
Efficient Arithmetic of Gaussian Mixture Model

for Pattern Recognition and Machine Learning

A Dissertation

in

Electrical and Information Engineering

Submitted to Graduate School of Science and Technology

Niigata University

in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Hidenori Watanabe

March 2013

Acknowledgment

I would like to thank advisory professors, Dr. Shogo Muramatsu, Dr. Shigenobu

Sasaki, Dr. Hisakazu Kikuchi and Dr. Masahiro Yukawa for their guidance, pa-

tience and support throughout my undergraduate and graduate research activities

with every aspect. I would like to thank the committee member of this thesis, Prof.

Keisuke Nakano. His valuable comments was very helpful for the progress in this

thesis.

I would like to acknowledge the support from the Strategic Information and

Communications R&D Promotion Programme (SCOPE), No. 102304003, and from

a contract of research and development for radio resource enhancement, Ministry

of Internal Affairs and Communications, Japan.

I would additionally like to thank Dr. Minoru Hiki, Mr. Tsutomu Watanabe, Mr.

Ryunosuke Takeda, Mr. Takahiro Sato, Mr. Koji Nagumo, Mr. Yuji Kikuchi, and

Mr. Mitsuru Takahashi, for encouragements and supports. This thesis would not

have been possible without their supports. Although there have appeared no names

here, I thank to all individuals in Department of Electrical and Electronic Engineer-

ing and Electronic Engineering and Graduate School of Science and Technology,

Niigata University, my friends and relatives for their generous support. Finally, I

would like to my special appreciation to my family.

March 2013

Hidenori Watanabe

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Aim of This Thesis . 2

1.3 Organization . 2

2 Interval Calculation for GMM 5

2.1 Review of GMM-based Classification 5

2.1.1 Bayesian decision rule . 5

2.1.2 Gaussian mixture model(GMM) 7

2.1.3 GMM-based classification by Bayesian decision rule 7

2.2 Interval Calculation for GMM-Based Classification 8

2.2.1 Initial decision process . 8

2.2.2 Refinement process . 10

2.2.3 Termination process . 12

2.2.4 Proposed algorithm . 14

2.3 Performance Evaluation . 15

2.3.1 Experiments with color extraction 15

2.3.2 Computational cost on DSP 17

2.3.3 Computational cost on FPGA 18

2.4 Summary . 21

3 Narrowed Initial Interval 23

3.1 Narrowed Initial Interval . 23

3.1.1 Calculation of shift amount 23

3.1.2 Look-up table for multiplierless interval calculation 25

3.1.3 Refinement process with bit shift and look-up table 25

3.1.4 Decision rule in the proposed refinement scheme 26

3.2 Performance Evaluation on FPGA 27

3.2.1 Implementation condition 27

3.2.2 Synthesis report . 27

3.3 Summary . 28

4 LUT-Based GMM 31

4.1 Review of EM Algorithm for GMM 31

4.1.1 E-step . 31

iii

iv CONTENTS

4.1.2 Computation of EM algorithm for GMM 32

4.2 EM Algorithm with Look-Up-Table-Based Exponential Function . . 33

4.2.1 Look-Up-Table-Based Exponential Function 33

4.2.2 Scale adjustment for look-up table 34

4.2.3 Scaling using the weighted average of LUT entries 34

4.3 Performance Evaluation . 35

4.3.1 Precision of parameter estimation 36

4.3.2 Computational speed . 37

4.4 Summary . 38

5 Conclusions 41

5.1 Summary . 41

5.2 Open Problems . 42

Appendix A: Derivation of Eq. (2.15) 43

List of Figures 45

List of Tables 47

Bibliography 51

Biography 53

Chapter 1

Introduction

1.1 Background

A Gaussian mixture model (GMM) is a probability density function for continuous

variable. The GMM is expressed in a weighted sum of Gaussian distribution and of-

ten used in which case assumed distribution is complicated form such as multimodal

distribution. Since the GMM has the flexibility originate in the form of weighted

sum, the GMM is widely used in various study areas. In image processing, the

GMM is often used as background or foreground model for image segmentation,

such as skin detection and background subtraction, [1, 2, 3, 4, 5]. The applications

of the GMM for speech processing are gender classification [6], speaker verification

[7, 8], speech recognition [9], and so on. The classification of gas is also an exam-

ples of GMM-based application[10]. As described above, the GMM is an useful

probability density function for pattern recognition and machine learning.

A problem in pattern recognition and machine learning techniques is the compu-

tational cost. Although the image segmentation for monitoring camera and speech

recognition on smart phone are useful applications of pattern recognition, the imple-

mentation of these pattern recognition is difficult when target device is embedded

systems. Especially, the resources, such as battery and processor, are constrained

on embedded systems. For long-life and real-time operation, the computational cost

of pattern recognition should be reduced. Machine learning on embedded system

is also studied. Usually, training data are collected for a server and parameters are

estimated on high-powered computers. However, Gu proposed a distributed ma-

chine learning technique for sensor network[11]. The proposed method estimates

the parameters of GMM on each sensor nodes since communication resources on

sensor network is limited[12]. As described above, the computational complexity

of the GMM should be reduced to diffuse the use of beneficial GMM applications

in pattern recognition and machine learning.

1

2 CHAPTER 1. INTRODUCTION

1.2 Aim of This Thesis

The aim of this thesis is to propose efficient arithmetic of the GMM focuses on

exponential function.

There are some viewpoints to reduce the computational cost of the GMM. For

example, fixed-point implementation is a well-known method for reducing the com-

putational cost. For GMM, moreover, the distributed arithmetic for quadratic form

was proposed by Shi et al. [10].

For further reduction of the computational cost of the GMM, this thesis focuses

on exponential function. This thesis shows two approaches to approximate expo-

nential function. One is interval calculation. The interval calculation is generally

used to guarantee the accuracy of computation. However, this study satisfies both

of the computational cost and accuracy. Second is the look-up table (LUT) based

implementation. The exponential function computed by LUT is not uncommon

method, but this study provides flexibility for the values in LUT under certain con-

ditions.

In this thesis, two applications of the GMM are used to confirm the significance

of these approaches. One is the GMM classification based on Bayesian decision

rule. The interval calculation method is evaluated on the GMM classification. The

other is the EM algorithm for GMM parameter estimation. The LUT based method

is evaluated on the EM algorithm. These applications are evaluated on digital signal

processor (DSP), field programmable gate array (FPGA) or PC.

1.3 Organization

This section shows the organization of this thesis. Figure 1.1 illustrates the relation

between chapters. This thesis is organized as follows:

Chapter 2: Interval calculation for GMM

Chapter 2 proposes an efficient arithmetic with an interval representation of the

GMM. This chapter indicates the possibility that the computation of the GMM does

not always require high-accuracy calculation for any inputs. Then, a classification

method with interval calculation is proposed. The three processes, called initial de-

cision, refinement and termination process, in interval calculation method are intro-

duced in this chapter. From some simulation, it is shown that the interval calculation

method is able to classify inputs efficiently.

The GMM classification based on Bayesian decision rule is also reviewed in this

chapter.

Chapter 3: Narrowed initial interval

Chapter 3 proposes an advanced interval representation. The initial decision process

in Chapter 2 calculates coarse interval. If the range of initial interval is narrow, the

1.3. ORGANIZATION 3

��������
�	
��
��
��	

��������
�	
�������������
��	

�������

��������
�������
��	�
���

�	
�����

��������
���� �!�
����

������"�
��	���!��	!

Figure 1.1: Organization of this thesis. Chapter 2 and 3 focus on balancing the

computational cost with the computational accuracy. Chapter 3 improves the re-

finement process in Chapter 2. Chapter 4 focuses on flexibility for LUT. Chapter 5

presents conclusions.

number of iteration can be reduced. This chapter shows how to improve the range

of initial interval and simulation results.

Chapter 4: LUT-based GMM

Chapter 4 proposes a LUT-based approximation for exponential function in GMM.

This work provides flexibility for the values in LUT under certain conditions.

Through the use of the flexibility, it is shown that the bit length of LUT can be

reduced. The EM algorithm for parameter estimation of the GMM is used for eval-

uation of the LUT-based implementation of the GMM.

The EM algorithm is also reviewed in this chapter.

4 CHAPTER 1. INTRODUCTION

Chapter 5: Conclusions

In Chapter 5, some conclusions are drawn after a summary of this study is given.

Chapter 2

Interval Calculation for GMM

This chapter proposes interval representation for GMM. Moreover, for evaluation,

the interval is applied for GMM-based classification.

The approximation methods for exponential function, generally, always calcu-

lates high-precision values for any inputs. However, high-precision computation is

not required in some GMM applications. Figure 2.1 illustrates a concept of GMM-

based classification. In the neighborhoods of the point of intersection between tow

lines, such as squared area, high-precision computation is required since the values

are compared. However, other areas clearly far away from the other line. Therefore,

the computational cost of the GMM can be reduced in such regions.

Following sections proposes GMM-based classification with interval calculation

as an application of the interval approach.

2.1 Review of GMM-based Classification

This section reviews the Bayesian decision rule, GMM, and GMM-based classifi-

cation.

