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SUMMARY In this paper, a two-dimensional (2-D) binary-
valued (BV) lapped transform (LT) is proposed. The proposed
LT has basis images which take only BV elements and satisfies
the axial-symmetric (AS) property. In one dimension, there is
no 2-point LT with the symmetric basis vectors, and the prop-
erty is achieved only with the non-overlapping basis which the
Hadamard transform (HT) has. Hence, in two dimension, there
is no 2 x 2-point separable ASLT, and only 2-D HT can be the
2 x 2-point separable AS orthogonal transform. By taking non-
separable BV basis images, this paper shows that a 2 x 2-point
ASLT can be obtained. Since the proposed LT is similar to HT,
it is referred to as the lapped Hadamard transform (LHT). LHT
of larger size is shown to be provided with a tree structure. In
addition, LHT is shown to be efficiently implemented by a lattice
structure.

key words:  image processing, paraunitary system, symmetric
extension, lapped transform, lattice structure

1. Introduction

Orthogonal transforms find a lot of applications in im-
age processing, such as image analysis, recognition, and
image coding[1]—~[3]. They are often defined in one di-
mension (1D) and applied to image processing as sepa-
rable multidimensional systems. We now know several
useful 1D transforms for image processing, for example
the Karhunen-Loeve transform, discrete cosine trans-
form and the Hadamard transform (HT). HT is espe-
cially recognized as the simplest transform used for sig-
nal decomposition, because the basis vectors take only
binary-valued (BV) elements +1 with a scale factor and
the implementation requires no multiplication[1]. The
BV elements contribute to not only the reduction of the
computational complexity but also the accuracy. From
the fact, for example, HT is properly applied to lossless
transform coding techniques[4],[5]. In addition, the
symmetric property of the basis vectors is desirable to
image processing.

Recently, orthogonal transforms have been show-
ing rapid progress as lapped transforms (LTs). In the
late eighties, the special type of orthogonal transforms
in which the basis vectors are overlapping was devel-
oped by Smith, Malvar etc.[6]-[8] so as to overcome
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some problems caused by independent block-by-block
transforms, such as blocking artifacts [7],[8]. Then, the
system was generalized in terms of the length of basis
vectors [9]- 18], and extended to non-separable mul-
tidimensional one[19]—[21]. LTs are also known as
paraunitary filter banks. Note that all LTs to be con-
sidered in this paper are orthogonal.

In 1D, it is known that there is no 2-point LT
with the symmetric basis vectors, and the property is
achieved only with the non-overlapping BV basis which
HT has[9]. Hence, in two dimension (2D), there is
no 2 x 2-point separable axial-symmetric (AS) LT, and
only two-dimensional (2-D) HT can be the 2 x 2-point
separable AS orthogonal transform. For 2-D LTs, the
AS property is of interest since the symmetric extension
method can directly be applied so as to avoid increasing
the number of transform coefficients [22]-[25].

In light of the fact, we propose to construct a 2-D
LT with AS basis images. We show that 2 x 2-point
ASLTs can be obtained by introducing non-separable
BYV basis, and that BV-ASLT of a larger size is obtained
by a tree structure. Since the proposed BV-ASLT is
similar to HT, we refer to it as the lapped Hadamard
transform (LHT). LHT can be regarded as a special
type of multidimensional linear-phase paraunitary filter
banks[19]-[21].

This paper is organized as follows: Section 2 re-
views 2-D LTs, and Sect. 3 briefly discusses the 2-D HT.
Next, Sect.4 proposes LHT. Section 5 shows a lattice
structure of LHT for its efficient implementation, fol-
lowed by conclusions in Sect. 6. Throughout this paper,
the following notation is used.

z @ a2 x 1 vector which consists of variables in a 2-D

z-domain, that is, z = (29 21)7.
z T . the vector defined by z—1 = (ot 27 1T
z™ : the product defined by 2" = 2J°2}*, where n

is a 2 x 1 integer vector, and n; denotes the k-th
element of n.

O : the null matrix.

