the

midsagittal surface of the ground blocks on the stage of a

confocal laser scanning microscope (CLSM; LSM-GB200;

Olympus, Tokyo, Japan). The blocks were then ground to a

thickness of 90 �m. Contact microradiographs were taken

with a SOFRON SRO-405 instrument (Sofron, Tokyo,

Japan), employing Kodak SO-343 high-resolution film

(Eastman Kodak, Rochester, NY). Irradiation was done at

14.5 kV and 5.0 mA for 25 min.

III. Results

Along the outline of the rhBMP-2 implant, an obvious

dome-shaped area of bone was observed over the defect at

postoperative week 2. Inside the dome, the residues of the

PGS carrier and islands of newly formed bone were dis-

tributed among the cellular components. Trabecular bone

extended both from the dome wall and preexisting bone

towards the inside to connect the bone islands. These newly

formed bones were woven bones with eosinophilic charac-

teristic (Fig. 1A). At postoperative week 8, the dome had

decreased in height, sloping gently down to merge with the

skull. Bone matrix of the dome was as compact as preexist-

ing calvaria. The bone marrow extended under the flattened

dome, and the PGS carrier was no longer obvious (Fig. 1B).

At week 2, microradiography showed radiolucent punched-

out areas in the dome and bone islands, giving the appear-

ance of a fine meshwork of mineralized matrix, which was

more radiolucent than the preexisting calvaria (Fig. 2A). At

week 8, the flattened dome was as radiopaque as the pre-

existing bone and indistinguishable from it (Fig. 2B).

Immunoreactivity for OPN was intense on the matrix of

the dome-shaped bone and bone islands inside it at postoper-

ative week 2 (Fig. 3A, B). However, this immunoreactivity

seemed to consist of accumulations of immunoreactive

patches. From the size and the distribution of the patches,

these seemed to correspond with radiolucent punched-out

areas in microradiogram. At week 8, small areas and discrete

lines within the flattened dome were immunolabeled for

OPN (Fig. 3C). The distribution and intensity of the immu-

noreactivity in the flattened dome at postoperative week 8



OPN in Remodeling of rhBMP-2 Induced Bone 115

were similar to those of the preexisting bone (Fig. 3D).

Calcein labeling produced broad staining of the newly

formed dome and bone islands at week 2, while in the pre-

existing bone the labeling was detected as thin lines at the

surface of the calvaria and the surface facing the bone

marrow (Fig. 4A). At week 8, linear calcein labeling was

observed over the surface of both the flattened dome and

preexisting bone (Fig. 4B).

IV. Discussion

Previously, we showed that rhBMP-2-induced dome-

shaped areas of bone underwent remodeling that resulted in

a decrease of height [24]. The present study demonstrated

that the dome-shaped bone contained a large amount of

OPN, and had been slowly replaced by highly mineralized

mature bone during remodeling. The cement lines associated

with OPN at week 8 in this study were also evidence of bone

remodeling. The discrete areas showing intense immuno-

reactivity appeared to correspond to the areas where initially

formed bone matrix remained during remodeling.

OPN was demonstrated in the spaces between collagen

fibers, suggesting that bone containing tightly packed col-

lagen has less OPN, whereas looser matrices such as woven

bone have substantially more OPN (reviewed in [20]).

Indeed, the weakest immunoreactions for OPN demonstrated

by immunoelectron microscopy were over regions rich in

mineralized collagen. Since looser packing of collagen, a

characteristic feature of woven bone, appears when bone is

formed very rapidly—for example in the early stage in

development and in fracture healing—the packing density of

collagen and the distribution of OPN may reflect the speed

of bone formation. In fact, high expression of OPN in devel-

Fig. 1. Histological appearance of calvaria after implantation of

rhBMP-2 with a PGS carrier. (A) Along the outline of the implant, a

dome-shaped area of bone is obvious at postoperative week 2.

Among the cellular components, newly formed bone islands and

residues of the PGS carrier (arrowheads) can be seen inside the

dome. These newly formed bones are eosinophilic. (B) At week 8,

the dome appears flat and slopes gently down to the calvaria, giving

an image of calvarial thickening. Bone matrix of the dome is as

compact as preexisting calvaria (asterisks). Bar�500 �m.

Fig. 2. Contact radiomicrographs of calvaria after implantation of

rhBMP-2 with the PGS carrier. (A) At postoperative week 2, a

newly formed area of dome-shaped bone and bone islands within it

show radiolucent patches in a radiopaque matrix, suggesting that the

newly formed bone is not as radiopaque as the preexisting calvaria.