2.1.1 Bayesian decision rule

Bayesian decision rule enables us to identify the class of an observed datum or

feature vector x provided possible classes are known a priori. Given a feature vector

x, Bayesian decision scheme compares the posterior probabilities of every class, i.e.

P[c = Ck|x], and then select the class of the highest probability. This decision is

known to give the smallest error rate [13, 14]. Since the Bayesian theorem tells us

P[c|x] ∝ p(x|c)P[c], the Bayesian decision can be reduced to the evaluation with

the following discriminant function:

fk,l(x) = p(x|Ck)P[Ck] − p(x|Cl)P[Cl], (2.1)

where p(x|c) is the marginal probability and P[c] is the priori probability. If fk,l(x) >

0, then Class Cl is dropped from the candidates. If fk,l(x) < 0, then Class Ck remains

nominated.

5

6 CHAPTER 2. INTERVAL CALCULATION FOR GMM

Figure 2.1: An example of GMM-based classification. The dotted line shows a

GMM and the solid line shows a Gaussan distribution. The inputs are classified

as the class that the value of functions is large. In the neighborhoods of the point

of intersection between tow lines, such as squared area, are required high-precision

computation. However, other areas clearly far away from the other line.

2.1. REVIEW OF GMM-BASED CLASSIFICATION 7

2.1.2 Gaussian mixture model(GMM)

Equation (2.1) requires us to know the conditional density p(x|c) and P[c] a priori.

This work assumes GMM for p(x|c) [14]. Let N(x|µ,Σ) be the density of Gaussian

distribution. N(x|µ,Σ) is defined by

N(x|µ,Σ)=
1

(2π)
D
2|Σ|

1
2

exp

{

−
1

2
(x−µ)TΣ−1(x−µ)

}

, (2.2)

where D is the number of variables, µ and Σ are a D × 1 mean vector and D × D

covariance matrix, respectively. Then, the density of GMM, M(x|Θ), is represented

by

M(x|Θ) =

N−1
∑

n=0

αnN(x|µn,Σn), (2.3)

where Θ is a set of parameters, that is Θ = {{αn}, {µn}, {Σn}}, N is the number

of Gaussian distributions and αn is the mixture ratio of the n-th distribution. The

mixture ratios satisfy the condition
∑N−1

n=0 αn = 1 and 0 ≤ αn ≤ 1.

2.1.3 GMM-based classification by Bayesian decision rule

Since the probability of x given c, i.e. p(x|c), is assumed to be GMM in Eq. (2.3),

Eq. (2.1) is represented by

fk,l(x) = gk(x) − gl(x), (2.4)

gk(x) =

Nk−1
∑

n=0

Kk,n exp(−zk,n), (2.5)

where

zk,n(x) =
1

2
(x − µ)TΣ−1(x − µ), (2.6)

Kk,n =
P[Ck]αk,n

(2π)
D
2 |Σ|

1
2

, (2.7)

where {αk,n}, {µk,n} and {Σk,n} are parameter sets of GMM for Class Ck [10]. Since the

covariance matrix Σk,n is positive definite, function zk,n(x) obtained by the quadratic

form in Eq. (2.6) is guaranteed to be non-negative. As well, the conditions on

αk,n guarantee for constant Kk,n to be non-negative. Therefore, Eq. (2.6) must be

non-negative and gk(x) ranges from 0 to
∑Nk−1

n=0
Kk,n. For the sake of convenience,

function zk,n(x) is simply represented by variable zk,n in the following discussion.

8 CHAPTER 2. INTERVAL CALCULATION FOR GMM

2.2 Interval Calculation for GMM-Based Classifica-

tion

On the assumption that a feature vector x is drawn from a Gaussian distribution,

the Bayesian decision is achieved by comparing scaled exponential functions, i.e.

K exp(−z), where K and z are nonnegative constant and variable. Usually, the com-

parison is reduced by taking their logarithms, i.e. ln K exp(−z) = ln K−z, where ln K

is a constant. Note that the classifier does not require any exponential function. On

the other hand, it is not true for GMM. In this section, we propose a simple interval

calculations and an adaptive control of computational precision for the exponential

operations in GMM. The following facts are used in our proposal.

• Required result is only the sign of Eq. (2.4).

• Constant Kk,n and variable zk,n in Eq. (2.5) are all non-negative.

2.2.1 Initial decision process

First of all, we give an inequality which represents an interval covering the function

in Eq. (2.5) with integer powers of two. From the fact that exp(−z) = 2−z log2 e and

z ≥ 0, we have the relation

2−(⌊z log2 e⌋+1) < exp(−z) ≤ 2−⌊z log2 e⌋, (2.8)

where ⌊x⌋ is the integer part of x. The relation expressed in Eq. (2.8) is shown in

Fig. 2.2.

Furthermore, Eq. (2.8) leads

N−1
∑

n=0

Kn2−(⌊zn log2 e⌋+1) <

N−1
∑

n=0

Kn exp(−zn)

≤

N−1
∑

n=0

Kn2−⌊zn log2 e⌋. (2.9)

The lower and upper bound of this interval is calculated only by scaling con-

stant Kn with an integer power of two and accumulating the results. If Kn is in a

fixed-point representation, this operation is executed by the right bit-shift. If it is in

a floating-point one, the index decrement realizes the computation. Figure 2.3 illus-

trates a case that the class C0 is clearly delated from nominations with the interval

computation, where we define

g
upper

k
(x) =

Nk−1
∑

n=0

Kk,n2−⌊zk,n log2 e⌋, (2.10)

glower
k (x) =

Nk−1
∑

n=0

Kk,n2−(⌊zk,n log2 e⌋+1) =
1

2
g

upper

k
(x). (2.11)

2.2. INTERVAL CALCULATION FOR GMM-BASED CLASSIFICATION 9

 

 

Figure 2.2: Relation of the inequality in Eq. (2.8).

()xupper

0g()xlower

0g ()xupper

1g()xlower

1g

()x0g ()x1g

Figure 2.3: Case that the interval is used for classification.

10 CHAPTER 2. INTERVAL CALCULATION FOR GMM

()xupper

0g()xlower

0g

()xupper

1g()xlower

1g

()1,upper

0 xg()1,lower

0 xg

()1,upper

1 xg()1,lower

1 xg

Interval refinement process

may clear the classification

Classification is unclear

due to overlapped intervals

Figure 2.4: Case that the interval computation is insufficient (top). An expected

effect of the refinement process (bottom).

Note that the lower bound in Eq.(2.11) is a half of the upper one and this fact is

important in terms of computational cost. Each interval guarantees to include the

true value of gk(x). The above decision process makes it possible to avoid precise

calculations.

For the two class case, the number of operations required for one initial decision

in the fixed-point implementation is summarized as follows:

• Multiplications of the constant log2 e with the variable zk,n: N0 + N1,

• Rounding of zk,n log2 e: N0 + N1,

• Multiple bit-shift of the constant Kk,n: N0 + N1,

• Cumulative additions: N0 + N1,

• One bit-shift of g
upper

k
(x): 2,

• Comparisons: 2.

For the floating-point implementation, decrement of the exponential part re-

places to the bit-shift operations. Note that the typical implementation with the

exponential function requires N0 + N1 exponential operations, N0 + N1 constant

multiplications N0 + N1 accumulative additions and one comparison.

2.2.2 Refinement process

When the probability of Ck given x close to another, the initial decision process con-

fuses. In the followings, we propose a refinement process for successively improv-

ing the computational precision and narrowing the interval. Figure 2.4 illustrates

2.2. INTERVAL CALCULATION FOR GMM-BASED CLASSIFICATION 11

a case that the decision is unclear from the interval and the refinement process im-

proves each interval which includes the true value gk(x). Let us begin with the

relation

exp(−z) = 2−⌊z log2 e⌋2−β = 2−(⌊z log2 e⌋+1)2(1−β), (2.12)

where β is the fractional part of z log2 e and in the range 0 ≤ β < 1. Representing

the i-th fractional bit of β as β[i] ∈ {0, 1}, we have

β =

L
∑

i=1

β[i]2−i, (2.13)

where L denotes the number of fractional bits. Furthermore, defining T [i] = 2−2−i

,

we obtain the following expressions:

2−β = 2−
∑L

i=1 β
[i]2−i

=

L
∏

i=1

2−β
[i]2−i

=

L
∏

i=1

T [i]β
[i]

(2.14)

2(1−β) = 22−L

L
∏

i=1

2−β
[i]

2−i

= T [L]−1

L
∏

i=1

T [i]β
[i]

(2.15)

where β
[i]

is the bit inverse of β[i] (see Appendix A).

Then, let us consider an update process for refining the interval. According

to Eqs. (2.12)-(2.15), the upper and lower bound in Eqs. (2.10) and (2.11) are

improved by using the following bounds for i ≥ 1:

g
upper

k
(x, i) =

Nk−1
∑

n=0

h
upper

k,n
(x, i), (2.16)

glower
k (x, i) =

Nk−1
∑

n=0

hlower
k,n (x, i), (2.17)

where

h
upper

k,n
(x, i) =











Kk,n2−⌊zk,n log2 e⌋, i = 0,

Kk,n2−⌊zk,n log2 e⌋
∏i

j=1 T [j]β
[j]

k,n , i ≥ 1,
(2.18)

hlower
k,n (x, i) =











Kk,n2−(⌊zk,n log2 e⌋+1), i = 0,

Kk,n2−(⌊zk,n log2 e⌋+1)
∏i

j=1 T [j]−β
[j]

k,n , i ≥ 1,
(2.19)

where β
[i]

k,n
denotes the i-th fractional bit of zk,n log2 e.

