425.45 Sans

二重フィードバック型光波長走査干渉法による 波長単位目盛の生成とナノ計測への応用

(課題番号 16560033)

平成16年度~平成17年度 科学研究費補助金(基盤研究(C)) 研 究 成 果 報 告 書

平成18年3月

研究代表者 佐々木 修 己 (新潟大学自然科学系 工学部)

はしがき

この報告書は、平成16年度~平成17年度の文部科学省科学研究費補助金、 基盤研究(C)(2)、課題番号16560033、研究課題「二重フィードバック型光波長走査干渉法による波長単位目盛の生成とナノ計測への応用」の研究 成果をまとめたものである。

研究課題 二重フィードバック型光波長走査干渉法による波長単位目盛の

生成とナノ計測への応用

課題番号 16560033

研究種目名 基盤研究(C)(2)

研究期間 平成16年度~平成17年度

研究機関 新潟大学工学部

研究代表者 佐々木 修己 新潟大学自然科学系(工学部) 教授

研究分担者 鈴木 孝昌 新潟大学自然科学系(工学部) 助教授

研究経費 平成16年度 2300千円

平成17年度 1300千円

研究発表

- 1. O. Sasaki, K. Akiyama, and T. Suzuki, "Sinusoidal-wavelength scanning interferometer with double feedback control for real-time distance measurement," Applied Optics 41 (19), pp.3906-3910 (2002).
- 2. O. Sasaki, "Sinusoidal wavelength-scanning interferometer using a liquid crystal wave filter and double feedback control for real-time distance measurement," Proc. of international conference on laser applications and optical metrology, New Delhi India, pp.88-94 (2003).
- 3. O. Sasaki, K. Honma, and T. Suzuki, "Real-time measurement of

one-dimensional step profile with a sinusoidal wavelength-scanning interferometer using double feedback control," Optical Engineering 43 (6), pp. 1329-1333 (2004).

研究成果の概要

1. 2重フィードバック制御系の特性

2重フィードバック制御系における位相制御は高速性が要求されるため、 比例ゲインが必要であるが、波長走査振幅については積分ゲインが重要であ ることが確認された。

2. 液晶ファブリ・ペロ干渉 (LC-FPI) 素子の特性

波長走査光源の光源は中心波長 840nm、発振光スペクトル幅約 24nm のスーパールミネッセントダイオード(SLD)であった。正弦波状に波長走査を行うため用いた LC-FPI 素子の動特性を調べたところ、以下のことが明らかにされた。温度特性を有するため、温度制御を行う必要がある。また、実験中において、印加電圧に対する透過波長が変化することがあるので、光スペアナで透過波長を観察し、印加電圧を調整することが望ましい。動作周波数は 200Hz 程度まで可能である。波長走査分解能は 0.008nm 程度である。

3. 波長単位目盛りの生成

約1波長の光路差変化をマイクロメータで与え、位相ロックのフィードバック制御を用いることにより、正確に1波長の変位を生じさせた。この変位によって、変調振幅のフィードバック制御の安定点を1つずつ動かし、各安定点におけるLC-FPIの印加電圧を求めた。この印加電圧と波長走査幅の関係を、干渉信号を計算機処理することから求め、各安定点における光路差が波長の何倍であるかを得た。

4. 測定範囲の拡大

波長走査分解能 0.008nm であることより、変調振幅 $Z=\pi$ のロックで $200\,\mu$ m 程度までの光路差を測定することが可能である。更に測定範囲の拡大するために、フィードバック信号の極性を逆にすることにより $Z=2\pi$ の値でロックするようにでき、その結果、 $300\,\mu$ m 程度まで測定範囲を伸ばすことができた。この範囲において 8nm 以下の測定誤差であることが明らかにされた。

5. 音響光学波長フィルタによる波長走査光源の構成

波長フィルタは音響光学可変波長フィルタ(AOTF)を用いた。AOTF には RF ドライバーの出力である 80MHz 程度の RF 正弦波信号が印加される。RF ドライバーの入力電圧によって出力の RF 正弦波信号の周波数が変化する。従って、RF ドライバーの入力電圧を波長走査周波数の正弦波信号とすれば、波長は正弦波状に走査される。しかし、RF ドライバーの入力電圧に対して正確かつ安定に出力の RF 信号の周波数が変化しないことが判明したため、RF ドライバーの出力の RF 信号をFM復調することによって得られる、波長走査周波数の正弦波信号の振幅を測定することによって、波長走査振幅を検出した。すなわち、FM復調信号の振幅を、波長走査振幅のフィードバック制御によって得られる変調振幅の安定点の値とすることによって、時間的に変化しない安定点を得ることができた。

6. CCDイメージセンサを用いる干渉計測装置の構成と1次元段差形状測 定

次元段差形状の実時間測定を可能とする干渉計測装置を構築した。すなわち、1 次元 CCD イメージセンサを検出器とし、ある1 つの画素からの検出信号だけを取り出し、1 つの測定点に対しフィードバック制御を行い、光路差を求めた。検出画素を0.04 秒ごとに移動することによって、1 7 個の測定点について、1 μ m および20 μ m の段差幅をもつ表面形状を4 μ m 以下の誤差で実時間測定を行った。

7. ナノ距離計測への応用

距離測定を行う構成での本干渉計測装置によって、微細加工を行う際に対象

物を取り付ける移動ステージの位置測定を行った。測定範囲約 40 μm から 150 μm の位置において、測定誤差 4nm 以下の高分解能で位置検出センサとして用いられることが明らかになった。

8. 今後の研究課題

マイクロ・ナノマシニング装置に組み込むために、測定対象への光の照射、測定対象からの反射光の取り込みを光ファイバを用いて行なう。このための光学系構成を検討し、生産現場で容易に使用できる1つの反射点に対する位置検出センサを構築する。この光ファイバを用いる干渉計測装置について、実際の3次元超微細加工あるいは、他のナノ計測への応用を探る

研究成果の詳細

内容の構成は、以下の目次のようである。

第1章 はじめに

第2章 正弦波状波長走査(SWS)干渉計

- 2-1 波長走査干渉法
- 2-2 スーパールミネッセントダイオード(SLD)
- 2-3 液晶波長可変フィルター(WF)
- 2-4 正弦波状波長走査(SWS)光源

第3章 干渉信号処理系

- 3-1 全体の構成
- 3-2 信号処理回路(SPC)の構成
- 3-3 FC1、FC2 の構成
- 3-4 A, の生成回路 FSG1 の構成

- 3-5 A。の生成回路 FSG2 の構成
- 3-6 VCA の構成

第4章 2重フィードバック制御による光路差の測定

- 4-1 フィードバック制御によるフェーズロック
- 4-2 $L_z と L_\alpha$ の関係
- 4-3 フィードバック制御による L2の生成
- 4-4 V_bとbの関係
- 4-5 LzとLaの組み合わせ
- 4-6 測定範囲の拡大

第5章 実験結果

- 5-1 $Z_n = \pi$ による安定点の測定
- 5-2 V, とbの関係
- 5-3 V_bから L_zを計測
- 5-4 安定点の拡大
- 5-5 距離計測

第6章 音響光学可変波長フィルターを用いる干渉計構成

- 6-1 音響光学可変波長フィルター(AOTF)
- 6-2 正弦波状波長走査(SWS)光源

第7章 音響光学可変波長フィルターを用いた実験結果

- 7-1 Z_k=πによる安定点の測定
- 7-2 V_{b2} と b の関係
- 7-3 V₁₀からL₁の測定
- 7-4 $Z_b=2\pi$ による安定点の拡大
- 7-5 距離計測

