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SUMMARY In this paper, we propose two parallel processing
methods for multidimensional (MD) sampling lattice alteration.
The use of our proposed methods enables us to alter the sam-
pling lattice of a given MD signal sequence in parallel without
any redundancy caused by up- and down-sampling, even if the
alteration is rational and non-separable. Our proposed meth-
ods are provided by extending two conventional block process-
ing techniques for FIR filtering: the overlap-add method and
the overlap-save method. In these proposed methods, firstly a
given signal sequence is segmented into some blocks, secondly
sampling lattice alteration is implemented for each block data
individually, and finally the results are fitted together to obtain
the output sequence which is identical to the sequence obtained
from the direct sampling lattice alteration. Besides, we provide
their efficient implementation: the DFT-domain approach, and
give some comments on the computational complexity in order
to show the effectiveness of our proposed methods.

key words: multidimensional signal processing, multirate signal

processing, parallel processing, overlap-add/save method
1. Introduction

Multidimensional (MD) multirate signal processing,
such as MD filter banks and MD wavelet transforms,
finds an increasing number of applications in various
important areas[1]-[6], for example motion analysis,
image sequence processing and so forth[7],[8]. Sam-
pling lattice alteration is an indispensable technique for
MD multirate signal processing which deals with MD
digital data at several sampling lattices.

Most applications of MD signal processing require
real-time processing, and is often accompanied by the
problem how to realize a large amount of the com-
putation within few specified processing time. Be-
cause of the problem, it is hardly possible to avoid
the use of the parallel processing approach, which at-
tempts to increase computing speed by using a num-
ber of processor elements (PE) simultaneously[9]—
[11]. For finite-extent impulse response (FIR) filtering,
the overlap-add method (OLA) and the overlap-save
method (OLS)[12]-[14] are exploited as the basic tech-
niques of parallel filtering[10],[11]. Both OLA and
OLS are regarded as block processing or data distribu-
tion technique, which segments a given signal sequence
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into some blocks and handles each block independently.

Since sampling lattice alteration includes filtering
operation, both OLA and OLS can be applied to the
processing. Due to up- and down-sampling involved in
the alteration, however, the redundant operations are
caused in the approach. In order to eliminate the re-
dundancy, we have to take account of up- and down-
sampling. Besides, in order for the effective parallel
processing, we have to consider how to operate each
segmented block data independently. The parallel sam-
pling lattice alteration based on the above considera-
tion, however, have not been formulated yet.

In this paper, in order to alter MD sampling lat-
tices in parallel without the redundancy caused by
up- and down-sampling, we propose two parallel pro-
cessing methods by extending the conventional OLA
and OLS[15]. As a general case, we deal with a ra-
tional and non-separable. sampling lattice alteration,
such as orthogonal-to-quincunx and orthogonal-to-face-
centered-orthorhombic (FCO) alterations[7]. The the-
ory of this work is applicable to any number of di-
mension and is regarded as the generalized version of
the one-dimensional (1D) extended OLA and OLS[16],
[17]. ‘

As a preliminary, in Sect. 2, some fundamentals of
MD signal processing and sampling lattice alteration
are reviewed. In Sect.3, the application of OLA and
OLS to the filtering of sampling lattice alteration is
considered. In Sect.4, the extension of OLA and OLS
to sampling lattice alteration is proposed. And finally,
in Sect. 5, the efficient implementation of our proposed
methods is provided, followed by the conclusion of this
work.

2. Review of Basic Concepts

As a preliminary, we firstly indicate some important no-
tations, and review some fundamentals of MD signal
processing and rational sampling lattice alteration.

Let D, N and V be the number of dimensions, a
D x D nonsingular integer matrix and a D x D nonsin-
gular real matrix, respectively.
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2.1 Notations

All through this work, the following notations are used.

Nt set of D x 1 integer vectors.

N(N): set of all integer vectors of the form Nz where
x is a real vector with components z; in the range
0z, <1,

J(IV) = |detN|: the absolute determinant of IN, which
is also equal to the number of elements in N'(N).

L(V'): set of all vectors of the form Vn,n € N, that is,
the lattice generated by V.

(n)) py: the remainder obtained by dividing some inte-
ger vector n € N with IN, which is derived from
the division theorem for integer vectors.

Some of the above notations are similar to those
in Refs.[1]-[4], and more detailed discussions can be
found in those articles.