For i ≥ 1, we have the update equations

h
upper

k,n
(x, i) = h

upper

k,n
(x, i − 1)T [i]β

[i]
k,n , (2.20)

12 CHAPTER 2. INTERVAL CALCULATION FOR GMM

Table 2.1: Values of T [i] and T [i]−1.
i T [i] T [i]−1

1 0.707106781186547 1.414213562373095

2 0.840896415253715 1.189207115002721

3 0.917004043204671 1.090507732665258

4 0.957603280698574 1.044273782427414

5 0.978572062087700 1.021897148654117

6 0.989228013193975 1.010889286051701

7 0.994599423483633 1.005429901112803

8 0.997296056085470 1.002711275050203

9 0.998647112890970 1.001354719892108

hlower
k,n (x, i) = hlower

k,n (x, i − 1)T [i]−β
[i]

k,n . (2.21)

Since the inequalities

Kk,n exp(−zk,n) ≤ h
upper

k,n
(x, i) ≤ h

upper

k,n
(x, i − 1), (2.22)

hlower
k,n (x, i − 1) ≤ hlower

k,n (x, i) ≤ Kk,n exp(−zk,n), (2.23)

hold, Eqs. (2.16) and (2.17) become closer to the true evaluation gk(x) as i increases.

Consequently, the intervals are refined as shown in Fig. 2.4. Although both of

Eqs. (2.20) and (2.21) include multiplications, one refinement process requires only

either of T [i] or T [i]−1 since β
[i]

k,n is the bit inverse of β
[i]

k,n
. Both of T [i] and T [i]−1

can be calculated before and stored in look up tables as shown in Tab. 2.1.

Figure 2.5 shows an example of interval calculations for a Gaussian mixture

distribution. It is seen that the interval guarantees the true value and the interval is

close to the true value as the number of refinement increases.

2.2.3 Termination process

The refined bounds approach to a true value on a principal by continuing the update

operations. However, in an actual situation, computations must be completed in a

finite bit accuracy. As an option, we provide a termination process. Let L be the

maximum number of refinement process. Then, the average value of the bounds

may be a good approximation of gk(x). The average is obtained by

g
pseudo

k
(x)=

1

2

{

glower
k (x, L)·T [L]−1+g

upper

k
(x, L)
}

. (2.24)

Then, gk(x) in Eq. (2.5) can be replaced by g
pseudo

k
(x) for a pseudo decision. Note

that T [L]−1 ≈ 1 for a large L.

2.2. INTERVAL CALCULATION FOR GMM-BASED CLASSIFICATION 13

(a) Initial decision (L = 0) (b) Refined (L = 1)

(c) Refined (L = 4) (d) Refined (L = 8)

Figure 2.5: Refinement effect when a Gaussian mixture consists of 1
2
N(x| − 2, 1)

and 1
2
N(x|2, 1), where L is the number of refinement processes.

14 CHAPTER 2. INTERVAL CALCULATION FOR GMM

2.2.4 Proposed algorithm

Let us summerize the procedures described from 2.2.1 to 2.2.3, where we represent

2−ix as x ≫ i and assume a two class case for the sake of convenience.

Step 1 Calculate Eqs. (2.6) and (2.7) for all k ∈ {0, 1} and n = 0, 1, · · · ,Nk − 1.

Then, obtain

h
upper

k,n
= Kk,n ≫ ⌊zk,n log2 e⌋,

hlower
k,n = h

upper

k,n
≫ 1,

βk,n = frac(zk,n log2 e),

and set i = 0, where frac(x) is the fractional part of x.

Step 2 Calculate the following equations for all k ∈ {0, 1}:

g
upper

k
=

Nk−1
∑

n=0

h
upper

k,n

g
upper

k
=

{

g
upper

k
≫ 1, i = 0

∑Nk−1

n=0
hlower

k,n
, i ≥ 1

.

Step 3 If g
upper

0
≤ glower

1
, then decide on Class C1 and quit. If g

upper

1
≤ glower

0
, then

decide on Class C0 and quit.

Step 4 Increment i as i ← i + 1. If i exceeds the upper limit L, then go to Step 6.

Step 5 Update the interval for all k ∈ {0, 1} and n = 0, 1, · · · ,Nk − 1. If β
[i]

k,n
= 1,

then apply

h
upper

k,n

update
←− h

upper

k,n
· T [i].

Otherwise, apply

hlower
k,n

update
←− hlower

k,n · T [i]−1.

Return to Step 2.

Step 6 Decide the class with the pseudo-function

g
pseudo

k
(x)=

1

2

{

glower
k (x, L)·T [L]−1+g

upper

k
(x, L)
}

.

If g
pseudo

0
< g

pseudo

1
, then decide on Class C1. Otherwise, decide on Class C0.

Finally, terminate the process.

2.3. PERFORMANCE EVALUATION 15

2.3 Performance Evaluation

In this section, we verify the significance of the initial decision, and then evaluate

the computational cost of the refinement process on both of DSP and FPGA.

2.3.1 Experiments with color extraction

More the initial decision completes the classification, the lower the computational

cost becomes. Let us show some simulation results of the application to color ex-

traction. The followings summerize the simulation procedure:

• Simulation 1

– Claire, a sequence of size 144 × 176 in YUV format, was used.

– A 2 × 1 feature vector x was defined for every pixel by the U and V

component.

– GMMs are assumed to the skin and non-skin class.

– The first frame was used to train the classifier 1.

– The 494-th frame was used as an observed picture.

• Simulation 2

– Table tennis, a sequence of size 352 × 240 in YUV format, was used.

– A 2 × 1 feature vector x was defined for every pixel by the U and V

component.

– GMMs are assumed to the uniform ware and other region class.

– The 80-th frame was used to train the classifier.

– The 90-th frame was used as an observed picture.

Figure 2.6 shows an initial decision result of Simulation 1, where the numbers

of distributions are assumed to be two, three and four. It is observed that the initial

decision process can almost complete the classification. The ratios of completing

the classification for different numbers of distributions resulted in

• 99.629 % for 2 distributions (N0 = N1 = 2),

• 99.609 % for 3 distributions (N0 = N1 = 3),

• 99.562 % for 4 distributions (N0 = N1 = 4).

As well, we verified that the number of updates in which the decisions completed

in the double precision were 7, 6 and 11 updates for 2, 3 and 4 distributions, respec-

tively.

1EM algorithm was used [14, 15]

16 CHAPTER 2. INTERVAL CALCULATION FOR GMM

(a) Observation (b) Result with N0 = N1 = 2

(c) Result with N0 = N1 = 3 (d) Result with N0 = N1 = 4

Figure 2.6: Initial decision results in Claire, where the white, black and gray region

express the skin, non-skin and undecided region.

(a) Observation (b) Result with N0 = N1 = 2

Figure 2.7: Initial decision results in Table tennis, where the white, black and gray

region express the uniform, non-uniform and undecided region.

2.3. PERFORMANCE EVALUATION 17

Figure 2.8: Undecision rate for each refinement stage in Claire, where N0 = N1 = 2.

Figure 2.7 shows an initial decision result of Simulation 2, where the number

of distributions are assumed to be two. The ratios of completing the classification

resulted in 99.670%.

These simulation results tell us that any precise evaluation is not necessary for

the exponential function for over 99.5% of pixels.

Figure 2.8 shows an effect of the refinement process for Claire. It is confirmed

that undecision rate is reduced as the number of refinement process incleases.

2.3.2 Computational cost on DSP

Let r[i] be the ratio of progression to the i-th refinement process, where the relation

0 ≤ r[i + 1] ≤ r[i] ≤ 1 holds. Denoting τinit and τrefine as the time required for the

initial decision per feature vector in Steps 1, 2 and 3 and the time for a refinement

process in Steps 5, 2 and 3, respectively, we obtain the average decision time per

feature vector with L refinement processes as

τave = τinit +

L
∑

i=1

r[i]τrefine, (2.25)

where the termination in Step 6 is omitted for simplicity since it is optional and less

expensive than the refinement process. If τinit is much less than the time τ required

with some existing exponential implementation, and if the progression ratios r[i] are

close to zero, then the acceleration can be expected since τave ≈ τinit . For evaluating

the computational cost, we implemented the skin-color extraction in Simulation 1

on TI DM6437 EVM board. The followings summarize the procedure:

• TI CCS ver. 3.3 was used as the compiler with the ’Speed Most Critical’ and

’Function Level’ option.

18 CHAPTER 2. INTERVAL CALCULATION FOR GMM

Table 2.2: Average computational time per feature vector for evaluating Eq.(2.4)

on DM6437 EVM board, where D = 2 and N0 = N1 = 2. The quadratic form of

Eq.(2.6) consumes around 5.0µs in floating-point calculations of single precision.