第8章 実時間段差形状計測の干渉計構成

- 8-1 波長走査光源の構成方法
- 8-2 干渉信号

- 8-3 2重フィードバック制御による測定原理
- 8-4 CCDによる干渉信号検出
- 8-5 A₁の生成回路の構成
- 8-6 A₂の生成回路の構成
- 8-7 V,の安定点の測定

第9章 実時間段差形状計測の結果

- 9-1 実験装置
- 9-2 CCD による測定条件の決定
- 9-3 段差幅 1 μm の段差形状測定結果
- 9-4 段差幅 20µm の段差形状測定結果

第1章 はじめに

単一の光波長を用いる通常のレーザ干渉計では、光の伝搬距離を干渉により 0 から 2πの位相変化として検出するため光波長以上の光路差変化を測定することはできない。光波長以上の光路差を測定する干渉法として、複数の光波長を用いる多波長干渉法がある。

本研究では、多波長干渉法の1つである波長走査干渉計において、光波長を時間的に正弦波状に走査する正弦波状波長走査(SWS)干渉計を用いる。正弦波状の波長走査であるため、容易かつ正確に波長走査幅を制御することができる。正弦波状波長走査によって生じる干渉信号の位相変調振幅 Z_b は光路差と波長走査幅 2b に比例する。従って、 Z_b を検出することで波長以上の光路差の値 L_z が得られる。この時、測定感度は波長走査幅に比例するため、発光スペクトル幅の広いスーパールミネッセント・ダイオード(SLD)を用い波長走査幅の大きい光源を構成する。また、従来の位相である α から波長以下の光路差の値 L_α が求まり、その測定精度は数 10nm である。以上の 2 つの光路差を組み合わせることにより波長以上の光路差を高精度で得ることができる。

正弦波状波長走査干渉法で生じるこれらの Z_b と α の検出を電子回路による信号処理で行い、実時間で光路差を測定することを目的とする。すなわち、電子回路によって干渉信号を処理し、 $\cos\alpha$ あるいは $\sin\alpha$ の信号を取り出し、フィードバック制御により $\alpha=3\pi/2$ あるいは $\alpha=2\pi$ と一定値となるように参照鏡を圧電素子で変位させる。圧電素子への印加電圧から 1 波長の範囲で光路差が求まる。更に、 $\alpha=3\pi/2$ あるいは $\alpha=2\pi$ において $\sin Z_b$ の信号を取り出し、 Z_b が一定値 π になるように b の値をフィードバック制御により変化させる。この時の b の値は離散的な値となり、b の値は 1 波長ずつ増加する光路差と対応する。従って、b の値から波長単位の光路差変化、位相 α から波長以下の光路差変化を求めることができる。以上の 2 つの光路差変化を組み合わせることにより実時間で波長以上の光路差を高精度で測定することができる。また、 L_z が大きくなった場合、b のフィードバック制御は $Z_b=\pi$ をロック点とせずに $Z_b=2\pi$ とすれば、波長走査の分解能 Δb が軽減され、測定範囲の上限を大きくすることができる。

以上の新しく提案された二重フィードバック型光波長走査干渉法によって 以下の干渉計を構成し、それぞれの計測を行った。波長走査デバイスとしては、 最初に、液晶ファブリーペロ干渉素子による波長可変フィルタを使用し、波長 走査を行った結果、Δb=0.006nm が得られ、約 90μm から 200μm の範囲において 距離測定を行うことができた。また、 $Z_b=2\pi$ の安定状態を用いると $290\mu m$ まで測定範囲を拡大できた。測定誤差は L_α の時間的変動により生じ、約 8nm 以下であった。

次に、波長走査デバイスとして音響光学可変波長フィルターを用いた。この場合についても、同様な計測が行えた。この場合、液晶ファブリーペロ干渉素子の場合よりも、時間的に安定した波長走査が行えた。

最後に干渉信号の検出に1次元CCDイメージセンサを用い、CCDの1つの画像による検出点に対して、同様な2重のフィードバック制御の信号処理を行うことにより、1次元の段差形状を実時間で測定することができた。

参考文献

- O.Sasaki, N.Murata, and T.Suzuki, "Sinusoidal wavelength-scanning interferometer with a superluminescent diode for step-profile measurement," Appl. Opt. 39, 4589-4592 (2000).
- 2. T.Suzuki, O.Sasaki, T.Maruyama, "Phase-locked laser diode interferometry for surface profile measurement," Appl. Opt. 28, 4407-4410 (1989).
- O.Sasaki, K.Akiyama, and T.Suzuki, "Sinusoidal-wavelength-scanning interferometer with double feedback control for real-time distance measurement," Appl. Opt. 41, 3906-3910 (2002).
- M.Kinoshita, M.Takeda, H.Yago, Y.Watanabe, and T.Kurokawa, "Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device," Appl. Opt. 38, 7063-7068 (1999).
- O.Sasaki, T.Yoshida, and T.Suzuki, "Double sinusoidal phase-modulating laser diode interferometer for distance measurement," Appl. Opt. 30, 3617-3621 (1991).
- 6. 佐々木修己、鈴木孝昌,「正弦波位相変調法におけるフィードバック干渉計」、光技術コンタクト,2001 年 8 号,pp.33-41.
- 7. 佐々木修己,「正弦波状波長走査干渉法による高分解能広領域計測」、光技 術コンタクト, 2003 年 7 号, pp.33-39.
- 8. 佐々木修己、鈴木孝昌、「干渉計におけるフィードバック制御を用いたロバストなセンシング技術」、精密工学会誌,2003 年,Vol.69, No.10,pp.1379-1382.

第2章 正弦波状波長走査(SWS)干渉計

2-1 波長走査干渉法

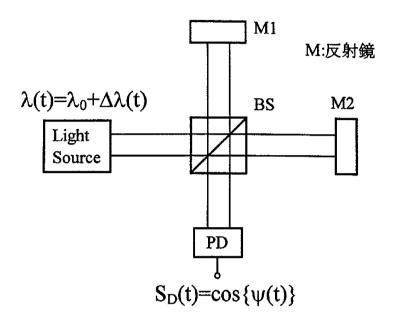


図 2-1 波長走査干渉法

図 2-1 に波長走査干渉法の構成を示す。光源からの光がビームスプリッター (BS)で M1 と M2 の方向にそれぞれ分けられ、それぞれの鏡で反射された 2 つの光が再び BS で 1 つになり、干渉信号を生成する。そして、その干渉信号をフォトダイオード(PD)で検出する。光源の波長は、中心波長を λ_0 とすると、 $\lambda(t)=\lambda_0+\Delta\lambda(t)=$ で時間的に変化させる。すると、光路差 L の干渉計によって得られる干渉信号 $S_D(t)$ は、 $S_D(t)=\cos\{\psi(t)\}$ となる。このとき、 $S_D(t)$ の位相変化 $\psi(t)$ は、

$$\psi(t) = \left(\frac{2\pi}{\lambda(t)}\right) L \tag{2-1}$$

で表され、Δλ(t)<<λ。のとき

$$\psi(t) = -2\pi \left(\frac{\Delta\lambda(t)}{\lambda_0^2}\right) L + \left(\frac{2\pi}{\lambda_0}\right) L$$
 (2-2)