2.2 MD Linear Convolution[4],[13]

MD linear filtering is done by calculating the corre-
sponding MD linear convolution. Let f(k) and h(k)
be a D-dimensional signal sequence and the impulse
response of a linear shift-invariant (LSI) system, respec-
tively. The definition of D-dimensional linear convolu-
tion is expressed as follows:

g(k) =Y f(n)h(k—n), ke N. (1)

neN

In the following, this operation is briefly represented as
g(k) = F(k)xh(k).

Suppose that h(k) is an FIR filter defined over a
region of support A, C N. Provided f(k) is a sig-
nal sequence defined a finite-extent region of support
Nj C N, then the result g(k) also has a finite-extent
and the region of support Ny, C N results in

Ny= J Non, (2)

nENf

where N 2 {k|k —n € N3}

On the contrary, for computing the result g(k) only
within some region of support Ay C A, it is sufficient
that there exists the signal f(k) only within the region
of support Ny C N, which is derived from

N = U Nk, (3)

keN,

where A, = {nlk —n € N3}

935

2.3 MD Discrete Fourier Transform|[ (3]

Let N be a nonsingular integer matrix and f(n) be
a D-dimensional signal defined over a region of sup-
port N (IN). The matrix-IN discrete Fourier transform
(DFT) of f(n) and the inverse discrete Fourier trans-
form (IDFT) are defined as follows, respectively:

Fk) = Y fm) W]
nGN(N) ’
Ec N(NT), (@
o= am X Pk W
EeN(NT) ’

n € N(N), (5)

where the superscripts “I” and ‘¢’ denote the transpo-
sition and the conjugation, respectively. F(k) is the
matrix-N DFT of f(n) and W® denotes the general-
ized DFT matrix [4] defined as

{WE%)] = exp (—jQWkTN—1n> ,

k,n

ke N(NT),ne NN, (6)

where the superscript ‘—1’ denotes the inversion. The
matrix IV is referred to as a periodicity matrix.

Both of the DFT in Eq. (4) and the IDFT in Eq. (5)
can be computed efficiently by using the fast Fourier
transform (FFT) algorithms, such as the row-column,
vector-radix and prime-factor algorithms[13].

2.4 Sampling Lattice Alteration [2],[4]-[6]

Sampling lattice alteration system is an indispensable
element for MD multirate systems[2],[4]—[6]. Unlike
1D sampling rate conversion [ 18], the lattice alteration
is expressed by means of matrix instead of scalar. Fig-
ure 1 shows the basic structure of the sampling lattice
alteration system with a rational matrix LM , Where
L and M are D x D nonsingular integer matrices. When
L is chosen as the identity matrix (denoted I), the sys-
tem is reduced to the decimator with the integer matrix
M. On the other hand, it comes to the interpolator
with the integer matrix L, when M = 1.

In Fig.1, z(n), y(m) and h(k) denote an D-
dimensional input signal sequence, the output signal
sequence and the impulse response of an LSI system.
These sequences are related as follows:

x(n) . V(k)- “(k). y(m)

Fig. 1 A sampling lattice alteration system.
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u(k) = v(k)xh(k), k €N, (8)
y(m) =u(Mm), meN. ©

The operations in Egs. (7) and (9) are referred to as up-
sampling and down-sampling, respectively. Note that
the filtering operation has a lot of redundancy, since
some samples of the sequence v(k) to be filtered are
zero-values due to up-sampling, and some samples of
filtered sequence u(k) is discarded by down-sampling.

In the following, the processes defined as Egs. (7)
and (9) are represented as v(k) = [z, (k) and y(m) =
[u] | ps (M), respectively.

3. Parallel Filtering Approach

In MD real-time processing, it is hardly possible to
avoid the use of the parallel processing approach[9]—
[11]. For FIR filtering, OLA and OLS are used as the
basic techniques of the parallel processing [ 10],[11]. In
this section, as the first step for altering sampling lat-
tices in parallel, we consider applying OLA and OLS to
the filtering as shown in Fig.2. Although the structure
has redundant operations, it plays an important role for
the later expansion.

Let Ng be a D x D nonsingular integer matrix, and
h(k) be an impulse response defined over a region of
support N, C N, that is, an FIR filter. The followings
show the procedures of the sampling lattice alteration
with OLA and OLS, respectively.