L = 0 means without refinement. LPW was implemented by a = 4, b = 8, f1 =

0.0046.

Type of constant Kk,n Fixed-point Float.-point

Std. (w. expf()) - 13.65 µs

Std. (w. exp()) - 25.8 µs

LPW. - 1.59 µs

Intv. (L = 0) 1.34 µs 2.13 µs

Intv. (L = 1) 1.39 µs 2.13 µs

Intv. (L = 2 to L = 8) 1.40 µs 2.14 µs

• Classifiers with standard exponential functions, linear piase-wize (LPW) ap-

proximation and ones with our proposal were implemented on the board [16].

• The 494-th frame of Claire was used as an observed picture, which was en-

larged and converted into NTSC video so that it can be acquired by the board.

Table 1 summerizes the computational speed of the experimental results of the

UV-based color extraction. The abbreviations ’Std.’, ’LPW.’ and ’Intv.’ denote

the classifiers with the standard functions, linear piece-wise approximation and the

proposed algorithm with the interval calculation, respectively. As the standard ex-

ponential functions, we adopted ’expf()’ of single precision and ’exp()’ of double

precision from the standard C library. For the proposal, the results only with the ini-

tial decision process (L = 0) and those with the refinement process up to 8 updates

(L = 8) are given. Two types of representations, i.e. fixed- and floating-point one,

for constant Kk,n are also compared. Since the refinement process is rarely required,

the overhead is negligible in both cases. We can verify that as the distributions of

classes become close to each other, e.g. Kullback-Leibler divergence [14] becomes

close to zero, the refinement ratios have a tendency to increase and may fail to ac-

celerate the process. Although our proposed method is not universally efficient, it

shows advantages of acceleration (or power saving) when the distributions are far

from each other.

2.3.3 Computational cost on FPGA

Let us verify the significance of our proposal in terms of speed and area on FPGA.

A standard classifier with CORDIC, proposed classifier without the refinement, and

one with the refinement were modeled by VHDL and synthesized onto FPGA. The

followings compare these constructions in terms of the computational speed and

area.

2.3. PERFORMANCE EVALUATION 19

(a) Std. (w. CORDIC exp)

(b) Intv. (w.o. refine.)

(c) Intv. (w. refine.)

Figure 2.9: Block diagrams of GMM-based classifiers.

20 CHAPTER 2. INTERVAL CALCULATION FOR GMM

(a) Initial decision block .

(b) Refinement process block .

Figure 2.10: Block diagrams of Initial decision and refinement process.

Figure 2.9 shows the block diagrams of the circuits adopted in this evaluation,

where the hatched blocks denote the targets in this evaluation and Fig. 2.10(a), (b)

shows the architectures of the initial decision and refinement process, respectively.

The CORDIC module was generated through Xilinx ISE LogiCore tool for the

standard construction. The computational time and area of our proposal with the

refinement process was estimated under the condition that all four of the refinement

processes are executed in parallel and four constant multipliers are embedded in

total.

The implementation targets the support of SXGA (112MHz, 9.0 ns) display and

achives one decision per clock.

The followings summerize the evaluation procedure:

• TED TB-3S-3400DSP-IMG was used as an FPGA evaluation board,

• The board is equipped with Xilinx XC3SD3400DSP,

• Xilinx ISE 10.1 was selected as the development tool with the following set-

tings:

– Optimization: speed,

– Architecture: fully pipelined,

– Data type: 32-bit fixed-point.

2.4. SUMMARY 21

Table 2.3: Computational time estimation by place-and-route timing report, where

the percentages in the parentheses mean the ratio of Intv. to Std. with 32 bits.

Clock rate

(MHz)

Computational

time(ns)

Std. (w. 32-bit exp) 112.03 8.93

Std. (w. 16-bit exp) 122.76 (109.58%) 8.15 (91.3%)

Intv. (w.o. refine.) 145.99 (130.31%) 6.85 (76.74%)

Intv. (w. refine.) 114.13 (101.87%) 8.76 (98.16%)

Table 2.4: Area estimation by map report, where the percentages in the parentheses

mean the ratio of Intv. to Std. with 32 bits.

LUTs FFs

Std. (w. 32-bit exp) 21,998 22,403

Std. (w. 16-bit exp) 7,902 (35.92%) 8,011 (35.76%)

Intv. (w.o. refine.) 1,687 (7.67%) 1,668 (7.45%)

Intv. (w. 1-refine.) 6,008 (27.69%) 6,091 (26.82%)

Figure 2.11 shows the effect of the number of refinement process to the circuit

area. The circuit area increases with the number of refinement process because the

constant look-up table expands.

The place-and-route and map reports are shown in Tables 2.3 and 2.4. Note

that the computational time of the proposed method with the refinement process

was estimated under the condition that the total time consumed by the refinement

processes in a frame is less than that of the initial decision process in a frame.

The proposals show superior performances in terms both of the speed and area

to the conventional ones. Although the performances depend on the distributions of

the inputs, some significant improvement can be expected by adopting the proposed

method for other applications.

2.4 Summary

This chapter reduced the comparison of GMM to simple interval calculations and

proposed an efficient Bayesian decision scheme. In order to verify the significance,

some experimental results of the application to color extraction were shown. It was

verified that the classification was almost completed with the simple initial decision

process, and that the refinement process was able to improve the classification with

low overhead in the computational cost. It is verified through the implementation

on DSP and FPGA that the proposed algorithm is hardware-friendly.

22 CHAPTER 2. INTERVAL CALCULATION FOR GMM

Figure 2.11: Relation between the number of LUTs/FFs and the number of refine-

ment.

Chapter 3

Narrowed Initial Interval

This chapter proposes to improve the initial interval.

In Chapter 2, the interval is improved with refinement process. However, it is

implemented as adoptive scheme. Therefore, the computational cost is increasing if

the refinement is often processed.

Figure 3.1 illustrates undesirable GMMs. If one distribution is close to the other

distribution, the refinement process is required over a wide range. It cause the

increasing of the computational cost.

To avoid this problem, this chapter proposes an improvement of the initial inter-

val. This chapter also uses GMM-based classification as the application of GMM.

3.1 Narrowed Initial Interval

The main issue of the interval calculation is the cost of the refinement process. The

refinement process requires N multiplication when N-times refinements are exe-

cuted. It remains possible that the cost of interval calculation becomes higher than

the conventional exponent calculation when many refinement steps are required.

In this section, a fast refinement scheme is proposed. The scheme can reduce K

multiplications and refinement steps by using newly introduced look-up tables.

3.1.1 Calculation of shift amount

The factor K2−z(x) log2 e can be rewritten as

K2−z(x) log2 e=2log2 K · 2−z(x) log2 e=2−{− log2 K+z(x) log2 e}, (3.1)

and we can define an shift amount qk,n by

qk,n(x) = ⌊− log2 Kk,n + zk,n(x) log2 e⌋. (3.2)

If log2 Kk,n > zk,n(x) log2 e, the shift amount qk,n(x) become greater than 1. It

means that left bit-shift is required in the fixed-point implementation as well as

23

24 CHAPTER 3. NARROWED INITIAL INTERVAL !!"#$%&'()$&*$+,-..$/ 0&1"#$%&'()$&*$+,-..$/ !!"#$%&'()$&*$+,-..$2 0&1"#$%&'()$&*$+,-..$23$43$ 56789:;:<6$=>8=;$
Figure 3.1: An example of intervals with undesirable GMMs. Thin solid line and

thin dashed line show the interval bound of class 1 and bold solid line and bold

dashed line show the interval bound of class 0. Rounded rectangle shows the un-

decision areas. If one distribution is close to the other distribution, the refinement

process is required over a wide range.

3.1. NARROWED INITIAL INTERVAL 25

right bit shift. It makes the fixed-point implementation complex. To avoid the left

bit shift, let us normalize Kk,n as

Kk,n = Kk,n/max{Kk,n}. (3.3)

Note that log2 Kk,n is not positive because Kk,n is less than or equal to 1. Equation

(3.3) is based on the fact that GMM classification with Bayesian decision rule can

be written as

i f max
i=0,· · · ,N−1

{

P(Ci)M(x|Θi)

U

}

=
P(Cn)M(x|Θn)

U

⇒x ∈ class n, (3.4)

where U is a positive value.

From Eq. (3.3), the shift amount qk,n(x) is rewritten as

qk,n(x) = ⌊− log2 Kk,n + zk,n(x) log2 e⌋. (3.5)

Equation (3.5) can be realized only by some right bit shifts in the fixed-point imple-

mentation.

3.1.2 Look-up table for multiplierless interval calculation

The look-up table of our proposed multiplierless scheme is different from the origi-

nal one.

In the multiplierless scheme, the fractional part β of the exponential part is given

by

β = − log2 K + z(x) log2 e − ⌊− log2 K + z(x) log2 e⌋, (3.6)

and a function s(β) is defined as

s(β) = 2−β. (3.7)

In the multiplierless scheme, function s(β) is realized by look-up table .

3.1.3 Refinement process with bit shift and look-up table

The shift amount and the table from Sec. 3.1.1 and 3.1.2 make it possible to reduce

the multipliers.