である。

式(2-2)において、第1項は位相変調による項であり、これより光波長以上の 光路差Lが得られる。第2項は従来の位相 α であり、これより光波長以下の光 路差Lが得られる。波長以上の光路差を測定する場合、式(2-2)から、その測定 感度は $\Delta\lambda(t)$ の変化幅に比例する。よって、 $\Delta\lambda(t)$ の変化幅の大きな光源が望 まれる。 そこで、本研究では、発振光スペクトル幅の広いスーパールミネッ セントレーザーダイオード(SLD)を用いた波長走査幅の大きな光源を構成する。

2-2 スーパールミネッセントダイオード(SLD)

スーパールミネッセントダイオード(SLD)は、発振光スペクトル幅が広いダイオードである。その様子を図 2-2 に示す。

この SLD の中心波長λoは、844.2[nm]であり、半値幅は、25.1[nm]である。

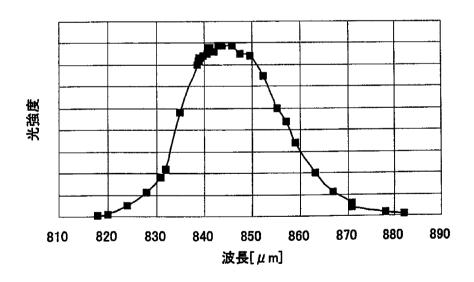


図 2-2 SLD の光発振スペクトル

2-3 液晶波長可変フィルター(WF)

波長走査を行うために、液晶波長可変フィルター(WF)を使った。これは、印加する電圧によって取り出される波長が変化するフィルターである。図 2-3 にその構成を示す。

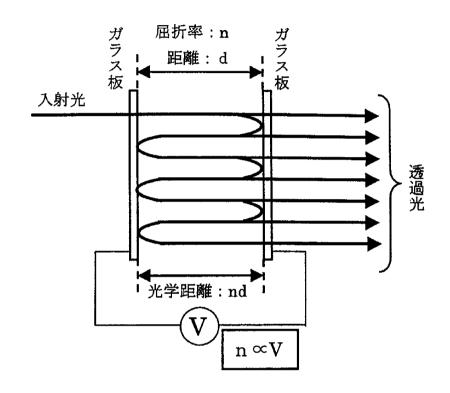


図 2-3 WF の構成

入射光が、重なったガラス板の中を反射、透過しながら通過していき、それが 1 つの透過光となる。このとき、WF に電圧を印加することによって、屈折率 n を変化させることができる。また、印加電圧と屈折率 n は比例関係にある。 WF が通過させる波長は、1/nd に比例するため、印加する電圧によって取り出される波長が変化することになる。波長フィルター特性を図 2-4 下に示す。実験では、〇を中心波長とした。

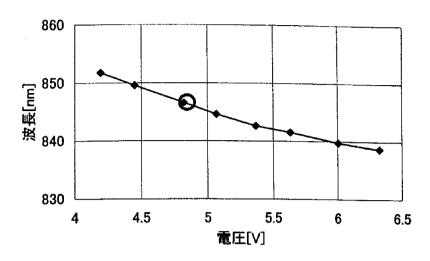


図 2-4 波長フィルターの特性

WF に電圧を印加することにより、特定の波長が取り出される。このとき、透過光は、波長走査された光と、一定波長の光の2つが取り出されてしまう。WF によって波長走査された光はP 偏光成分なので、その光のみを取り出すために、偏光ビームスプリッターを使う。

2-4 正弦波状波長走查(SWS)光源

図 2-5 に正弦波状波長走査(SWS)光源の構成を示す。SLD からの光をレンズ 1(L1)で平行光にする。そして、その平行光をレンズ 2(L2)で平行光のビーム径を小さくし、液晶波長可変フィルター(WF)に入射し、その後レンズ 3(L3)で平行光に戻している。そして、偏光ビームスプリッター(PBS)を通して、光源を構成している。ビーム径を小さくするのは、WF の特性が一様でないため、その影響を小さくするためである。

WFには正弦波状の信号が印加され、これにより波長が正弦波状になっている。透過光の波長は λ_0 、 V_b に比例する波長走査振幅b、変調周波数 f_b で波長走査されている。WFにより、特定の波長成分が取り出される。PBSにより余分な波長成分である一定波長の光が取り除かれ、波長走査された波長の光のみの平行光となり、これが干渉計への入射光となる。

SWS 光源によって波長は、

 $\lambda(t) = \lambda_0 + b\cos(\omega_b t) = \lambda_0 + \Delta \lambda$

(2-3)

に走査されている。

レンズ L1、L2、L3 の焦点距離はそれぞれ L1=9[mm]、L2=100[mm]、L3=50[mm] である。L2 と L3 によって、ビーム径は元の平行光の大きさの 1/2 倍になり、光強度は $(2/1)^2$ =4 倍になる

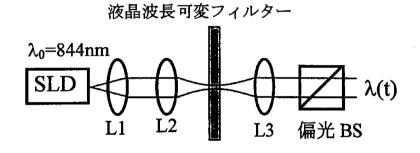


図 2-5 正弦波状波長走査 SLD 光源の構成

第3章 干渉信号処理系

3-1 全体の構成

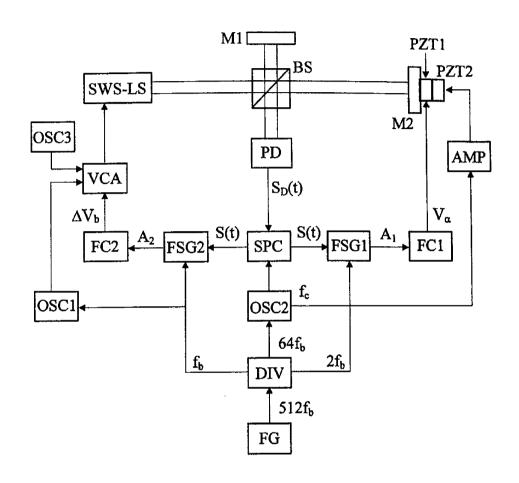


図 3-1 全体の構成図

図 3-1 に全体の信号処理系の構成を示す。SWS-LS は SWS 光源、FG はファンクション・ジェネレーター、OSC は発振器、DIV は分周器を表している。OSC1、OSC2、OSC3 はそれぞれ f_b 、 f_c =64 f_b 、20k[Hz]の正弦波を出力している。

圧電素子 PZT2 で参照ミラー(M2)を f_c =64 f_b [Hz]で正弦波振動させ、フォトダイオード(PD)で干渉信号 $S_D(t)$ を検出する。それを信号処理回路(SPC)で処理することにより、S(t)を生成する。

SWS 光源を用いて図 3-1 の干渉計を構成すると、得られる干渉信号は二重正弦波状波長走査より、

$$S_{D}(t) = A + B\cos\{Z_{c}\cos(\omega_{c}t) + Z_{b}\cos(\omega_{b}t) + \alpha\}$$
 (3-1)

で表される。()

上式で、A は直流分であり、A および B は定数である。また、 Z_c 、 Z_b は位相変調振幅、 α は従来の位相である。 Z_c を含む項は、圧電素子(PZT)を正弦波振動させることによって生じる項であり、

$$Z_{c} = \frac{4\pi a}{\lambda_{0}} \tag{3-2}$$

である。Z_bを含む項は、光源を正弦波状波長走査させることによって生じる項である。

次に、 $S_D(t)$ を信号処理回路(SPC)で信号処理し、式(3-3)で表される信号 S(t)を生成する。

$$S(t) = B\sin\{Z_b\cos(\omega_b t) + \alpha\}$$
 (3-3)

上式でそれぞれ、

$$Z_{b} = \frac{2\pi b}{\lambda_{0}^{2}} L , \qquad \alpha = \frac{2\pi}{\lambda} L$$
 (3-4)