3.1 Application of the Overlap-Add Method (OLA)

By using OLA, in the system as shown in Fig. 1, the
filtering of the up-sampled sequence v(k) can be imple-
mented with the following procedure: Firstly, segment
v(k) into blocks generated by the matrix N g as

v (k) = v(Ngi+ k'), k'€ N(Ng)
' 1 0, elsewhere

where i € A and v; (k') is an i-th segmented block data.
Secondly, execute the linear convolution of each block
data v; (k') with the filter h(k’) individually as

i) :{ vk )*h(k), K €M(Ns)

0, elsewhere !

,  (10)

vi(k’) 3 ufk’)

u(k) _ y(m)

Fig. 2 A sampling lattice alteration system with the parallel
filtering approach.
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where NV}, (N g) is derived from Eq. (2) as

U N (12)

And finally, add the results u;(k’),i € N together to
obtain the overall filtered sequence u(k) as

u(k) =Y ui(k — Ngi), ke N. (13)
iEN
In this work, we refer to Ng as a segmentation matrix.

Figure 3 shows an example of the above procedure,
where we choose D = 2, A, = N (Ng) and

Ns:<g Z) (14)

In Fig. 3, k; denotes the component of the variable k,
that is, k = (ko, k1), and the shaded area indicates
the region assigned for an i-th block, where (1,1)% st
block is remarked. Note that the illustrations are two-
dimensional, although the theory is applicable to any
number of dimensions.

3.2 Application of the Overlap-Save Method (OLS)

Another approach for filtering in parallel is OLS, of
which procedure is similar to OLA. The procedure is
shown as follows: Firstly, segment v(r) into overlap-
ping blocks as

N U(Ns'i+k/), K E/\_/h(Ns)
vi(k') = { 0, elsewhere (19
where 2 € N and A}, (N g) is derived from Eq. (3) as

U M. (16)
k'EN(Ns)

NMi(Ns) =

Secondly execute the linear convolution of each v; (k)
with (k') individually to obtain the result u;(k') only
within the region of support N (Ng) as

/ / 7
wik) = | BRD*R(), K € N(Ns) an
0, elsewhere
) »
kA ° V(k) ] \%(k) ki A° I/t(k) ] M,(k)
12¢0009000¢000d- 000G -
000660006000 12 ;ggggoooggggg
000000000000 000000088000
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(b) ko
Fig.3  The overlap-add method, (a) Segmentation, (b) Fitting.
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Fig.4  The overlap-save method, (a) Segmentation, (b) Fitting.

And finally, fit the results u;(k’),7 € A to obtain the
overall filtered sequence u(k) as Eq.(13). Actually, this
fitting operation does not require any additions, because
there is no overlapping block.

As well as Fig. 3, we show the procedure of OLS
in Fig.4, as an example.

In this section, we showed that the use of OLA or.

OLS in sampling lattice alteration enables us to imple-
ment the filtering in parallel. In the procedure, however,
it is impossible to avoid the redundancy caused by up-
and down-sampling. The redundancy is not desirable
in terms of the computational efficiency. The aim of
this work is to eliminate the redundancy even under the
parallel processing.

4. Parallel Sampling Lattice Alteration

As we mentioned before, there is redundancy in the
structure as shown in Fig.2. In this section, taking ac-
count of the up- and down-sampling, we propose to
extend the parallel processing in Fig.2 to the whole
system.as shown in Fig. 5, so that both the elimination
of the redundancy and the parallel processing can be
simultaneously established.

The theory of this work is regarded as the general-
ized version of the 1D EOLA and EOLS[16],[17].

4.1 The Extended Overlap-Add Method (EOLA)

For the sampling lattice alteration with OLA as shown
in Fig.2, the extension of the parallel processing can
be done by choosing the segmentation matrix Ng as a
common right multiple (crm) of L and M [2],[5],[6],
that is,

Ng € crm(L, M), | (18)

from the following lemmas.

Lemma 1: If and only if N g is a right multiple (rm) of
L[2],[5],[6], the sequence v;(k’) provided in Eq.(10)
can be obtained as

'Ui(k/) = [mi]TL (k’),

after the input sequence z(n) is segmented into blocks
as

- (19)
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wu(n’) vi(k’) 3 w(k) _yim

| e e
(o) )

Fig. 5 A sophisticated parallel sampling lattice alteration sys-
tem.

z(n') = { z(Qgi+mn), n' cN(Qg)

0, elsewhere ’ (20)

where Qg = L™ 'Ng.
Proof: From Eq.(7), Eq.(10) is represented in terms
of z(n) as

z(L™'(Ngi+ k),
ke CNSi(L) ﬂN(Ns) s
0, elsewhere

’Ui(k/) =

@1

where Ln(L) 2 {K'|n + k' € £(L)}. Now, we can ver-
ify that Ly (L) always is equal to £(L) independently
of the block index %, there exists some integer matrix
Q¢ = L 'Ngs and Eq.(21) is rewritten as