With Eqs.(3.5) and (3.7), the refined interval operation is realized by

g
upper

k
(x) =

N−1
∑

n=0

h
upper

k,n
(x), (3.8)

glower
k (x) =

N−1
∑

n=0

hlower
k,n (x), (3.9)

26 CHAPTER 3. NARROWED INITIAL INTERVAL

Figure 3.2: Relation between the true value (left-hand side) and round-down value

(right-hand side). Round-down value becomes 0.5.

Figure 3.3: Relation between the true value (left-hand side) and round-up value

(right-hand side). Round-up value becomes 0.75.

where

h
upper

k,n
(x) = s(βk,n) ≫ qk,n(x), (3.10)

and

hlower
k,n (x) =

{

s(0)≫ (qk,n(x)+1) (βk,n=1−2−L)

s(βk,n+2−L)≫qk,n(x) (otherwise)
, (3.11)

where ≫ is the barrel shifter. Note that there is no multiplier in Eqs. (3.10) and

(3.11).

Equation (3.11) is based on the following inequation:

L
∑

l=1

βl ≤

∞
∑

l=1

βl <















L
∑

l=1

βl















+ 2−L, (3.12)

where the l-th bit of β is expressed by βl,
∑L

l=1 βl is the L-bit round-down of β and
∑∞

l=1 βl is the true value of β. Figures 3.2 and 3.3 show some examples for L = 2

and true value 0.6875.

3.1.4 Decision rule in the proposed refinement scheme

The decision rule is given by

i f {glower
k (x) − g

upper

i
(x)} > 0 f or all i

⇒ x ∈ class k, (3.13)

where k, i = 0, 1, · · · ,N − 1.

3.2. PERFORMANCE EVALUATION ON FPGA 27

3.2 Performance Evaluation on FPGA

In this section, in order to verify the significance of the novel refinement scheme,

let us evaluate the circuit size of GMM-based classifier with the interval calculation

in FPGA is evaluated.

3.2.1 Implementation condition

In the followings, we summarize the design condition for a GMM-based classifier

with the interval calculation

• Target FPGA: Xilinx XC3SD3400

• Development environment: Xilinx ISE 10.1

• Optimization: speed

• Data type: 32-bit and 64-bit fixed-point

• The number of classes: 2

• The number of distributions: 2

• Embedded RAMs and multipliers are not used

The original refinement scheme was estimated by adding four multipliers to the

initial decision process. The multipliers were generated by Xilinx Core Generator

and they were configured as parallel architecture.

Figures 3.4 and 3.5 show the block diagrams of the circuits in this evaluation,

where the hatched blocks denote the target in this evaluation.

3.2.2 Synthesis report

Tables 3.1-3.4 show the synthesis results of the number of flip-flops, look-up tables

(as elements of FPGA), max clock period, throughput, and clock latency. The values

in parentheses show the ratio of the improvement from the proposed scheme to the

original scheme. Symbols that + or − on Table 3.3 and 3.4 mean uncertainty of the

estimated values because the original refinement process is adaptive scheme, and

the value shows the best case where only a few refinement processes are required in

the interval calculation.

From these results, it was confirmed that the multiplierless refinement scheme

for the interval calculation can reduce the circuit area under 52.2% and can acceler-

ate the throughput over 117.6%.

28 CHAPTER 3. NARROWED INITIAL INTERVAL

Figure 3.4: Original interval calculation classifier.

Figure 3.5: Proposed interval calculation classifier.

3.3 Summary

In this chapter, a method to improve the initial interval was proposed for GMM

and it was applied for GMM-based classification. The proposed scheme consists

of scaling for the exponential part and shifting of pre-calculated values of the frac-

tional part. As a result, the initial interval could be narrowed. By the experimental

implementation on FPGA, it was confirmed that the proposed method reduced the

circuit area under 52.2% and accelerated the throughput over 117.6%.

3.3. SUMMARY 29

Table 3.1: Results of logic synthesis for 32-bit implementation.

FFs LUTs
Max clock period

(MHz)

Prop. 1-bit 2690(42.2%) 2423(40.9%) 180.343(117.6%)

Prop. 2-bit 3038(47.6%) 2778(46.9%) 180.343(117.6%)

Prop. 3-bit 3274(51.3%) 3031(51.1%) 180.343(117.6%)

Prop. 4-bit 3302(51.8%) 3095(52.2%) 180.343(117.6%)

Orig. refine. 6380 5928 153.374

Table 3.2: Results of logic synthesis for 64-bit implementation.

FFs LUTs
Max clock period

(MHz)

Prop. 1-bit 4385(22.2%) 4043(21.0%) 178.253(171.84%)

Prop. 2-bit 5078(25.7%) 4720(24.5%) 178.253(171.84%)

Prop. 3-bit 5547(28.0%) 5188(27.0%) 178.253(171.84%)

Prop. 4-bit 5615(28.39%) 5320(27.7%) 178.253(171.84%)

Orig. refine. 19779 19232 103.734

Table 3.3: Results of throughput and clock latency for 32-bit implementation.

Throughput(×106) Latency

Prop. 1-bit 180.343(117.6+%) 12

Prop. 2-bit 180.343(117.6+%) 12

Prop. 3-bit 180.343(117.6+%) 12

Prop. 4-bit 180.343(117.6+%) 12

Orig. refine. 153.374- 9+

Table 3.4: Results of throughput and clock latency for 64-bit implementation.

Throughput(×106) Latency

Prop. 1-bit 178.253(171.84+%) 13

Prop. 2-bit 178.253(171.84+%) 13

Prop. 3-bit 178.253(171.84+%) 13

Prop. 4-bit 178.253(171.84+%) 13

Orig. refine. 103.734- 11+

Chapter 4

LUT-Based GMM

This chapter proposes LUT-based calculation for GMM. In Chapters 2 and 3, the

interval representation was discussed. The interval can be interpret as the upper

and lower band of the approximation error. Therefore, this chapter proposes the

computation of the LUT for exponential function based on Chapters 2 and 3, and it

is shown that the values in the LUT can be computed with flexibility.

The LUT-based exponential function is applied for Expectation Maximization

(EM) algorithm for GMM and evaluated in this chapter.

4.1 Review of EM Algorithm for GMM

In this section, the EM algorithm for the GMM is reviewed and discussed the com-

putational complexity. Especially, this section focuses on expectation step (E-step)

of the EM algorithm. For more information on the EM algorithm, refer to [17, 14].

4.1.1 E-step

The EM algorithm consists of two principal processes. First, the E-step calculates

probabilities, which are called responsibilities. Then, the maximization-step (M-

step) updates the parameters of GMM by using these responsibilities. These two

steps are repeated until the parameters converge. In the followings, let us show the

equation of the E-step where the notations are based on [14].

In the E-step, we compute the responsibilities γk,n, where k is the distribution

number and n is the data index. Suppose that we observe input vectors {xn}
N−1
n=0

,

where xn ∈ R
D×1 and N is the number of data points. The responsibility γk,n of the

k-th distribution for the n-th input vector xn is given by

γk,n =
αkN(xn|µk,Σk)

K−1
∑

j=0

α jN(xn|µ j,Σ j)

, (4.1)

where K is the number of Gaussian distributions, αk is the mixture ratio of the k-th

distribution, and µk and Σk are the mean vector and covariance matrix of the k-th

31

32 CHAPTER 4. LUT-BASED GMM

distribution, respectively, where µk ∈ R
D×1 and Σk ∈ R

D×D. N(xn|µk,Σk) is the k-th

multivariate Gaussian distribution given as

N(xn|µk,Σk) = Ck · exp(−yk,n), (4.2)

where

Ck =
1

(2π)D/2|Σk|
1/2
, (4.3)

and

yk,n =
1

2
(xn − µk)

TΣ−1
k (xn − µk). (4.4)

Note that Ck and yk,n are non-negative scalar values.

For the M-step, refer to the article [14].

4.1.2 Computation of EM algorithm for GMM

In the followings, we present our approach for reducing the cost associated with

computing the E-step. Let us decompose the computational procedures in Eq. (4.1)

as follows:

1. yk,n =
1

2
(xn − µk)

TΣ−1
k (xn − µk),

2. uk,n = exp(−yk,n),

3. Ck =
1

(2π)D/2|Σk|
1/2

,

4. tk,n = αkCkuk,n,

5. sn =

K−1
∑

k=0

tk,n,

6. s̄n = 1/sn,

7. γk,n = tk,n · s̄n.

Operations 1, 2, and 3 presented above are prone to bottlenecks due to matrix prod-

ucts, exponential functions, and determinant operations. Even when the number of

data n is large, the computational cost of Ck is not significant because Ck is inde-

pendent of n. Thus, we need to reduce the computational cost of Operations 1 and

2. The most significant operation in the E-step is listed in Eq. (4.2).

The aim of this work is to reduce the operations in Eq. (4.2). The exponential

function in operation 2 of the E-step can be approximated by taking into account

Eq. (4.1). In the next section, we propose a technique for approximating the expo-

nential function.

4.2. EM ALGORITHM WITH LOOK-UP-TABLE-BASED EXPONENTIAL FUNCTION 33

4.2 EM Algorithm with Look-Up-Table-Based Expo-

nential Function

In this section, we propose an approximation method for the exponential function

used by the EM algorithm that estimates the GMM parameters. The approximation

method reduces computational cost by taking Eq. (4.1) into account.