である。これらを検出し光路差Lを求める。

取り出した S(t) からフィードバック信号発生回路 1 (FSGI)により、フィードバック信号 A_1 を作り出し、 A_1 =0 となるようにフィードバック信号制御回路 1 (FCI)により制御電圧 $\mathbb{C}V_{\alpha}$ を得る。この V_{α} を PZTI へ印加し、フィードバック制御を行う。すると、光路差 L を変化させ、L は波長の整数倍にロックされ、 A_1 =0 となる。

同様に、S(t) からフィードバック信号発生回路 2(FSG2)により、フィードバック信号 A_2 を作り出し、 A_2 =0 となるように FC2 により制御電圧 ΔV_b を得る。これを振幅制御回路(VCA)で処理し、制御電圧 $\mathbb{C}V_b$ が生成され、SWS

光源へのフィードバック制御を行う。すると、波長走査幅 b が変化し、 $A_2=0$ となる。このフィードバック制御によって、光路差は変化に対して 1 波長ごとに動くことになる。

 $\llbracket V_b \rrbracket$ を測定することで、波長以上の光路差が測定でき、 $\llbracket V_\alpha \rrbracket$ を測定することで波長以下の光路差を測定することができる。

3-2 信号処理回路(SPC)の構成

図 3-2 に信号処理回路(SPC)の構成を示す。

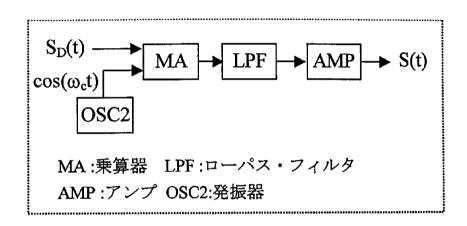


図 3-2 SPC の構成

得られる干渉信号 $S_D(t)$ は式(3-1)で表され、これをベッセル関数 J_n で展開すると、

$$S_D(t) = A + B\cos\left\{Z_c\cos(\omega_c t) + Z_b\cos(\omega_b t) + \alpha\right\}$$

$$= A + B\cos\left\{Z_b(\omega_b t) + \alpha\right\} \left\{J_0(Z_c) - 2J_2(Z_c)\cos(2\omega_c t) + \cdots\right\}$$

$$-B\sin\left\{Z_b(\omega_b t) + \alpha\right\} \left\{J_1(Z_c)\cos(\omega_c t) - 2J_3(Z_c)\cos(3\omega_c t) + \cdots\right\}$$
(3-5)

となる。これは、図3-3のような周波数分布になっている。

ここで、 $S_D(t)$ と $cos(\omega_c t)$ を掛け合わせ(ヘテロダイン)、 ω_c の周波数成分を 0

にシフトする。これを LPF に通すことにより、余分な周波数成分が除去され、式(3-6)で表される干渉信号 S(t)が得られる。

$$S(t) = -BJ_1(Z_c)\sin\{Z_b\cos(\omega_b t) + \alpha\} = C\sin\{Z_b\cos(\omega_b t) + \alpha\}$$
(3-6)

PZT2 で正弦波振動させたのは、ヘテロダインによって余分な直流分を取り除くためである。また、 ω_c の周波数 f_c は $64f_b[Hz]$ である。そこで、LPF のカットオフ周波数は $\frac{f_c}{10}$ [Hz]とした。

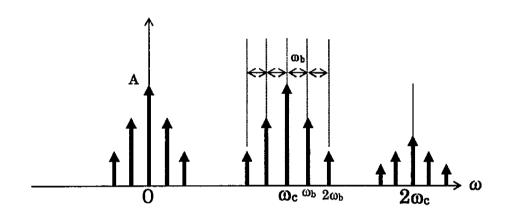


図 3-3 Sp(t)の周波数分布の様子

3-3 FC1、FC2 の構成

フィードバック信号制御回路である FC1 と FC2 は比例・積分制御で構成されている。その構成を図 3-4 に示す。

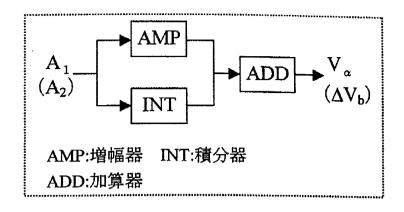


図 3-4 FC1、FC2 の構成

3-4 A₁の生成回路 FSG1 の構成

フィードバック信号発生回路 1(FSG1)の構成を図 3-5 に示す。

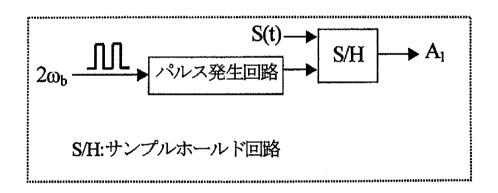


図 3-5 FSG 1 の構成

干渉信号 $S(t) = C\sin\{Z_b\cos(\omega_b t) + \alpha\}$ を $\cos(\omega_b t) = 0$ となる時間においてサンプルホールド回路(S/H)で S(t)をサンプリングする。すると、

 $A_1 = C\sin\alpha \tag{3-7}$

が得られる。この A_1 は A_1 = $Csin\alpha$ =0 となるように、つまり α = $2m\pi$ となるようにフィードバック制御される。

3-5 A_2 の生成回路 FSG2 の構成

フィードバック発生回路 2(FSG2)の構成を図 3-6 に示す。

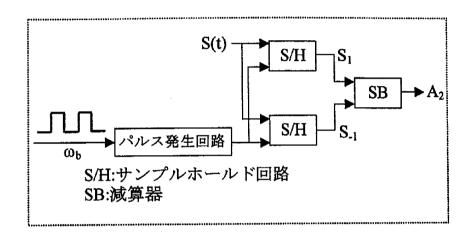


図 3-6 FSG2 の構成

 A_1 のフィードバック制御により、 $\alpha=2m\pi$ となっているので、このときの干渉信号 S(t) は、

$$S(t) = C\sin\{Z_b\cos(\omega_b t) + 2m\pi\} = C\sin\{Z_b\cos(\omega_b t)\}$$
 (3-8)

となる。ここで、 $\cos(\omega_b t)=1$ および、 $\cos(\omega_b t)=-1$ となる時間において S/H でサンプリングする。これより、

$$S_1 = C \sin Z_b$$
 , $S_{-1} = -C \sin Z_b$ (3-9)

が得られ、これが引き算器 SB によって、

$$A_2 = 2C\sin Z_b \tag{3-10}$$

が生成される。 $C=-BJ_1(Z_c)$ である。この A_2 は $A_2=0$ となるように、つまり $Z_b=\pi$ または、 $Z_b=2\pi$ となるようにフィードバック制御される。

3-6 VCA の構成

振幅制御回路 VCA の構成を図 3-7 に示す。

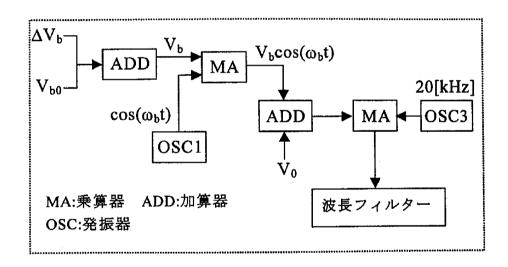


図 3-7 VCA の構成

制御電圧 V_b は FC2 により生成された ΔV_b と直流バイアス V_{b0} の和算によって作られ、 $\cos(\omega_b t)$ と掛け合わされることにより、 $V_b\cos(\omega_b t)$ が生成される。 さらに、 V_0 を加え、20[kHz]の正弦波に掛け合わされることにより、波長フィルターへの信号が生成される。 20[kHz]の正弦波は WF が動作するのに必要なので与えており、これを $V_d\cos(\omega_d t)$ とする。