2(Qsi+ LK),
E c L(L)NN(LQg)
0, elsewhere

Ui(kl) e

(22)

if and only if Ng is an rm of L. Since L(L)NN(LQg)
is equal to LN(Qg), we can notice that L™k’ €
N(Qg). 1In the result, v;(k’) can be obtained from
z;(n') provided in Eq.(20) as Eq. (19). O
Equation (19) implies that the up-sampling can be
implemented in parallel individually.
Lemma 2: If and only if Ng is an rm of M, then the
overall final output sequence y(m) can be obtained as

y(m) =Y yi(m— Pgi), me N, (23)
ieN

from the sequence y; (/') provided as follows:

?

(24)

where Ps = L™'Ng and Wi ar (Ps) £

N|Mm' € Ny (M Ps)}.
Proof: From Egs.(9) and (13), the overall final output
sequence y(m) is represented in terms of u; (k') as

{m' €

y(m) =Y u;(Mm — Ngi), meN. (25)
ieN

Now, we can verify that there exists some integer matrix
Ps=M"'Ng and Eq.(25) is rewritten as
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n (1 i(m’)

Fig. 6  The extended overlap-add method, (a) Segmentation,
(b) Fitting.

y(m) = Z ui(M(m — Pgi)), m e N, (26)

teEN
if and only if N is an rm- M. In the result, y(m) can be
obtained from y;(m’) provided in Eq.(24) as Eq.(23),
where we note that the decimated sequence [u;] v (M)
has the region of support [NV;], 5, (Pg) decimated from
Ni(MPg) which u;(k’) provided in Eq.(11) has. O

Equation (24) implies that the down-sampling can
be implemented in parallel individually.

From Lemma 1 and 2, by choosing Ng to satisfy
Eq. (18), we can implement the whole operation of sam-
pling lattice alteration in parallel as shown in Fig. 5. It
is known that there exists at least one crm(ZL, M), which
is R = L(J(M)I)[2]. Therefore, one of the simple
ways to choose the segmentation matrix Ng satisfying
the condition in Eq.(18) is as follows: Let Ng = RS,
where S is an arbitrary nonsingular integer matrix.

In Fig. 6, for example, we show the illustrations
of the segmentation and fitting operations, respectively,
where we choose

1
o ) , @7)

2 0 1
L:(O 1>,M~<1
This example is

in addition to Ng in Eq.(14).
an orthogonal-to-quincunx alteration. For the above
choice, the condition in Eq. (18) holds and the matrices
Qg and Pg result in

Qs:<§ 2>,Ps=<§ _22>. (28)

- In Fig. 6, ny and m, are the components of the variables
n and m, that is, n = (ng,n1)? and m = (mg, m1)7,
respectively, and the shaded area indicates the region
assigned for an i-th block, where (1,1)7-st block is re-
marked.

4.2 The Extended Overlap-Save Method (EOLS)

As well as the OLA case, when we choose Ng to sat-
isfy Eq.(18), it 1s possible to extend OLS as shown in
Fig.5. Figure 7 shows the segmentation and fitting op-
erations of the extended overlap-save technique, where
the matrices Ng,L and M are chosen as Egs. (14) and
(27), respectively.
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o x;(1)

o y(m)

nip© x(n)
12¢ -

. Yifm’)

AN POORODOCBEoOD-

@ ma (b)
Fig. 7 The extended overlap-save method, (a) Segmentation,
(b) Fitting.

In EOLS, the segmentation of the input sequence
x(n) is implemented as

ity = { Z@siT n€ ], @)

10, elsewhere

?

(29)

where Qg = L 'Ng and [Nh]lL Qs) & (w ¢
N|Ln' € Ny(LQg)}. The above segmentation is de-
rived from Egs. (7) and (15) with the similar discussion
to Lemma 1, where we note that £L(L) NN, (LQy) is
equal to L [AV,] 1z (@s)-

Also, the overall final output sequence y(m) is ob-
tained as Eq. (23) from the results y;(m’), € A of

) — [ui]lM (m'), m' e N(Pg)
valm') = { 0, elsewhere

where Ps = M~ 'Ng. Actually, this fitting operation
does not require any additions. The above operation is
derived from the similar discussion to Lemma 2, where
we note that the decimated sequence [u;] 1 (M) has the
region of support N'(Pg) decimated from A (M Pg)
which u; (k') provided in Eq. (17) has.