Iy, Iy o the M x M identity and counter-identity ma-
trices, respectively. When the size is obvious or
not of interest, the subscript M is omitted.

N : the set of 2 x 1 integer vectors.
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2. Review of 2-D Lapped Transforms

In this section, we review 2-D lapped transforms (LTs),
that is, 2-D maximally decimated paraunitary filter
banks.

2.1 2-D Lapped Transforms

Let M be a 2 x 2 non-singular integer matrix and ¢ (n)
for k=0,1,---,M — 1 be 2-D functions which satisfy
the condition

> du(n

NeN

n)ét, (n — Mm) = §(k — ¥')5(m),

k=0,1,--- M -1, meN (1)

for the factor-M, where M = |det(M)|, 6(-) denotes the
delta function, and N denotes the set of 2 x 1 integer
vectors. Equation (1) is the extension of the orthonor-
mal condition of 1-D LTs to 2-D ones and corresponds
to the paraunitary condition of filter banks with the
factor M [9]. The functions ¢(n) are called basis im-
ages. In addition, let {¢ym} be the set of the array
drm(n) = ¢r(n — Mm), which is referred to as basis.

By using the basis {¢% m}, a 2-D LT with the fac-
tor M of an input array z(n) is defined by

> 2(n)grm(n), )

neN

for k =0,1,---,M — 1, where yi(m) denotes the k-th
transform coefficient array. Then, we have the inverse
LT as follows:

Z > y(m)éi m(n). (3)

k=0 MeN

yr(m) =

If the elements in the basis images ¢r(n) are real,
Eq.(1) is reduced to } 4, Gx(n)dp(n — Mm) =
8(k — k")6(m). In this paper, for the sake of conve-
nience, the transform as in Eq.(2) is referred to as a
matrix-M transform.

In general, the support region of basis images over-
laps with that of blocks adjacent to the target one as
shown in Fig. 1. Note that the 2-D HT consists of non-
overlapping basis images, and that orthogonal trans-
forms are not LTs with such basis images.

Support region
—— of a basis image

Support region of a target block

Fig. 1 Support region of a basis image in 2-D LT.
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2.2 Relation to 2-D Filter Banks

Next, let us show the relation of LTs to filter banks.
Figure 2(a) shows a parallel structure of 2-D maxi-
mally decimated filter banks with a factor M, where
the number of decomposition is M = |det(M)|. The
whole system consists of an analysis and a synthesis
bank. The analysis bank decomposes an input array
X(z) into M subband signals Y;(z), and the counter-
part synthesis bank reconstructs the input array from
the subband signals Y (z). In Fig.2(a), | M and 1M
denote the down- and up-samplers with the factor M,
respectively. Hy(z) and Fj(z) are analysis and synthesis
filters, respectively.

Decomposed each filter into the polyphase filters,
the parallel structure can be equivalently represented as
the structure shown in Fig. 2 (b), where E(z) is the type-
I polyphase matrix of analysis bank and R(z) is the
type-II polyphase matrix of synthesis bank [9]. If the
polyphase matrix E(z) satisfies Eq. (4), then it is said
to be paraunitary [9].

E(2)E(z) = E(z)E(z) = Iy, (4)

where E(z) = Ef(z‘I), that is, the paraconjugate of
E(z)[9]. This condition guarantees that X (z) = X (z)
by choosing fi(n) = hj(—n), where hi(n) and fi(n)
denote impulse responses of the analysis and synthesis
filters, respectively. If the filter coefficients are real, it is
reduced to fx(n) = hx(—n).

It can be verified that analysis and synthesis pro-
cess in a paraunitary system is identical to the LTs in
Egs. (2) and (3), respectively, under the condition that

he(n) = ¢r(—n), (%)

Subband signals Y(z)

¥
Xﬂ[:: Ho(z) Plim "\ tMP Fy(z)
Hi(z) Plim tMP Fi(z) %

Analysis bank

Synthesis bank

(a) Parallel structure

Subband signals Yy (2)

TM] e

Y
z - \

B(2)

Do :
I v,

Analysis bank

R(z)

Synthesis bank

(b) Polyphase structure

Fig. 2 Structures of 2-D filter banks.
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fr(n) = ¢5(n). (6)
2.3  Axial-Symmetric Property

For 2-D LTs, the AS property is of interest because it is
sufficient to the point-wise symmetry of basis, that is, the
linear-phase property of filter banks, and the symmetric
extension method can directly be used [23].