The idea of transforming non-linear function into look-up table (LUT) was used

in various studies. For example, Fiori used the idea for neural network [18, 19, 20].

This work approximates the exponential function by using a bit-shift and a LUT.

First, the exponential function is represented by powers of two. Then, the powers

of two are approximated using a bit-shift and a LUT. Furthermore, to simplify the

implementation, the LUT is scaled by a constant coefficient.

4.2.1 Look-Up-Table-Based Exponential Function

The exponential function can be expressed as a power of two as

exp(−z) = 2−z·log2 e, (4.5)

where z is a variable and e is Napier’s number. The right-hand side of Eq. (4.5) can

be separated into two components

2−z·log2 e = 2−(⌊z·log2 e⌋+β) = 2−⌊z·log2 e⌋ · 2−β, (4.6)

where ⌊x⌋ represents the integer part of x and β = z · log2 e − ⌊z · log2 e⌋, i.e., the

fractional part of z · log2 e.

From Eqs. (4.5) and (4.6) we conclude that in the binary digit system, expo-

nential function can be realized by a bit-shift of 2−β. However, computing 2−β still

remains an issue. In particular, the power of two can be computed using the Tay-

lor series expansion. Since the later approach is much simpler than the former, we

propose introducing a LUT that contains approximated values of 2−β.

To construct a LUT with a finite number of contents, we use a bit string β̂ that

is the L-bit approximation of β. By using the bit string β̂, the function 2−β can be

approximated by:

2−β ≈ 2−β̂ = 2−
∑L

i=1 2−i·β̂[i]

, (4.7)

where, β̂[i] ∈ {0, 1} is the i-th bit of β̂. Note that the most significant bit and least

significant bit of β̂ are β̂[1] and β̂[L], respectively. By applying Eq. (4.7), the entries

of the LUT T [β̂] are obtained by

T [β̂] = 2−
∑L

i=1 2−i·β̂[i]

. (4.8)

Since LUT does not depend on any data, it can be computed off-line. In Tab. 4.1,

we present the values of the LUT for L = 2.

Using Eqs. (4.6) and (4.8), the exponential function is approximated by

exp(−z) ≈ 2−⌊z log2 e⌋ · T [β̂]. (4.9)

Equation (4.9) indicates that the exponential function can be computed by shifting

the bits of an entry of the LUT.

34 CHAPTER 4. LUT-BASED GMM

Table 4.1: Values of the LUT T [β̂] for L = 2. The symbol ()2 indicates that the bit

string β̂ is represented in binary form.

β̂ T [β̂]

(00)2 1.000000· · ·

(01)2 0.840896· · ·

(10)2 0.707107· · ·

(11)2 0.594604· · ·

4.2.2 Scale adjustment for look-up table

According to Eq. (4.8), the range of the entries of the LUT is (0.5, 1.0]. Two is-

sues must be considered with respect to this range. One is the complexity of a

floating-point representation, such as the IEEE 754 floating-point format. In this

format, values within the range (0.5, 1.0) change the mantissa part, while the value

1.0 changes the exponential part. Therefore, the value 1.0 requires exception han-

dling. The second issue is that the values of the LUT require an additional bit

because in fixed-point representation, value 1.0 requires one additional bit than the

values in the range (0.5, 1.0). Therefore, the ranges [0.5, 1.0) and (0.5, 1.0) are

preferable to range (0.5, 1.0].

For transforming the values of LUT into preferable range, let us consider a

Gaussian distribution scaled by a constant factor. In the E-step, scaling does not

affect the result of γk,n. Equation (4.1) can be represented by

γk,n =
αkδN(xn|µk,Σk)

K−1
∑

j=0

α jδN(xn|µ j,Σ j)

, (4.10)

where δ is a non-zero constant. It is clear that the result of Eq. (4.10) is identical

to that of Eq. (4.1). Hence, for Gaussian distributions, the scaling operation has no

affect on the results of the E-step.

Scaling can be used to modify the look-up-table-based exponential function.

The scaled Gaussian distribution is approximated by

δN(xn|µk,Σk) = δCk exp{−yk,n}

≈ δCk · 2−⌊yk,n log2 e⌋T [β̂k,n]

= Ck · 2−⌊yk,n log2 e⌋T̂ [β̂k,n], (4.11)

where T̂ [β̂k,n] = δT [β̂k,n]. Hence, the LUT can be scaled by δ.

4.2.3 Scaling using the weighted average of LUT entries

Next, we address the problem of identifying δ that scales the LUT within the de-

sired range. In order to obtain an appropriate constant, we consider generating the

4.3. PERFORMANCE EVALUATION 35

Table 4.2: Values of the LUT T̂ [β̂] obtained by the weighted-average method for

L = 2 and a0 = a1 = 0.5.
β̂ T̂ [β̂]

(00)2 0.920448· · ·

(01)2 0.774002· · ·

(10)2 0.650855· · ·

(11)2 0.547302· · ·

LUT entries by linearly combining neighboring entries. The next entry of T [β̂] is

represented by T [β̂ + 2−L]. Using a weighted average approach, the scaled value

T̂ [β̂] is calculated by

T̂ [β̂] = a0T [β̂] + a1T [β̂ + 2−L]

= a0 · 2−
∑L

i=1 2−i·β̂[i]

+ a1 · 2−{(
∑L

i=1 2−i·β̂[i])+2−L}

= 2−
∑L

i=1 2−i·β̂[i]
(

a0 + a1 · 2−2−L
)

= T [β̂]
(

a0 + a1 · 2−2−L
)

, (4.12)

where a0 and a1 are weights, a0 + a1 = 1 and a0, a1 ≥ 0. Equation (4.12) converts

the range of the LUT into the range [2−
∑L

i=1 2−i

· (a0 + a1 ·2
−2−L

), a0 + a1 ·2
−2−L

], where
∑L

i=1 2−i indicates that all digits of β̂ are equal to one, i.e., β̂ = (11 · · · 11)2. Note

that because
(

a0 + a1 · 2−2−L
)

is independent of β̂, it becomes a constant. Thus, the

constant
(

a0 + a1 · 2−2−L
)

can be used as the scaling factor δ. In Tab. 4.2, we present

the values of the LUT for L = 2 and a0 = a1 = 0.5.

4.3 Performance Evaluation

To validate the effectiveness of the proposed method, we generate simulation results

and evaluate the precision of the estimated parameters and computational time of

the EM algorithm.

Random numbers from two-component mixture of Gaussian distributions are

generated as follows:

• The Mersenne twister method is used to generate uniform random numbers

[21].

• The Box-Muller method is used to generate Gaussian random numbers [22].

• The number of data points is 100,000.

The parameters of the distributions are summarized in Tab. 4.3.

Next, we use the EM algorithm to estimate the parameters. We apply the E-step

and M-step 30 times in a loop. The initial parameters used for the EM algorithm are

36 CHAPTER 4. LUT-BASED GMM

Table 4.3: Parameters of a mixture Gaussian distribution for generating normal

random numbers, where α is the mixture ratio, µ is the mean, and σ is the variance.

The step sizes of µ1 and Σ1 are 0.2.

Params. Dist. 0 Dist. 1

α 0.5 0.5

µ 0.0 From 1.0 to 5.0

Σ 1.0 From 0.2 to 2.0

Table 4.4: Initial values used in the EM algorithm.

Params. Dist. 0 Dist. 1

αinit 0.5 0.5

µinit -0.5 µ1+0.5

Σinit 1.0 1.0

summarized in Tab. 4.4. Note that initial mean values are different from the original

values.

The exponential function in the EM algorithm was implemented using the pro-

posed method, the Taylor expansion, and the exp() function in the standard C li-

brary. Moreover, during the simulation, we adopted the IEEE 754 double precision

format.

The evaluation program was implemented using the C programming language.

The specifications of the software development environment and hardware environ-

ment used are:

• OS: MS Windows 7 (64 bit edition)

• Development environment: MS Visual Studio 2010

• SDK: MS Windows SDK for Windows 7

• Optimization flags: /Ox and /arch:SSE2

• CPU: Intel Core 2 duo E8500 (3.16 GHz)

• Memory: 8 GB dual channel DDR2 SDRAM (PC2-6400)

The simulation results were evaluated on a single core.

4.3.1 Precision of parameter estimation

In this section, we present representative simulation results. The simulation results

were evaluated in terms of the mean absolute error (MAE). The results obtained by

the exp() function are considered as the true values.

4.3. PERFORMANCE EVALUATION 37

(a) Proposed method. (b) Taylor expansion.

Figure 4.1: Simulation results obtained with µ1 = 5.0 and Σ1 = 0.2. The vertical

axis represents the mean absolute error. The horizontal axis in (a) represents the bit-

length of β̂, while the horizontal axis in (b) is approximation order. The averages

obtained by exp() were π0 = 0.500, π1 = 0.500, µ0 = 6.204 × 10−4, µ1 = 5.000,Σ0 =

1.000, and Σ1 = 0.200.