VCA によって生成された信号は図 3-8 のようになる。図 3-7 より、この信号は、 $\{V_0+V_b\cos(\omega_bt)\}\cdot V_d\cos(\omega_dt)$ である。 $V_b\cos(\omega_bt)=0$ のときの信号を $V_0\cdot V_d\cos(\omega_dt)=V_f$ とする。この V_f によって中心波長 λ_0 は決められる。 $V_b\cos(\omega_bt)=(\Delta V_b+V_{b0})\cos(\omega_bt)$ は波長走査振幅 b に比例している。この V_b を測定して距離を計測する。

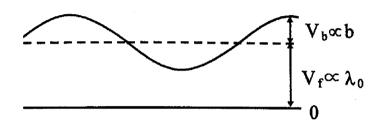


図 3-8 波長フィルターへの印加電圧

第4章 2重フィードバック制御による光路差の測定

4-1 フィードバック制御によるフェーズロック

被検面の位相 α の初期位相を、 $\alpha=(2\pi/\lambda_0)L$ とする。干渉信号 S(t)より得られるフィードバック信号 A_1 = $Csin\alpha$ をフィードバック制御系で制御電圧 V_α へ変換し、参照ミラーの変位を、取り付けた圧電素子(PZT)へ A_1 =0 となるようにフィードバックする。すると、図 4-1 に示すように、負帰還のかかる領域へ移動し安定する。このとき、制御電圧 V_α によって光路差が ΔL だけ変化するため、被検面の位相は、

$$\alpha_{L} = (\frac{2\pi}{\lambda_{0}})(L + \Delta L) = 2m\pi \quad (m=0.1.2\cdots)$$
 (4-1)

となり、 α_L の点、すなわち 2π の整数倍にロックされる。このロックされたときの光路差を L_Z とすると、

$$L_z = L + \Delta L = m\lambda_0$$
 (m=0.1.2···) (4-2)

となる。よって、光路差は波長 λ_0 の m 倍となり、離散的な値となる。実際の 光路差 L の測定は、

$$L = L_z - \Delta L = L_z + L_z = m\lambda_0 + L_z$$
 (4-3)

で表される。 $L_{\alpha}=-\Delta L$ である。

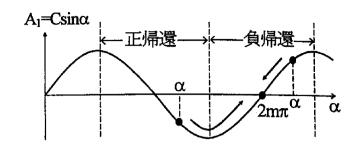


図 4-1 フェーズロックの原理

4-2 Lz と Laの関係

図 4-2 に L_Z と L_α の関係を示す。この図のように光路差 L のとき A_1 は Q の値をとる。ここで A_1 =0 となるようにフィードバック制御を行うと、P に移動する。また、P は光路差が L_Z であり、これより、 L_Z は 1 波長ごとの値しかとらない。 光路差 L は L_α と L_Z 、もしくは、 L_α と L_α がわかれば求めることができる。 ここで、 L_α は制御電圧 V_α によって与えられており、比例関係にあるため、

$$L_{\alpha} = \beta V_{\alpha} \tag{4-4}$$

が成り立つ(β は定数)。 β は以前のデータより β =83.37[nm/V]である。

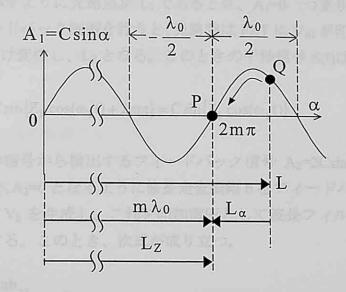


図 4-2 Lz と Laの関係

4-3 フィードバック制御による $L_{\mathbf{Z}}$ の生成

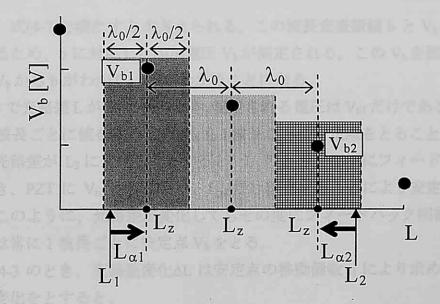


図 4-3 Lzの生成

図 4-3 に示すように光路差が L_1 であるとき、 A_1 =0 つまり α =2 $m\pi$ となるようにフィードバック制御を行うと、光路差は PZT に $V_{\alpha 1}$ が印加されることによって $L_{\alpha 1}$ だけ変位し、 L_Z となる。このときの干渉信号 S(t)は、

$$S(t) = C\sin\{Z_b\cos(\omega_b t) + 2m\pi\} = C\sin\{Z_b\cos(\omega_b t)\}$$
 (4-5)

となる。この信号から検出するフィードバック信号 A_2 =2 $CsinZ_b$ をフィードバック制御系で、 A_2 =0 となるように波長走査振幅b をフィードバック制御する。そのために、 V_b を生成し、これを印加電圧として波長フィルター(WF)にフィードバックする。このとき、次式が成り立つ。

$$Z_{b} = (\frac{2\pi b}{\lambda_{0}^{2}})L_{z} = \pi \tag{4-6}$$

Zbはπにロックされ、この式を変形すると、

$$L_z = \frac{\lambda_0^2}{2b} \tag{4-7}$$

となり、式(4-7)を満たす b が与えられる。この波長走査振幅 b と V_b は比例関係にあるため、b に対応した印加電圧 V_b が測定される。この V_b を測定することで、 V_b から b がわかり、 L_z がわかることになる。

図4-3 で光路差Lが L_1 にあるとき、測定される電圧は V_{b1} だけである。また、 L_2 は 1 波長ごとに値を取るため、 V_b も 1 波長ごとに安定点をとることになる。 次に、光路差が L_2 に変化したとすると、 L_1 のときと同様にフィードバック制御が働き、PZT に V_{o2} が印加され、 L_{o2} だけ移動することにより安定点 V_{b2} をとる。このように、光路差が変化してもその度にフィードバック制御が働き、光路差は常に 1 波長ごとに安定点 V_b をとる。

図 4-3 のとき、光路差変化ΔL は安定点の移動個数 n により求められる。 光路差変化をとすると、

$$\Delta L = L_2 - L_1 = n\lambda_0 + \beta(V_{\alpha 1} - V_{\alpha 2})$$
 (4-8)

となる。ここで、nは安定点の変化の幅である。これより、安定点を明らかに

しておけば、安定点の移動数により V_b から b を求めなくても光路差変化 ΔL がわかることになる。また、光路差 L_Z は式(4-7)からわかるので、 V_b と b の関係がわかれば V_b をb に変換でき、光路差 L_Z が V_b を測定することで測定できる。