" The AS property of a basis image ¢x(n) is ex-
pressed as follows:

utmy = e (10 ) =xan (0 ) )

o =i (10 ) =20 00 ) ®

where ¢y is an integer multiple of 1/2 and denotes the
center of symmetry in the d-th dimension. Furthermore,
the vector ¢ = (¢ ¢1)7 denotes the center of the point-
wise symmetry, where ¢ € 1.

3. Review of 2-D Hadamard Transform

As a preliminary, we here review the 2-D HT and sum-
marize its properties. Firstly, let us define a diagonal
matrix M, by

2» 0
My = ( 0 2r ) : )]
In the following, the matrix-M,, transform means 27 X
2P-point one.

3.1 The 2 x 2 Hadamard Transform
Let ¢g,2 (n) be the k-th basis image of the matrix-M,

HT. For the factor M = M, the basis images of HT
are defined by

qsgg%(} }) (10)
s -3(1 7). an
=304 ) (12
s-3( 5 7). (13)

where @g,z is the ﬁlatrix representation of the basis im-
. n
age gy (n). that is, [@)]n,n. = Shil(n) = s ( ")

1
_ (1 "oy _
for ng,n; = 0,1, where we assume that ¢y ( n )=20
1

forng £ 0,1 ormy £ 0,1.
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3.2 Tree Structure of the 2P x 2P HT

The basis images of the matrix-M, HT can be simply
obtained as
1 -1

o) = B, O P s] (14)
for k = 0,1,---,M — 1, where (z))y and |z] denote
the integer of z modulo N and the integer value of z,
respectively, and M = 2PT1. The operator ‘®’ denotes
the Kronecker product.

Equation (14) implies that the matrix-M, HT can
be implemented with the p-level tree structure of the
matrix-M; HT as shown in Fig.3, where the box in-

cluding {¢Hk m} denotes the matrix-M; HT. On the
other hand, the inverse transform is 1mplemented by re-
versing the direction of each arrow in Fig.3. For the
sake of simplification, we take no attention to the or-
dering of the basis images, such as the sequency[1].

The basis images of HT does not overlap with
themselves by shifting with the factor M,. Hence, we
have

3 ¢E(n— Mym) = ¢if(n), n € N(My),

menN

(15)

where N (M) denotes the set of the integer vectors in
the fundamental parallelepiped generated by M [9]. In
this case, the condition as in Eq. (1) is reduced to

3 onm)siEl (n)

nexN
=6(k — k'), (16)

(@0 PR) =

where the notation (A, B) expresses the sum of the
element-by-element products of two matrices A and B.
It can be easily verified that the basis of 2-D HT satisfies
the orthonormal property in Eq.(16) and are AS.

In the following, we summarize the properties of
the 2-D HT.

e The basis {gbg,l m ) is orthonormal. In addition,

the basis images qS(p)( ) are AS, take only BV el-
ements, and have no DC gain for k& & 0, that is,
there is no DC leakage[11].

yogmg
<
o — Rt {¢§R,m > m
{8km — O E

) — o {bumlife
{iem — el
{¢§2,m — :
W%l)c,m}z m

| {diim}
Ym-1(m)

Level 1 Level 2 Level p
Fig. 3  The tree structure of the 27 x 27 2-D HT.
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e The basis images ng’,z (n) are separable and non-
overlapping.

4. Lapped Hadamard Transform

In this section, we propose a 2-D binary-valued axial-
symmetric lapped transform (BV-ASLT), which is sim-
ilar to the 2-D HT. The main difference of our pro-
posed BV-ASLT from HT is that it consists of a non-
separable overlapping basis. In this paper, we refer to
the proposed BV-ASLT as the lapped Hadamard trans-
form (LHT).