The first simulation was performed with µ1 = 5.0 and Σ1 = 0.2. The second

was performed with µ1 = 1.0 and Σ1 = 2.0. In Fig. 4.1, we present simulation

results obtained for µ1 = 5.0 and Σ1 = 0.2. The results obtained from the proposed

method are more precise than those obtained from the Taylor expansion. Figure 4.2

shows the results for µ1 = 5.0 and Σ1 = 0.2. For this parameter combination, the

two distributions are close and overlap. In this case, it is difficult to estimate the

parameters. The results obtained by the proposed method are comparable to those

of the Taylor expansion.

4.3.2 Computational speed

Next, let us discuss the computational time of E-step using the proposed method,

Taylor expansion, and the standard exp() function. We recorded the computational

times of 30 loops of E-step and M-step by obtaining 100 measurements using 100

different random number seeds, and computed the average time.

The computational time of the E-step using the standard exp() function and the

direct implementation of M-step was 14.26 [ms] and 1.26 [ms], respectively. These

results demonstrate that for signal variables, the computational time of E-step is

dominant in the EM algorithm. Figure 4.3 shows the computational time of the

E-step using the proposed method and the Taylor expansion. The proposed method

took less than 6.54 [ms], while the Taylor expansion took over 7.01 [ms]. Specif-

ically, the Taylor expansion with higher-order approximation required over 10.73

[ms]. By comparing the proposed method with 10-bits and the Taylor expansion

with the 10-th order approximation, we observed that the proposed method reduces

the computational time by 45.62% while achieving more precise estimation results.

38 CHAPTER 4. LUT-BASED GMM

(a) Proposed method. (b) Taylor expansion.

Figure 4.2: Simulation results obtained for µ1 = 1.0 and Σ1 = 2.0. The vertical

axis represents the mean absolute error. The horizontal axis in (a) represents the

bit-length of β̂, while the horizontal axis in (b) is the approximation order. The

averages obtained by exp() were π0 = 0.549, π1 = 0.451, µ0 = 2.046 × 10−3, µ1 =

1.106,Σ0 = 1.045, and Σ1 = 1.934.

Similarly, by comparing the proposed method with the standard exp() function,

we observe that the proposed method reduces computational time by more than

45.86%.

4.4 Summary

This chapter discussed the value of LUT for the exponential function and applied the

EM algorithm to estimate the parameters in a GMM. First, the exponential function

in the E-step was converted into a power of two. Then, the exponential function was

converted using a LUT. The LUT was scaled using a weighted-average technique

and the computational cost was reduced.

Through simulation results, it was demonstrated that the mean absolute error

and computational time were reduced compared to the Taylor expansion. The pro-

posed method was also shown to maintain high precision.

4.4. SUMMARY 39

(a) Proposed method. (b) Taylor expansion.

Figure 4.3: Computational time results. The vertical axis shows the computational

time. The horizontal axis in (a) is the bit-length of β̂, and the horizontal axis in (b)

is the approximation order.

Chapter 5

Conclusions

5.1 Summary

This study proposed efficient arithmetics for the GMM. The contributions of this

study are two approach for GMM approximation focus on exponential function.

One is the interval calculation for the GMM. While well-known approximation

methods, such as fixed-point implementation, are able to reduce the computational

cost, the computational accuracy is dropped. In contrast, the interval approach was

balancing the computational cost with the computational accuracy. The other is

LUT-based GMM. It was shown that the values in LUT could be scaled with a scale

factor under certain conditions. The scale factor provided flexibility for the value in

LUT. As a result, the bit length of LUT could be reduced.

The summarizations of each chapters are as follows:

Chapter 2

In chapter 2, the interval calculation method was applied for the GMM-based clas-

sification with Bayesian decision rule. This chapter proposed three processes for

classification. In the initial decision process, the coarse interval is calculated. It

was confirmed that the initial decision process could be classified almost inputs. In

the refinement process, the interval is narrowed adoptively. In the termination pro-

cess, the forcible decision rule was proposed in which case the error classification

is allowed. The computational cost and accuracy of these methods were evaluated

with the computational time on DSP, the circuit areas on FPGA, and the rate of

undecision on PC simulation.

Chapter 3

In Chapter 3, the initial interval was improved. It was indicated the possibility that

the approximation accuracy is not satisfied only by the initial interval in Chapter 2.

While the interval was narrowed adoptively in Chapter 2, this chapter improved the

interval at a time. As a result, the narrowed interval without the refinement process

41

42 CHAPTER 5. CONCLUSIONS

could be achieved under certain conditions. This method was evaluated with the

circuit areas on FPGA.

Chapter 4

In Chapter 4, it was shown that the values in LUT for the approximation of expo-

nential function could be scaled under certain conditions. As a result, bit length of

the LUT could be reduced. The significance of this proposal was confirmed with

the EM algorithm for GMM parameter estimation.

5.2 Open Problems

There remain some problems for the proposed approaches.

First, this study will be applied other models such as mixture of exponential

families. For example, hidden Markov model (HMM) also involves the computation

of the exponential function. Therefore, it is desired the evaluation of other models.

Second is the LUT size in the narrowed initial interval. The LUT size will be too

large if the number of bit length is large. For the LUT size problem, the idea of LUT

separation method, such as Half-square multiplier will be helpful technique[23].

Finally, the quadratic form in GMM is not reduced enough the computational

complexity. Takahashi, et al. proposed reduced adder graph algorithm for the

quadratic form in GMM [24]. It is indicated the possibility that the method can

be reduce the areas on FPGA. This method should be evaluated in various situation.

Appendix A: Derivation of Eq. (2.15)

The following relation is used for deriving Eq (2.15):

1 − β =
(

∑L
i=1 2−i + 2−L

)

− β

=
(

∑L
i=1 2−i − β

)

+ 2−L

=
∑L

i=1

(

1 − β[i]
)

2−i + 2−L

=
∑L

i=1 β̄
[i]2−i + 2−L (5.1)

43

List of Figures

1.1 Organization . 3

2.1 An example of GMM-based classification. 6

2.2 Relation of the inequality in Eq. (2.8). 9

2.3 Case that the interval is used for classification. 9

2.4 Case that the interval computation is insufficient. 10

2.5 Examples of refinement effect. 13

2.6 Initial decision results in Claire. 16

2.7 Initial decision results in Table tennis, where the white, black and

gray region express the uniform, non-uniform and undecided region. 16

2.8 Undecision rate for each refinement stage in Claire, where N0 =

N1 = 2. 17

2.9 Block diagrams of GMM-based classifiers. 19

2.10 Block diagrams of Initial decision and refinement process. 20

2.11 Relation between the number of LUTs/FFs and the number of re-

finement. 22

3.1 An example of intervals with undesirable GMMs. 24

3.2 Relation between the true value (left-hand side) and round-down

value (right-hand side). Round-down value becomes 0.5. 26

3.3 Relation between the true value (left-hand side) and round-up value

(right-hand side). Round-up value becomes 0.75. 26

3.4 Original interval calculation classifier. 28

3.5 Proposed interval calculation classifier. 28

4.1 Simulation results of MAE obtained with µ1 = 5.0 and Σ1 = 0.2. . . 37

4.2 Simulation results of MAE obtained with µ1 = 1.0 and Σ1 = 2.0. . . 38

4.3 The results of computational time. 39

45

List of Tables

2.1 Values of T [i] and T [i]−1. 12

2.2 Average computational time per feature vector for evaluating

Eq.(2.4) on DM6437 EVM board. 18

2.3 Computational time estimation by place-and-route timing report. . . 21

2.4 Area estimation by map report. 21

3.1 Results of logic synthesis for 32-bit implementation. 29

3.2 Results of logic synthesis for 64-bit implementation. 29

3.3 Results of throughput and clock latency for 32-bit implementation. . 29

3.4 Results of throughput and clock latency for 64-bit implementation. . 29

4.1 Values of the LUT. 34

4.2 Values of the scaled LUT. 35

4.3 Parameters of a mixture Gaussian distribution for generating normal

random numbers. 36

4.4 Initial values used in the EM algorithm. 36

47

Bibliography

[1] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for

real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on., Vol. 2, pp. 246–252, 1999.

[2] Z. Zivkovic. Improved adaptive gaussian mixture model for background sub-

traction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th

International Conference on, Vol. 2, pp. 28 – 31, 2004.

[3] S.L. Phung, A. Bouzerdoum, and D. Chai. Skin segmentation using color

pixel classification: analysis and comparison. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, Vol. 27, No. 1, pp. 148 –154, 2005.

[4] R. Yagi, T. Kajimoto, and T. Nishitani. GMM foreground segmentation pro-

cessor based on address free pixel streams. In Acoustics, Speech and Sig-

nal Processing (ICASSP), 2012 IEEE International Conference on, pp. 1653–

1656, 2012.

[5] S.J.D. Prince. Computer Vision: Models Learning and Inference. Cambridge

University Press, 2012.

[6] Yu-Min Zeng, Zhen yang Wu, T. Falk, and W.-Y. Chan. Robust GMM based

gender classification using pitch and RASTA-PLP parameters of speech. In

Machine Learning and Cybernetics, 2006 International Conference on, pp.

3376 –3379, 2006.