4-4 V_bとbの関係

光路差 L_Z を求めるときに、 V_b と b の関係が必要となる。そこで、その関係を実験により明らかにする。実験装置の構成を下図 4-4 に示す。

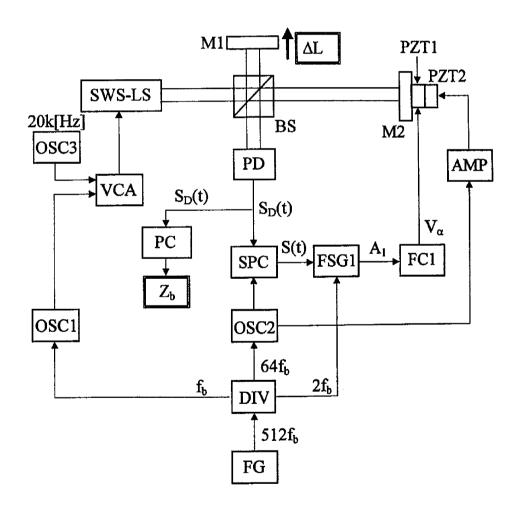


図 4-4 実験装置の構成

まず、SWS 光源への電圧 V_b を一定にして、 $A_I=0$ のフィードバック制御を行う。そして、得られる干渉信号 $S_D(t)$ をコンピュータ(PC)に取り込み、 Z_b を求める。次に、M1 を 1 波長だけ動かし同じように Z_b を求める。 $A_I=0$ のフィードバック制御により、M1 を動かしたときの光路差変化は 1 波長ごとになっている。これを繰り返し、 Z_b - Δ L 特性を求める。 Z_b は同じ点で数回測定する。コンピュータ内では、干渉信号 $S_D(t)$ を処理することにより、 Z_b を求めている。

こうした測定によって、1 つの V_b で 1 つの Z_b - ΔL 特性が得られる。 Z_b - ΔL 特性は次の式になる。

$$Z_{b} = \left(\frac{2\pi b}{\lambda_{0}^{2}}\right) \Delta L = \gamma \Delta L \tag{4-9}$$

ここで、 γ は Z_b - Δ L 特性の傾きであり、近似により求める。式(4-9)から、

$$b = \left(\frac{{\lambda_0}^2}{2\pi}\right)\gamma \tag{4-10}$$

となり、b と γ の関係がわかる。つまり、 Z_b - ΔL 特性によって得られた γ から bが求まる。こうして、1 つの V_b で 1 つの b がわかる。

同じ測定を、 V_b を変えて行う。それをまとめて V_b -b 特性を求める。 V_b -b 特性がわかれば、測定した V_b から b がわかり、光路差 L_Z がわかる。

4-5 LzとLaの組み合わせ

測定した V_b を b に変換し L_Z を求めた場合、 L_Z には誤差が含まれている。b から求めたものを L_{Zb} とする。 L_{Zb} の誤差を除去するために m を求める。まず、 V_b を測定し、式(4-7)より L_{Zb} を求める。求められた L_{Zb} から次式によって、はじめに m_c を算出する。

$$m_{c} = \frac{L_{Zb}}{\lambda_{0}} \tag{4-11}$$

ここで、本来 m_c は整数値をとるが L_{Zb} の測定誤差のため、 m_c は整数値を取らない。ここで、 m_c の整数値からのずれが 0.5 未満ならば四捨五入により正しい

mが求まる。求められたmから光路差Lは以下の式になる。

$$L = L_z + L_\alpha = m\lambda_0 + L_\alpha \tag{4-12}$$

以上より、 L_Z の測定誤差が除去でき、波長以上の光路差 L を L_α の測定誤差で求めることが出来る。

4-6 測定範囲の拡大

式(4-7)から、微小変化Δbに対する微小変化ΔLzは次式を満たす。

$$\Delta b = -\left(\frac{\lambda_0^2}{2L_z^2}\right) \Delta L_z \tag{4-13}$$

安定点がひとつだけ移動するときは ΔLz=λo であるので、このとき

$$\Delta b = -\left(\frac{\lambda_0^3}{2L_2^2}\right) \tag{4-14}$$

となる。

測定範囲の上限を $L_z=100[\mu m]$ とすると、 $\lambda_0=0.8[\mu m](\lambda_0^3=0.5[\mu m])$ で、 $\Delta b=0.025[nm]$ となる。 $L_z=200[\mu m]$ とすると、 $\Delta b=0.00625[nm]$ となり、 $L_z=1000[\mu m]$ とすると、 $\Delta b=0.00025[nm]$ となる。

すなわち、測定範囲の上限は、波長走査幅Δbで決まり、上限のLzの2乗に 反比例した分解能が要求される。測定範囲の下限はbの最大値で決まり、bに 比例する。 以上のことから、測定範囲を拡大する場合、波長走査の分解能Δb が重要である。

測定範囲拡大の方法として、 L_Z が大きくなったときに、bのフィードバック制御は $Z_b=\pi$ を動作点とせずに、 $Z_b=p\pi$ とする。pは正の整数である。このとき式(4-6)は

$$Z_{b} = \left(\frac{2\pi b}{\lambda_{0}^{2}}\right) L_{z} = p\pi \tag{4-15}$$

となり、 $b=p\lambda_0^2/2L_Z$ であるから、式(4-14)は

$$\Delta b = -\left(\frac{p\lambda_0^3}{2L_z^2}\right) \tag{4-16}$$

となる。この式から波長走査の分解能Δb が拡大され、測定範囲の拡大が成される。

このとき、 A_2 =0 とするために、図 4-5 に示すように Z_b = π にロックしているときは、負のフィードバック(負帰還)だったが、 Z_b = 2π にロックすると、このままでは正のフィードバック(正帰還)となってしまい、安定しない。それを改善するために、 A_2 の極性を反転させる。すると、図 4-5 が図 4-6 のようになり、 Z_b = 2π にロックしたときに負のフィードバックとなり安定する。

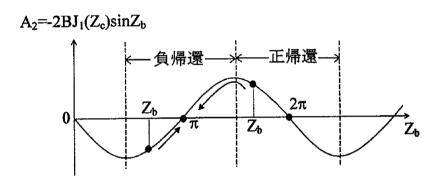


図 4-5 $Z_b=\pi$ のときのフィードバック

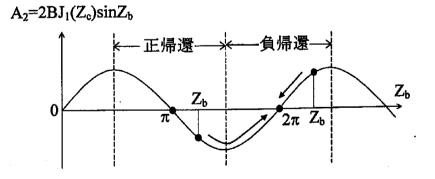


図 4-6 Z_b=2πのときのフィードバック

第5章 実験結果

5-1 **Ζ**_b=πによる安定点の測定

波長フィルターの中心波長は、 λ_0 =844.204[nm]とし、そのときの V_f は 4.3[V] 程度であった。また、 f_b =120[Hz]とした。安定点 V_b の測定をした。結果を図 5-1 に示す。光路差が大きくなるほど、安定点の番号 N が大きくなり、安定点の値の間隔が小さくなっている。

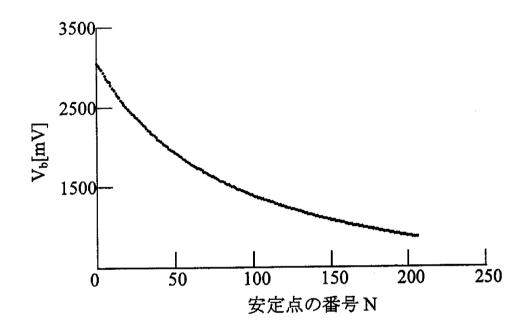


図 5-1 安定点の測定 (Z_b=π)

5-2 V_bとbの関係

 Z_b - Δ L 特性を求めた。 V_b =1000[mV]、1500[mV]、2000[mV]で実験した。結果は、それぞれ図 5-2、図 5-3、図 5-4 のようになった。