4.1 The 2 x 2 Lapped Hadamard Transform

Let @ be a real matrix of size 2 x 2 which satisfies the
following condition:

(©,J'0J7) = Z s00(n)si;(m)
neN

= 266509, (7

for i,5 = 0,1, where J* = I, J' = J and s;;(n) =

1o ) = [J'©J%)py m, for ng,ni = 0,1, where we

sig(

assume that s;;(n) = s;;( ZO ) =0 for ng & 0,1 or
1

(sl :*Z 0, 1.
By using the matrix &, we can obtain the following
AS basis images ngI(}k)(n) for the factor M :

i = ( J@@ J@@JJ > (18)

1) — < Jo toy ) ’ (19)
2L = < o e > (20)
- (% 52).
where (@], = 6{2(r) = o{)( ') for ng,ny =

0,1,2,3, where we assume that ¢(1)( )= ¢£113( ZO )=
1

0 for ng 4 0,1,2,3 or ny &+ 0,1,2,3. In the follow-
ing, we verify the fact that these basis images construct
orthonormal basis.

From Eq. (17), since

(@0 BL) = Y SLL(n)gL(n)
nenN
= §(k — k'), (22)

the orthonormality between the basis images is guaran-
teed. In addition, since

(©,0) + (JO,JO.J) =0, (23)
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(©,J0)+ (0J,J0J) =0, (24)
(©,J0J) = (0J,J0) =0, (25)

the orthogonality with respect to the shift by the matrix
M is guaranteed as

<Som1§£lg‘5’0mg7slmléI(‘.liz’Slmo>
Z¢Lk Lk’(n Mim) = §(m),

neN

o= ()
{(5)-(5)-(9) (1)} e

where 501 = (Iz 0) Sll = (O Iz) and SiO = I4
for i = 0,1. Hence, the basis {qSLk m } satisfies the or-
thonormality as in Eq. (1).

Here, we have one choice of the matrix @ such as

-1 1
o- (1) @

From the definition, the above choice generates the fol-

(a) Basis images.

N
=]

e ‘\\\\

'\\\\
R .("‘Sy‘:“\ \
il H\“‘ "

Amplitude [dB]
Amplitude [dB]

I 1
N
35 8 o

Amplitude [dB]
n
o

1 1
n
3 8 o

(b) Amplitude responses.

Fig. 4 The type-I lapped Hadamard transform.
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lowing LT basis images:

1
) -

1
)

1
) -

1
1)

—_

ST

-1 1
1 1
1 1
-1 1
-1 1
1 1
1 1
-1 1
-1 1
1 1
-1 -1
1 -1
-1 1
1 1
-1 -1
1 -1

1
1
-1
-1

-1
-1
1
1

-1

1
-1

7

(28)

(29)

(30)

€2

Note that the transform with the above basis images
consist of only BV elements =1 with the scale factor
1/4, which implies that the transform requires no mul-
tiplication. In Fig. 4, we give the basis images, and also

(a) Basis images.

n
(=]
N
o

@ o

kA D,
s 0 o 0

E E
= -20 EIRIISAK = _op
<_ 40 KRN <_40
T v - T

w, T T wy

— —, 20

m )

2 3
@ o 0O

g 3
< <_40
K

(b) Amplitude responses.

Fig. 5 The type-II lapped Hadamard transform.
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the amplitude responses by regarding them as analysis
filters in filter banks.

The matrix @ is not unique, and therefore, we re-
fer to the transform with this basis as the type-I LHT
in this paper. In the following, we give another choice
of the matrix ©.

1/ -1 -1

@_Z(—l 1). (32)
Figure 5 shows the corresponding basis images and the
amplitude responses. In this paper, we refer the trans-
form as the type-II LHT.

Assume that the matrix @ consists of non-zero el-
ements. In fact, on this assumption, it can be shown
that @ must be BV with the absolute value 1/4. In ad-
dition, if and only if the number of negative elements
in @ is odd, that is one or three, Eq.(17) is satisfied.
This implies that there are 8 choices of the matrix @
(see Appendix A). Note that, if the elements are not

restricted to be non-zero, we have more choices, such as
the HT, which are trivial.