,  (30)

5. Efficient Implementation

From Fig.5, we can see that the processing for each
block data in EOLA and EOLS is identical to that of
the basic structure as shown in Fig. 1. This fact implies
that a number of conventional techniques for sampling
lattice alteration, such as polyphase and multistage tech-
niques[2],[4], can be applied to our proposed methods
directly. Therefore, the problem of the redundancy can
easily be solved even under the parallel processing.

In this section, we provide the DFT-domain ap-
proach of EOLA and EOLS without the redundancy
caused by up- and down-sampling, and give some com-
ments on the computational complexity. According to
the previous discussion, we assume that Ng is a seg-
mentation matrix at the filtering operation and satisfies
Eq.(18), and that h(k) is an FIR filter defined over a
region of support A, C N.
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5.1 The DFT-Domain Approach

It is known that the the conventional OLA and OLS
can be implemented with the DFT-domain approach,
which is computationally efficient when a high-order
FIR filter is employed[12]-[14]. This approach uses
the fact that linear convolution can be implemented by
the product of the corresponding DFTs. In the fol-
lowing, taking account of up- and down-sampling, we
provide the procedure modified for EOLA and EOLS.
Suppose that IV is a nonsingular integer matrix sat-
isfying the following conditions: in EOLA case,

Ns(N)DNw(Ng), for some s € N, (31
in EOLS case,
No(IN)DNw(Ns) and Ny (IN) 2 N,
for some s € A and some s’ € A/, (32)
and besides, in either case,
N = NgA, (33)

for some diagonal matrix A with nonzero rational ele-

ments larger than one on the diagonal, where Ns(IN) =
{k|lk—s € N(IN)}, No(Ns) and N, (N g) are provided
in Egs. (12) and (16), respectively. Using the above N
as a periodicity matrix, we can implement both EOLA
and EOLS in the DFT domain.

Equations (31) and (32) correspond to sufficient
conditions that the conventional OLA and OLS can be
implemented with the DFT-domain approach, respec-
tively (see Appendix A). Equation (33) assures that NV
is a crm of L and M, which is the necessary and suf-
ficient condition that the up- and down-sampling can
be implemented in the DFT domain without the redun-
dancy (see Appendix B), and that N(Ng) C N(N).
One of the simple ways to choose the periodicity ma-
trix IN satisfying the above conditions is as follows:
Let A = M1, where A is a rational scalar factor which
holds IN an integer matrix and is sufficiently large to
satisfy the condition in Eq.(31) for EOLA or Eq.(32)
for EQLS. '

Let Q and P be L ' N and M !N, respectively,
which are guaranteed to be nonsingular integer matrices
from Eq. (33). In the following, we show the procedures
of the DFT-domain approach for EOLA and EOLS.

A. The DFT-domain approach for EOLA

Step 1: Obtain the finite-extent sequence #;(n') from
z;(n') provided in Eq. (20) as

i(n') = zi(n), n' e N(Q), (34)
where we note that N(Qg) C N(Q) since N (INg) C

Step 2: Compute the matrix-Q DFT X;(q) of Z;(n’).
Step 3: Periodically extend X;(q) as

939

Vi(0) = Xi((D)gr), L€ N(NT). (35)

This operation corresponds to up-sampling.
Step 4: Execute the product of V;(¢) and the matrix-N

DFT H(£) of h(k') as

U;(0) = Vi()H(£), £ € N(NT), (36)
where
h(k'y =" h(k'— Nr), K € N(N). (37)
reN

This operation corresponds to circular convolution
[13].

Step 5:- Subdivide U;(¢) and add the sub-sequences to-
gether as

Yi(p) = L

T Z Ui(PTT+p),

reN(MT)
p e N(PT). (38)

This operation corresponds to down-sampling.
Step 6: Compute the matrix-P IDFT ¢;(m’) of Y;(p).
Step 7: Obtain the output block data y;(m/) as

i () :{ 5 ((m) p), m'€ [Ma] )5 (Ps)

0, elsewhere !

(39)
which is identical to the sequence provided in Eq. (24).
B. The DFT-domain approach for EOLS

Step 1: Obtain the finite-extent sequence #;(n’) from
z;(n’) provided in Eg. (29) as

gi(n') =Y @m(n —Qr), n' e N(Q). (40)

reN

Under the condition in Eq. (32), this operation does not
require any additions, but circularly shifting z;(n’).
Steps 2—6: Execute the same as the EOLA case.