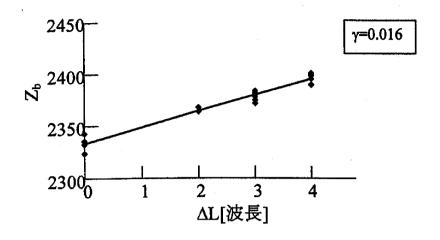


図 5-2 V_b=1000[mV]における Z_b-ΔL 特性

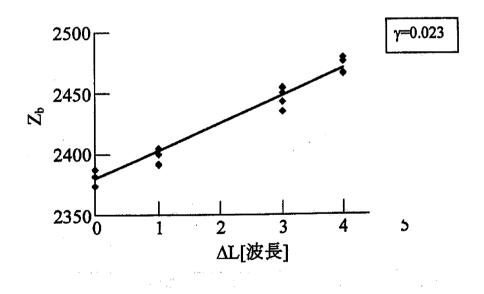


図 5-3 V_b=1500[mV]における Z_b-ΔL 特性

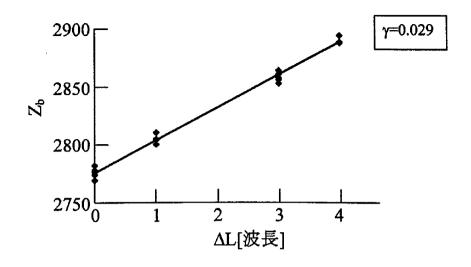


図 5-4 V_b=2000[mV]における Z_b-ΔL 特性

図 5-2、図 5-3、図 5-4 より得られた γ から式(4-10)より b を求め、 V_b -b 特性を得た。その結果を図 5-5 に示す。

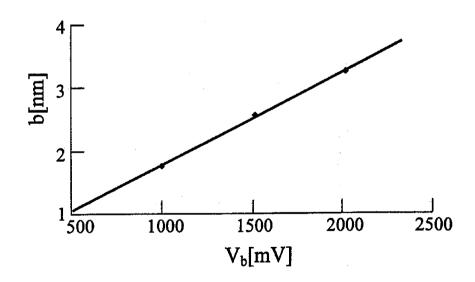


図 5-5 V_b-b 特性

図 5-5 より、 V_b-b 特性として次の関係が得られた。

$$b=1.47V_b+0.31$$
 (5-1)

5-3 V_bから L_zの測定

以下の流れで光路差Lzを計算する。

$$V_b \rightarrow b \rightarrow L_{Zb} \rightarrow m_c \rightarrow 四捨五入 \rightarrow m \rightarrow L_Z$$

以上によって求めた L_Z の表を下に示す。 m_c の値が整数値に近いことから正しく測定が行われているのがわかる。

 $V_b[mV]$ $L_{Zb}[\mu m]$ $L_{\rm Z}[\mu {\rm m}]$ b[nm] m m_c 2217 3.57 99.842 118.3 118 99.616 2198 3.54 100.630 119.2 119 100.460 120 101.304 2179 3.51 101.430 120.1 177 149.423 149,367 176.9 2.39 1412 1400 2.37 150.480 178.3 178 150.268 2.36 179 151.112 1391 151.326 179.3 236 199.231 1.79 199.202 236.0 1006 200.075 1.78 200.024 236.9 237 1001 237.9 238 200.920 1.77 200.853 996

表 5-1 V_bから L_Zを計算

次に、図 5-5 を使って、m の有効範囲を調べた。

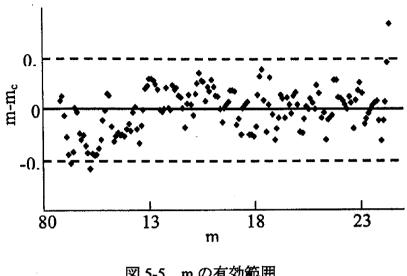


図 5-5 m の有効範囲

図 5-5 より、m=110 付近から m=240 付近が有効範囲となった。すなわち、 L_z =90[μ m]から L_z =200[μ m]程度である。表 5-2 に測可能範囲の V_b と m の対応 を示す。

表 5-2 V_bと m の対応(Z_b=π)

V _b [mV]	m	$V_b[mV]$	m	V _b [mV]	m	V _b [mV]	m	$V_b[mV]$	m
2512	105	1916	135	1528	165	1261	195	1066	225
2488	106	1900	136	1519	166	1255	196	1060	226
2465	107	1885	137	1509	167	1247	197	1053	227
2445	108	1873	138	1499	168	1239	198	1049	228
2423	109	1855	139	1490	169	1233	199	1044	229
2403	110	1840	140	1480	170	1226	200	1039	230
2379	111	1829	141	1470	171	1218	201	1033	231
2349	112	1814	142	1457	172	1209	202	1026	232
2323	113	1800	143	1448	173	1202	203	1021	233
2302	114	1785	144	1437	174	1196	204	1016	234
2281	115	1771	145	1430	175	1190	205	1011	235
2259	116	1756	146	1421	176	1183	206	1006	236
2238	117	1740	147	1412	177	1177	207	1001	237
2217	118	1730	148	1400	178	1170	208	996	238
2198	119	1718	149	1391	179	1163	209	990	239
2179	120	1704	150	1382	180	1158	210	984	240
2158	121	1690	151	1374	181	1151	211	980	241
2142	122	1680	152	1368	182	1143	212	976	242
2124	123	1669	153	1361	183	1137	213	973	243
2101	124	1658	154	1353	184	1129	214		
2080	125	1645	155	1342	185	1124	215		
2065	126	1633	156	1331	186	1118	216		
2050	127	1619	157	1325	187	1112	217	1	
2036	128	1609	158	1319	188	1108	218		
2019	129	1597	159	1308	189	1102	219		
2003	130	1587	160	1298	190	1095	220		
1986	131	1575	161	1291	191	1089	221		
1969	132	1563	162	1284	192	1083	222		
1952	133	1552	163	1278	193	1077	223	1	
1935	134	1540	164	1270	194	1071	224	<u></u>	

5-4 安定点の拡大

測定範囲を拡大するために、4-6 で述べた方法より $Z_b=2\pi$ でフィードバック制御を行った。そして、 $Z_b=\pi$ のときと同様に V_b を測定した。 $Z_b=\pi$ のときに、表 5-3 だったのが、 $Z_b=2\pi$ では、表 6.4-2 のようになった。

表 5-3 Z_b=πのときの安定点

V _b [mV]	b[nm]	L _{Zb} [μm]	m_{c}	m	$L_{Z}[\mu m]$
980	1.75	203.551	241.1	241	203.452
976	1.75	204.237	241.9	242	204.296
972	1.74	204.928	242.7	243	205.141

表 5-4 Z_b=2πのときの安定点

V _b [mV]	b[nm]	$L_{Zb}[\mu m]$	m _c	m	$L_Z[\mu m]$
2175	3.51	203.200	240.7	241	203.452
2165	3.49	204.055	241.7	242	204.296
2154	3.48	205.005	242.8	243	205.141
1523	2.55	279.610	331.2	331	279.430
1518	2.54	280.419	332.2	332	280.274
1513	2.53	281.232	333.1	333	281.119

2 つの表から $Z_b=2\pi$ のフィードバック制御の場合は、 $Z_b=\pi$ に比べて安定点の間隔 ΔV_b が拡大されているのがわかる。それは、b が拡大されているからである。

M の有効範囲は m=330 程度であり、測定範囲の上限は約 280[μ m]程度となった。 Z_b =2 π のときの V_b と m の対応を表 5-5 に示す。

表 5-5 V_bと m の対応(Z_b=2π)