4.2 Tree Structure of the 27 x 27 LHT

Let us define the basis images of the matrix-M, 2-D

qumg
— 1
o — {qb(ﬁ,?,m >
{¢1km E ) E
o — | {dumlfe
{ttm — -,
W 5 '
{#am= 5
- { k,m} Unr_1(m)
M-1
Level 1 Level 2 Level p

Fig. 6 The tree structure of the 2P x 27 LHT.

Fig. 7 Basis images of the 23 x 23 type-I LHT.
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LHT forp > 1 as

oK e (33)

1

L((k)4
fork=0,1,---, M — 1. This definition holds all of the
orthonormality, AS, BV and overlapping properties.

Equation (33) implies that the matrix-M, 2-D
LHT can be implemented with the tree structure of the
matrix-M,_; HT appended with the matrix-M; LHT
as the leaves as shown in Fig. 6, where the hatched box
including {qﬁgk)m} denotes the matrix-M; LHT. The
inverse transform is simply implemented by reversing
the direction of each arrow in the structure.

As an example, we give the basis images of the
matrix-M 3, that is 8 x 8-point, type-I LHT in Fig.7,
where each basis image is of size 16 x 16, while the
block size is 8 x 8. In the same way, we can obtain the
basis images of the matrix-M, LHT.

In the following, we summarize the properties of
the 2-D LHT.

e The basis {¢£p13,m} is orthonormal. In addition,

the basis images gb]gp,z(n) are AS, take only BV el-
ements, and have no DC gain for k£ £ 0, that is,
there is no DC leakage[11].

e The basis images qbipk) (n) are non-separable, over-
lapping, and of size 27 x 27 for the factor M,. The
overlapping ratio is 50% for each dimension.

It is important to note again that there is no sepa-
rable basis which holds the overlapping and AS proper-
ties for the matrix-M; transform. Our proposed LHT,
however, achieves those properties by introducing non-
separable BV basis.

5. Lattice Structure

In this section, we show a lattice structure of the matrix-
M, LHT, by which the transform can be efficiently im-
plemented.

Figure 8 shows the lattice structure of the matrix-
M, LHT, where vy, is a parameter of 1 or —1. We
give the choices of ,, for all possible LHTs in Table 1.
Types III and IV are other variations, and Types I’, IT’,
ITI” and IV’ are sign-reversed versions of the correspond-
ing types, respectively. Note that it is represented as a
causal system, although the definition in Egs. (18), (19),
(20) and (21) generate a non-causal one.

X(z) 1
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In the following, we provide the polyphase repre-
sentation of the structure for the delay chain d(z) =
N A

E(z) = I''BA(21)BP1BA(2)BPo I Ey, (34)

where
1 1 1 1
1 1 -1 -1 1
Bo=311 1 -1 -1 | (35)
1 -1 1 -1
1 0 0 O
01 0 0
0 0 1 0
1 0 0 O
0 0 1 0
0 1 0
% 0 0 0
o v 0 o0
FO - 0 0 o 0 ) (38)
0 0 0 s
-1 0 0 O
0 1 0 0
6 0 0 -1
1 I, I,
B=—— : 40
2 ( I, -I, > (40)
I O
M@z(&ZAE). (41)

According to Eq.(2), the implementation of the
matrix-M; LHT requires bit shift operation for scal-
ing with 1/4 and 60 additions per block. On the other
hand, by using the lattice structure, the implementation
complexity is reduced to 24 additions per block with

Table 1

LType ] vo [ m [ v ] vl Type[ ol v v2] 73]
1 —1 1 1 1 r 1| -1 -1} -1
II 1] —1 1 1 r —1 1] -1} ~1
111 -1 -1 1] -1 1Ir 1 1] -1 1
v 1| =11 -1 1 v’ 1 1 1] -1

The choices of v, parameters for all possible LHTs.