(B) At postoperative week 8, the flat dome is as radiopaque as the

preexisting calvaria, and indistinguishable from it. Bar�500 �m.
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oping limbs and mandible has been demonstrated [9, 21, 23,

26, 29]. Moreover, the spatial organization and relatively

wide spaces in the collagen meshwork of woven bone could

accommodate more NCPs. As well as in developing bones,

intense immunoreactivity for OPN has also been demon-

strated in experimentally induced woven bone after direct

administration of basic fibroblast growth factor into rat bone

marrow [2]. Such woven bone is usually not as mineralized

as lamellar bone. During development or fracture healing,

woven bone is replaced by mature lamellar bone in the pro-

cess of bone remodeling. In this study, intense immunoreac-

tion for OPN was found on the newly formed bone matrix at

week 2, suggesting rapid bone formation with looser pack-

ing of collagen induced by rhBMP-2. Indeed, broad incorpo-

ration of calcein labeling in newly formed bone during this

period indicated a high rate of mineralization, and thus bone

formation. On the other hand, at week 8, intense immuno-

reactivity for OPN was restricted to cement lines and small

discrete areas, and the overall pattern of immunoreactivity

resembled that of preexisting bone. This variability of OPN

immunolabeling is comparable to that observed in normal

bone. Calcein incorporation was very limited at this stage,

and only linear labeling was evident on the external and in-

ternal surfaces of bone, suggesting that bone formation was

much slower than that at week 2. These data, when consider

the discussion above, suggest that the OPN content in bone

matrix is influenced by the speed of bone formation and the

packing density of collagen. A relationship between col-

lagen packing density and the amount of NCPs has also been

documented in tooth cementum, a tissue with general simi-

larities to bone. In cementum, as in this study, the rate of for-

mation is an important determinant of the relative propor-

tions of NCPs and collagen [3]. A large quantity of OPN,

together with all other NCPs, in initially formed bone may

rapidly provide a space, with some rigidity, for replacing

mature lamellar bone. Moreover, most of the bone matrix

Fig. 3. Immunohistochemical localization of osteopontin (OPN) in calvaria after implantation of rhBMP-2 with the PGS carrier. Bone matrix of

dome-shaped bone (A) and bone islands inside it (B) at postoperative week 2 are intensely immunoreactive for OPN. Note matrix consists of

immunoreactive patches, especially in bone islands. These patches correspond to radiolucent punched-out areas in microradiogram shown in

insert. Bone matrix of the flat dome at postoperative week 8 shows generally weak immunoreactivity (C) and is similar to the immunoreactivity

in the preexisting bone (D). Discrete lines (arrows) in the bone matrix, corresponding to cement lines, are intensely immunoreactive in both the

flat dome and the preexisting bone. Insert, high magnification of radiogram shown as 2A. Bar�100 �m.
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with a high content of OPN will eventually undergo remod-

eling. Together with reports suggesting a possible role of

OPN in the migration and cell-matrix adhesion of osteo-

clasts [7, 11, 22, 25], OPN may facilitate osteoclastic bone

resorption and subsequent bone remodeling.

Interestingly, the patch-like pattern of intense immuno-

labeling for OPN at week 2 appeared consistent with a

punched-out pattern of radiolucency, suggesting an inhib-

itory function of OPN in matrix mineralization. Immuno-

electron microscopy during the early mineralization process

demonstrated an association of OPN with mineralizing foci

and small globular masses among the collagen fibrils.

Moreover, most of the intense immunolabeling for OPN

disappeared when newly formed bone underwent remodel-

ing to become highly mineralized mature bone, consistent

with the idea that OPN helps regulate the mineralization of

bone matrix [6, 19].

It is noteworthy that the outline of the dome-shaped

bone area seen at week 2 corresponded to the outline of the

BMP implant. Since bone matrix inside the implant was

more radiolucent than that at the periphery of the implant at

this point, it was considered that bone formation occurred at

the periphery of the BMP implant where migrated mesen-

chymal cells would have encountered a specific concentra-

tion of diffused rhBMP-2.

We conclude that in rhBMP-2-induced bone, produc-

tion of OPN is increased when the rate of bone formation is

high, and that OPN produced at an early stage of bone

formation is removed during bone remodeling to achieve

highly mineralized mature bone: a situation resembling

that in normal bone.
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