Step 7: Obtain the output block data y;(m/') as

sty = 3 <P

0, elsewhere ’ (41)

which is identical to the sequence provided in Eq. (30),
where we note that N (Pg) C AM(P) since N(Ng) C

5.2 Computational Complexities

In order to show the effectiveness of the parallel sam-
pling lattice alteration described in Sect.4, we com-
pare it with the parallel filtering approach described
in Sect.3 in terms of the computational complexity of
the DFT-domain approach. Note that, in the parallel
filtering approach as shown in Fig. 2, it is impossible to
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exploit the modified procedures described in Sect.5.1.
Hence, we assume that the conventional DFT-domain
approach|[12]—[14] is applied to it.

Let u(IN) and a(IN) be the total number of real
multiplications and additions of the matrix-IN DFT (or
IDFT), respectively, and assume that the input sequence
z(n) and the impulse response h(k) be real values, H (¢)
has been precomputed and stored, and complex multi-
plication is done by the 3/3 algorithm. Note that, when
both z(n) and h(k) are real, the operations in the DFT
domain can be reduced to almost half due to the sym-
metric properties. The computational load of the par-
allel filtering approach via the DFT is approximately
represented as follows:

 BE(N) + 3J(N) + pi(IN)

ar(N) + 5J(N) + ar(N) +

where M¢ and Ac are the real multiplications per out-
put sample and the real additions per output sample,
respectively, and 3 is the number of elements in the re-
gion of support {N,(Ng) — N (Ng)} in the OLA case,
whereas 8 = 0 in the OLS case. Besides, the subscripts
‘F’ and ‘T indicate the DFT and IDFT, respectively.
The fractional part indicates the number of operations
per output sample of the parallel filtering and J (M) is
the factor caused by down-sampling. On the other hand,
the complexity of the modified DFT-domain approach
is approximately represented as follows:

Mer o pr(Q) + 3J(IN) + u(P)
M= J(Ps) ’
ap(Q) + 2 J(N) — J(P) + ou(P)
J(Pg)

(44)

T 43

Ay o

where My and Ay are the real multiplications per out-
put sample and the real additions per output sample,
respectively, and - is the number of elements in the re-
gion of support {[N]| 5 (Ps) —N(Ps)} in the EOLA
case, whereas v = 0 in the EOLS case.

As an example, let us suppose that the up-sam-
pling matrix L and the down-sampling matrix M arc
provided as in Eq. (27), the filter h(k) has the region of
support

16 0
Nh:N< ; 16), (46)

the segmentation matrix Ng at the filtering operation
is chosen to satisfy the condition in Eq. (18) as

Ng— < 106 106 ) 47)

and the periodicity matrix N at the filtering operation
is chosen to satisfy the conditions in Egs. (31), (32) and
(33) as
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32 0
N:(O 32>. (48)

In the following, on the above suppositions, we compare
the modified DFT-domain approach with the parallel
filtering appraoch via the DFT.

Firstly, we investigate the complexity of the par-
allel filtering approach via the DFT. Let us consider
implementing the matrix-IN DFT via the radix-(2 x 2)
FFT algorithm [13]. Using the algorithm, both up(N)
and p1(N) in Eq.(42) result in pp(N) = p(N) =
11520, and both ap(N) and ap(IN) in Eq.(43) result
in ap(N) = a1(N) = 32000. Hence, from Egs. (42)
and (43), we can verify that the parallel filtering with
the conventional DFT-domain approach requires Mq ~~
192 and Ac ~ 512 in the OLS case or Ac ~ 517.5 in
the OLA case, where 8 = 705.

And secondly, we investigate the complexity of the
modified DFT-domain approach. Let us consider im-
plementing the matrix-Q DFT and the matrix-P IDFT
via the vector-radix FFT algorithm [13], by decompos-
ing Q and P into

16 0 10 16 0
QZ(O 32):<0 2)(0 16)’(49)
16 16 11 16 0
P:(IG ~16 >:<1 -1 )( 0 16 )’(50)

respectively, and exploiting the radix-(2 x 2) FFT al-
gorithm. Using the algorithm, pp(Q) and p;(P) in
Eq.(44) result in pup(Q) < 6144 and u(P) < 6144,
respectively, and ar(Q) and a;(P) in Eq.(45) result
in ap(Q) < 15360 and o (P) < 15360, respectively.
Hence, from Egs. (44) and (45), we can verify that the
modified DFT-domain approach is realized at most
by My ~ 108 and Ay =~ 256 in the EOLS case or
An 2= 258.8 in the EOLA case, where v = 353. Clearly,
My is less than Mg, and Ay is less than Aq in this
example. The reason is that the modified approach
has no redundant operations caused by up- and down-
sampling.