[7] D.A. Reynolds and R.C. Rose. Robust text-independent speaker identification

using gaussian mixture speaker models. Speech and Audio Processing, IEEE

Transactions on, Vol. 3, No. 1, pp. 72 –83, 1995.

[8] W.M. Campbell, D.E. Sturim, and D.A. Reynolds. Support vector machines

using gmm supervectors for speaker verification. Signal Processing Letters,

IEEE, Vol. 13, No. 5, pp. 308 – 311, 2006.

[9] M. Fujimoto and Y.A. Riki. Robust speech recognition in additive and chan-

nel noise environments using gmm and em algorithm. In Acoustics, Speech,

and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International

Conference on, Vol. 1, pp. I – 941–4 vol.1, 2004.

49

50 BIBLIOGRAPHY

[10] Minghua Shi, A. Bermak, S. Chandrasekaran, and A. Amira. An efficient

FPGA implementation of gaussian mixture models-based classifier using dis-

tributed arithmetic. In Electronics, Circuits and Systems, 2006. ICECS ’06.

13th IEEE International Conference on, pp. 1276 –1279, 2006.

[11] Dongbing Gu. Distributed EM algorithm for gaussian mixtures in sensor net-

works. Neural Networks, IEEE Transactions on, Vol. 19, No. 7, pp. 1154–

1166, 2008.

[12] P. Gupta and P.R. Kumar. The capacity of wireless networks. Information

Theory, IEEE Transactions on, Vol. 46, No. 2, pp. 388–404, 2000.

[13] A.K. Jain, R.P.W. Duin, and Jianchang Mao. Statistical pattern recognition:

a review. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

Vol. 22, No. 1, pp. 4 –37, 2000.

[14] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,

2006.

[15] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes: The Art of Scientific Computing, 3rd Ed. Cambridge

Univ. Pr., 2007.

[16] Minghua Shi and A. Bermak. An efficient digital vlsi implementation of gaus-

sian mixture models-based classifier. Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, Vol. 14, No. 9, pp. 962–974, Sept.

[17] A. P. Dempster, N. M Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of The Royal Statistical Society,

Series B, Vol. 39, pp. 1–22.

[18] Simone Fiori. Hybrid independent component analysis by adaptive lut activa-

tion function neurons. Neural Networks, Vol. 15, No. 1, pp. 85 – 94, 2002.

[19] S. Fiori. Generation of pseudorandom numbers with arbitrary distribution

by learnable look-up-table-type neural networks. In Neural Networks, 2008.

IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE

International Joint Conference on, pp. 1787 –1792, June 2008.

[20] Simone Fiori. Fast statistical regression in presence of a dominant independent

variable. Neural Computing and Applications, pp. 1–12, 2012. In press.

[21] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally

equidistributed uniform pseudorandom number generator. Trans. on Modeling

and Computer Simulation, Vol. 8, No. 1, pp. 3–30, 1998.

[22] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal

deviates. The Annals of Mathematical Statistics, Vol. 29, No. 2, pp. 610–611,

1958.

BIBLIOGRAPHY 51

[23] Uwe Mayer-Baese. Digital Signal Processing with Field Programmable Gate

Arrays, 3rd Ed. Springer, 2010.

[24] Mitsuru Takahashi, Shogo Muramatsu, and Hisakazu Kikuchi. Area reduction

of quadratic form computation by rag algorithm for gaussian-mixture-model

classifiers. pp. 79–80, 2010. In Japanese.

Biography

Hidenori Watanabe received B.E. and M.E. degrees in electrical engineering from

Niigata University in 2008 and 2010, respectively. He is currently a Ph.D. candi-

date at Niigata University. His research interests are in digital signal processing.

Mr. Watanabe is a member of the Institute of Information, Electronics and Commu-

nication Engineers (IEICE) of Japan and a member of the Institute of Electrical and

Electronics Engineers, Inc. (IEEE) of USA.

Research Works

Academic Papers

1. Hidenori Watanabe and Shogo Muramatsu, ”Fast Algorithm and Efficient

Implementation of GMM-Based Pattern Classifiers,” Journal of Signal

Processing Systems, Vol 63, Issue 1, pp. 107-116, Apr. 2011.

2. Hidenori Watanabe and Shogo Muramatsu, ”Look-Up-Table-Based Expo-

nential Computation and Application to an EM Algorithm for GMM,”

IEICE Transactions on Fundamentals, accepted.

International Conferences

1. Shogo Muramatsu and Hidenori Watanabe, ”Fast Algorithm for GMM-

Based Pattern Classifier,” Proc. of 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP2009), pp.633-636, Apr.

2009.

2. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”MULTIPLI-

ERLESS REFINEMENT SCHEME FOR INTERVAL CALCULATION

OF GMM-BASED CLASSIFICATION,” Proc. on 2009 Asia-Pacific Sig-

nal and Information Processing Association Annual Summit and Conference

(APSIPA ASC 2009), pp. 282-285, Oct. 2009.

3. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”Interval

Calculation of Em Algorithm for GMM Parameter Estimation,” Proc. on

2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010),

pp. 2686-2689, May. 2010.

53

54 BIBLIOGRAPHY

4. Hidenori Watanabe, Yuji Kikuchi, Shogo Muramatsu, Toshiro Oitate,

Mitsuyoshi Murata and Takamasa Suzuki, ”Statistical Edge Detector

with GMM Classifier,” 26th International Technical Conference on Cir-

cuits/Systems, Computers and Communications (ITC-CSCC2011), pp. 611-

614, Jun. 2011.

Domestic Conferences

1. Shogo Muramatsu, Tsutomu, Watanabe and Hidenori Watanabe, ”Efficient

Classification for Gaussian Mixture Models with Interval Calculation,”

IEICE Technical Report 107(475), pp. 55-60, Jan. 2008. (In Japanese.)

2. Ryunosuke Takeda, Shogo Muramatsu, Hidenori Watanabe and Hisakazu

Kikuchi, ”An Efficient Classification Module Based on Gaussian Mix-

ture Models with Interval Calculation,” IEICE General Conference 2008,

p. 110, Mar. 2008. (In Japanese.)

3. Ryunosuke Takeda, Shogo Muramatsu, Yuichiro Takahashi,

Hidenori Watanabe and Hisakazu Kikuchi, ”An LSI Architecture of

Classification Module for Gaussian Mixture Models with Interval

Computations,” The 21st Workshop on Circuits and Systems in Karuizawa,

pp. 167-170, Apr. 2008. (In Japanese.)

4. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”Implemen-

tation of Classification Circuit for Gaussian Mixture Models with Inter-

val Calculation,” Proceedings of 10th DSPS Educators Conference, pp. 80-

81, Sep. 2008. (In Japanese.)

5. Takahiro Sato, Shogo Muramatsu, Hidenori Watanabe and Hisakazu Kikuchi,

”Interval Calculation with Fixed Point Arithmetic for Classification of

Gaussian Mixture Models,” IEICE Society Conference 2008, p. 63, Sep.

2008. (In Japanese.)

6. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”Improve-

ment ofDynamic Range for Interval Calculation Classifier of Gaussian

Mixture Models,” 2008 Convention Record, The Shin-Etsu Chapter of The

IEICE, p. 28, Sep. 2008. (In Japanese.)

7. Hidenori Watanabe and Shogo Muramatsu, ”DSP/FPGA Implementation

of Gaussian-Mixture-Model-based Classifier with Interval Calculation,”

The 22nd Workshop on Circuits and Systems in Karuizawa, pp. 392-397, Apr.

2009. (In Japanese.)

8. Takahiro Sato, Shogo Muramatsu, Hidenori Watanabe and Hisakazu Kikuchi,

”Performance Evaluation of Interval Calculation with Fixed Point Arith-

metic,” IEICE Society Conference 2009, p. 71, Sep. 2009. (In Japanese.)

BIBLIOGRAPHY 55

9. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”GMM-

based Classification with Interval Calculation using Multiplierless Re-

finemt Scheme,” IEICE Society Conference 2009, p. 72, Sep. 2009. (In

Japanese.)

10. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi, ”EM Algo-

rithm Based on Interval Calculation for GMM,” 24th IEICE Signal Pro-

cessing Symp., pp. 203-208, Nov. 2009. (In Japanese.)

11. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi ”Fast HOG

with Approximation of Gradient Intensity and Square of Histogram,”

The 23rd Workshop on Circuits and Systems in Karuizawa, pp. 131-136, Apr.

2010. (In Japanese.)

12. Hidenori Watanabe, Shogo Muramatsu and Hisakazu Kikuchi ”Adaboost

with Interval Calculation based GMM Classifier,” 25th IEICE Signal Pro-

cessing Symp., pp. 459-462, Nov. 2010. (In Japanese.)

13. Hidenori Watanabe, Shogo Muramatsu, Hisakazu Kikuchi and Shigenobu

Sasaki, ”Error Correcting Output Code through GMM-based Classifier

with Interval Calculation,” 26th IEICE Signal Processing Symp., pp. 545-

549, Nov. 2011. (In Japanese.)

Patents

1. Shogo Muramatsu and Hidenori Watanabe, ”Identification Device, Identifi-

cation Method, and Identification Processing Program,” Japan Patent No.

5112454 (U.S. Patent No. 8321368), 27 Nov. 2012.