1/8 | #5t

EIE]

—1

V- CTRY/

XX T XX
> \
77t /\_ X 73></\_

Fig. 8 The lattice structure of the 2 x 2 LHT.
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scaling by 1/8. Obviously, the lattice structure is di-
rectly applicable to the tree structure as shown in Fig. 6
so as to efficiently implement it. ‘

The lattice structure can be shown to be minimal
(see Appendix B) and that for the inverse transform is

simply obtained by choosing R(z) = ET(z‘I) from
the paraunitary property.

6. Conclusions

In this paper, we proposed a 2-D binary-valued (BV)
lapped transform (LT), to which we referred as the
lapped Hadamard transform (LHT). LHT has basis im-
ages which are axial-symmetric (AS) and take only BV
elements +1 with a scale of a power of 2. It is known
that there is no 2 x 2-point separable ASLT, By taking
non-separable BV basis, our proposed LHT achieves
both the AS and overlapping properties for the 2 x 2-
point transform. It was shown that LHT of a larger size
is provided with a tree structure, and that LHT can be
efficiently implemented by a lattice structure. The char-
acteristic was shown to be very similar to that of the
2-D HT, even if LHT differs from HT in that the basis
images are overlapping and non-separable.
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Appendix A: Choices of &

In the following, we show all possible choices of the
matrix @ which satisfies Eq. (17).

Let 0;; be the 7, j-th element of the matrix &. Then,
from Eq. (17), 0;; must satisfy the following equations:

1
050 -+ 05, + 030 -+ 65, = 1 (A-1)
Bo0bo1 + 010011 =0 (A-2)
Bo0b10 + Bg1011 = 0 (A-3)
B00011 + 01010 =0 (A-4)

Suppose that each element 6;; is non-zero. In this
case, Egs.(A-2), (A-3) and (A-4) lead the following
equation:

B — 010011 b0 boibio
00 = — = - =- .

901 910 011

(A-5)

The above equation implies that 63,67, = 62,07, =
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63,6%,, that is, 62, = 0%, = 62,. By expressing another
element as in Eq. (A-5), we have the relation

030 = 9(%1 = 9%0 = 9%1~ (A-6)
Namely, if @ consists of non-zero elements, then the ab-
solute value of each elements must be the same as each
other. In other words, @ must be BV. From Eq. (A- 1),
the absolute value results in %.

Next, let us consider the number of negative ele-
ments in @. Clearly, Egs. (A-2), (A-3) and (A-4) are
satisfied, if and only if one term is positive and the other
is negative. It is obvious that the condition is achieved
if and only if the number of negative elements is one or
three.

If & has zero-value elements, then the number of
them must be three, otherwise it conflicts Egs. (A-2),
(A-3) and (A-4).

Appendix B: Minimality of Lattice Structure

A structure is said to be minimal if it uses the minimum
number of delay elements for its implementation[9].
For a 1-D causal PU system E(z), it is known that
deg (det (E(z))) = deg(E(z)), where deg(H(2)) de-
notes the degree of H(z), that is, the minimum number
of delay elements required to implement H(z).

Now, let us investigate the degree of our proposed
structure. Note that the degree in terms of the 0-th (or
1-th) dimension delay element 2] L (or 2y 1y can not be
increased by choosing any value of delay elements of
the other dimension. Therefore, the following inequal-
ity holds.

deg! (B(2) 2 deg”) (B(=()),

d=0,1, (A7)

where deg{d} (E(2)) denotes the degree in terms of z(;l,
210 = (25 1)T and 2{" = (1 )7

From, Eq. (34), it can be verified that our proposed
structure has

deg(® (det (E(z{d})>> -2 d=0,1. (A-8)
This equation implies that deg!® (E(2{#})) = 2 for
d = 0,1, since E(z1%) can be regarded as a 1-D causal
PU system E(z;). Consequently, we have

deg'®(B(z)) 22, d=0,1. (A-9)

The last inequality guarantees that our structure is min-
imal, since it implements the LHT with only two delay
elements for each dimension.
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