In the following, we give some comments on the
choice of the segmentation matrix Ng and the period-
icity matrix IN. From Egs. (42), (43), (44) and (45), the
computational complexities of both approaches depend
on N, Ng and the employed FFT algorithms. For the
conventional approach, the block size consideration in
terms of the computational efficiency can be found in
the article [14]. The similar discussion can be expected
to appropriately choose IN g and IV in the modified ap-
proach, although it also depends on L and M. Note
that, however, the choice of Ng and IV affects not only
the computational efficiency but also the memory re-
quirement. Although there has to be a trade-off between
the efficiency and the memory, it is relatively difficult to
find an optimal segmentation and periodicity matrices,
since it is machine-dependent[12].
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6. Conclusions

In this paper, we proposed two parallel processing meth-
ods for multidimensional sampling lattice alteration
by extending two conventional block processing tech-
niques for FIR filtering: the overlap-add method and
the overlap-save method, and also show that the use of
our proposed methods enables us to alter sampling lat-
tices without any redundancy caused by up- and down-
sampling as well as the parallel processing, even if the
alteration is rational and non-separable. The theory of
this work applies to any number of dimension. There-
fore, it is possible to alter sampling lattice from orthog-
onal to quincunx or from orthogonal to FCO in parallel
without the redundancy.

In future, we will investigate the practical applica-
tions of our proposed methods, such as motion picture
coding, image format conversion and so forth.
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Appendix A: Linear Convolution via the DFT

This appendix shows that Eqgs.(31) and (32) are suffi-
cient conditions that the product of the DFTs yields the
correct linear convolution output of the corresponding
sequences in OLA and OLS, respectively.

Let us consider the following periodic convolution
with a periodicity matrix N:

Y hn)u(K —n), K eN (A1)
”’ENS’(N)
where No(N) = {klk — s’ € N(N)}, s’ € N, and
h(k') and ;(k’) are the periodic extensions of the im-

pulse responsc (k') and the sequence v; (k') in Eq. (10)
for OLA or Eq. (15) for OLS, respectively:

(k) =

h(k') = > h(k'— Nr), k' ¢ N, (A-2)
reN

%K) = > vk’ ~ N7), k' e N. (A-3)
reN

Note that the vector s’ does not affect the result i; (k')
at all due to the periodic property of A(k') and %;(k').
The periodic convolution in Eq.(A- 1) is equivalent to
the product of the corresponding DFTs in Eqg. (36),
where U;(£), V;(¢) and H(¢) are the matrix-IN DFTs of
u;(k'),5:(k") and h(k') for k' € N(IN), respectively.
Lemma Al: In OLA case, Eq. (31) is a sufficient con-
dition that the sequence u;(k’) provided in Eq.(11) is
related with 4;(k’) in Eq. (A- 1) as follows:

ﬂz(k,) = ui(k/), kK < Nh(NS)

Proof: Note that A} CNw(Ng) from Egs.(2) and
(12). If the condition in Eq.(31) is satisfied, then
N C N« (N), where s’ = s, and Eq. (A- 1) can be re-
duced to

LK) = 3 S hnju(k —n— Nr),

reN neN;,

(A-4)
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= > ui(k' = Nr), kK e N. (A-5)
reN
Besides, under the condition in Eq. (31), u; (k' — N7) =

0 for k' € N (Ns),r #+ o. Hence, from Eq.(A-5), the
relation in Eq. (A- 4) is derived.

In the result, under the condition in Eq. (31), we
can obtain the sequenée ui(k’) provided in Eq. (11) via
the DFT.

Lemma A2: In OLS case, Eq.(32) is a sufficient con-
dition that the sequence u;(k') provided in Eq.(17) is
related with 7;(k") in Eq.(A- 1) as follows:

(k) = wi(k), K € N(Ns). (A-6)

Proof: If the condition in Eq.(32) is satisfied, since
Ny C N (N) for some s’ € N, then Eq. (A1) can be
reduced to

(k) = Y h(n) Y vi(k'—n— Nr),

nENY, reN
EeN. (AT

Besides, note that k' — n € N,(Ng), provided
E' € N(Ns) and n € N, and that v(k') = 0
for K ¢ N,(Ns). In result, under the condition in
Eq.(32), v;(k' —m—N7) =0 fork' € N(Ng),n € Ny
and » & o. Hence, from Eq.(A-7), the relation in
Eq. (A- 6) is derived. ]

In the result, under the condition in Eq.(32), we
can obtain the sequence u;(k’) provided in Eq. (17) via
the DFT.

Appendix B: Lattice Alteration via the DFT

This appendix shows that, if and only if the periodic-
ity matrix N is a crm of L and M, then the matrix-L
up-sampling and the matrix-M down-sampling can be
implemented in the DFT domain without the redun-
dancy.

Lemma A3: Ifand only if N is an rm of L, then &; (k')
in Eq. (A- 3) can be represented as

Bi(k') = (%], (K'), (A-8)
Zi(n') = ) wmi(n' - Qr), 0’ €N, (A-9)
reN

where @ = L™ ' N and z;(n’) is the sequence provided
in Eq.(20) for EOLA or Eq. (29) for EOLS.

Proof: If and only if IV is an rm of L, then there ex-
ists some integer matrix @ = L~ 'N and the following
relation is derived from Eq. (19):

ol | z(LT'E - Qr), K € L(L)
vi(k' = Nr) = { 0, elsewhere

(A- 10)

Substituting the above relation to Eq. (A- 3) yields the
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following relation:

o > zi(L7K —Qr), K € L(L)
Bi(k) = 4 ren
0, elsewhere
(A-11)
This relation is identical to Eq. (A- 8). O

Lemma A4: Let V;(¢) be the matrix-N DFT of %;(k’)
in Eq.(A-3) for ¥ € N(N). If and only if N is an
rm of L, then V;(£) can be obtained as Eq.(35), where
Q = LN and X;(q) is the matrix-Q DFT of &;(n’)
in Eq.(A-9) for n' € N(Q).

Proof: From the definition in Eq.(4), V;(¢) is repre-
sented as

RAGENDY

K eN(IN)

wi (k') [WE\%)} ek’

Le N(NT). (A-12)

If and only if IV is an rm of L, then there exists some
integer matrix Q = L' N, and the above equation can
be decomposed from the division theorem for integer
vectors[2],| 13] as follows:

Vi)

Z Z Bi(Ln’ +r)[W§%LLn pr

n'eN (Q) reN (L)

Le N(NTY. (A-13)

From Eq. (A- 8), since #;(Ln’ 4+ 7) is equal to &;(n’) for
r = o and zero er r & o0, Eq.(A-13) can be reduced
to ‘

neN(Q)
Le N(NT), (A-14)

where [W;%LLW = [W(Qg)hnl from Eq.(6). The

above relation is identical to Eq. (33). |
Lemma A5: Let U;(£) be the matrix-N DFT of @;(k')
in Eq. (A- 1) for k' € N(IN), and g (m/) be @] 5, (m).
If and only if N is an rm of M, then g;(m’) can be
obtained by periodically extending the matrix-P IDFT
of Y;(p) provided in Eq.(38), where P = M ' N.

Proof: §;(m’) can be represented in terms of U;(¥¢) as

W) = g L U W

]eM
eN(NT) ™

m €N, (A 15)

from the relation between the discrete Fourier series and
the DFT[13] and the relation §;(m’) = % (Mm'). If
and only if N is an rm of M, then there exists some in-
teger matrix P = M ~1N, and the above equation can
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be decomposed from the division theorem for integer
vectors as follows:

_ oy 1 1
o) =gon 2 e X

peN(PT) reN (M)
U(PTr+p)} (W] mien, (A1)
D,
(g) - (2)
where [WMP] BTty {WP L’m, and J(MP)

= J(M)J(P) (the multiplicative property of determi-
nants). From the above equation, §;(m’) can be ob-
tained as

i(m) = 5:((m") p),

where §;(m/') denotes the matrix-P IDFT of Y;(p) pro-
vided in Eq. (38). |
Note that Eq.(35) requires no operation for
zero-value samples inserted by up-sampling, and that
Eq. (38) requires no operation for obtaining samples to
be discarded by down-sampling. Because of Lemma A4
and A5, by choosing N as a crm of L and M, we can
implement the whole system of sampling lattice alter-
ation in Fig. 5 via the DFT without the redundancy.

(A-17)
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