$V_b[mV]$	m	$V_b[mV]$	m	$V_b[mV]$	m	V _b [mV]	m	V _b [mV]	m
2304	228	2070	252	1868	276	1705	300	1560	324
2294	229	2062	253	1860	277	1699	301	1555	325
2282	230	2053	254	1855	278	1692	302	1550	326
2270	231	2043	255	1848	279	1686	303	1546	327
2260	232	2035	256	1840	280	1679	304	1540	328
2251	233	2025	257	1833	281	1670	305	1533	329
2243	234	2017	258	1827	282	1664	306	1528	330
2235	235	2009	259	1820	283	1660	307	1523	331
2224	236	2000	260	1813	284	1655	308	1518	332
2214	237	1992	261	1805	285	1648	309	1513	333
2205	238	1983	262	1797	286	1642	310	1510	334
2196	239	1974	263	1789	287	1636	311	1503	335
2185	240	1963	264	1783	288	1628	312	1500	336
2175	241	1957	265	1776	289	1622	313	1495	337
2165	242	1949	266	1770	290	1617	314	1490	338
2154	243	1940	267	1762	291	1612	315		
2142	244	1934	268	1755	292	1606	316		
2133	245	1925	269	1748	293	1599	317		
2124	246	1916	270	1743	294	1593	318		
2114	247	1909	271	1738	295	1588	319		
2106	248	1899	272	1732	296	1584	320		
2096	249	1890	273	1723	297	1579	321		
2085	250	1882	274	1715	298	1572	322		
2078	251	1875	275	1710	299	1565	323		

5-5 距離計測

図 3-1 で M1 にマイクロメーターで変位を与えた。マイクロメーターは、1 目盛 0.0005[mm]であった。2 重のフィードバック制御をし、 V_b と、 V_α を測定した。式(4-4)から V_α で L_α を計測した。

はじめに、 $Z_b=\pi$ とし、変位を $5[\mu m]$ ずつ与えた。光路差で $10[\mu m]$ ずつとなる。 その結果を表 5-6 に示す。

表 5-6 $L_z=10[\mu m]$ ずつ変位を与えた結果

2D	$V_b[mV]$	m	L _Z [μm]	$V_{\alpha}[V]$	$L_{\alpha}[\mu m]$	L[μm]	ΔL
0	1552	163	137.605	6.1	0.509	138.113	
10	1421	176	148.579	-5.3	-0.442	148.137	10.024
20	1319	188	158.710	-1.2	-0.100	158.610	10.472
30	1218	201	169.684	-7.2	-0.600	169.084	10.474
40	1143	212	178.970	-8.2	-0.684	178.287	9.203
50	1071	224	189.101	-1.6	-0.133	188.967	10.681
_60	1011	235	198.387	2.2	0.183	198.570	9.603

次に、変位を $50[\mu m]$ ごと与えた。 $Z_b=\pi$ のときに、L は $200[\mu m]$ 程度で計測できなくなるので、途中で $Z_b=2\pi$ にした。そして、 $Z_b=2\pi$ の有効範囲内で測定した。その結果、L は $280[\mu m]$ 程度まで、移動距離で約 $180[\mu m]$ で計測できた。結果を表 5-7 に示す。

表 5-7 $L_Z=50[\mu m]$ ずつ変位を与えた結果 (上段は $Z_b=\pi$ 、下段は $Z_b=2\pi$)

2D	V _b [mV]	m	L _Z [μm]	$V_{\alpha}[V]$	$L_{\alpha}[\mu m]$	L[μm]	ΔL
0	2302	114	96.239	-6.5	-0.542	95.697	
50	1437	174	146.891	-10.8	-0.900	145.990	50.294
100	1021	233	196.699	-10.4	-0.867	195.832	49.841
100	2251	233	196.699	-10.4	-0.867	195.832	
150	1748	293	247.351	-7	-0.584	246.767	50.935
180	1550	326	275.209	-2.1	-0.175	275.034	28.267

第6章 音響光学可変波長フィルターを用いる干渉計構成

6-1 音響光学可変波長フィルター(AOTF)

波長走査を行うために、音響光学可変波長フィルター(AOTF)を使った。これは、音響(振動)波がある結晶から構成され、ラジオ周波数(RF)が白色光、多色光源からある単一波長の光を取り出す。図 6-1 にその構成を示す。

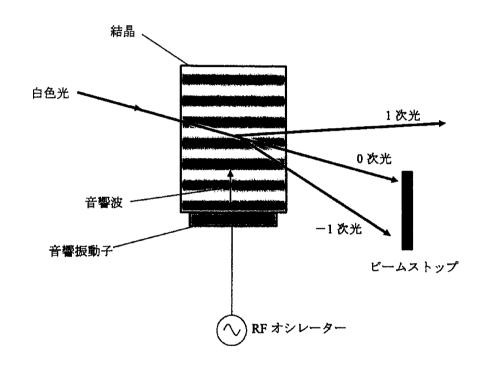


図 6-1 AOTF の構成

結晶には音響振動子が接着されており、オシレーターから RF が入力されると、音響波を放出する。音響波が結晶中に入ると、ある屈折率を持った波が生じる。その結晶内に白色光を入射すると、0次光、1次光、-1次光に回折され透過光となる。音響波の周波数は入力された RF の周波数と等しくなる。結晶中を音響波が通過するとき、音響波の周波数によって結晶格子を縮めたり、緩めたりする。このときの屈折率の変化によって、回折光の波長が変化する。したが

って、回折光の波長は音響振動子に入力する RF の周波数により変化させることができる。また、RF の周波数と回折光の波長は比例関係にある。本研究では1次光を使用し、他の回折光はビームブロックを使用する。

図 6-2 に示すように、RF の周波数は、RF ドライバーに電圧を印加することによって、変化させることができる。印加電圧と RF の周波数は比例関係にある。したがって、印加電圧と回折光の波長も比例関係にある。この特性を使って、波長走査をする。

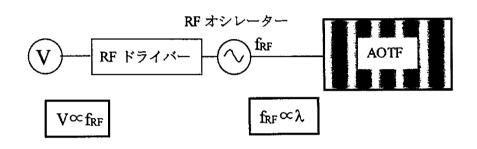


図 6-2 AOTF 駆動の構成

本研究で使用した波長フィルターの特性を以下に示す。RF ドライバーに電圧を印加することにより、特定のRF 周波数が発生し、特定の波長が取り出される。

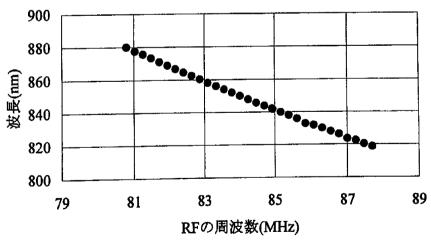


図 6-3 波長フィルターの波長特性(1)

図 6-4 波長フィルターの波長特性(2)

6-2 正弦波状波長走查(SWS)光源

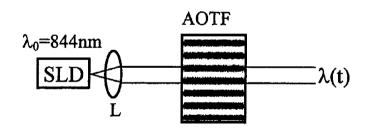


図 6-5 正弦波状波長走査 SLD 光源の構成

図 6-4 に正弦波状波長走査(SWS)光源の構成を示す。SLD からの光をレンズ (L)で平行光にする。そして、音響光学可変波長フィルター(AOTF)に入射して、 光源を構成している。AOTF には正弦波状の信号が印加され、これにより波長が正弦波状になっている。透過光の波長は λ_0 、 V_{b1} に比例する波長走査振幅 b、

変調周波数fbで波長走査されている。SWS光源によって波長は、

 $\lambda(t) = \lambda_0 + b\cos(\omega_b t) = \lambda_0 + \Delta\lambda$

(6-1)

に走査されている。

制御電圧 V_{b1} は FC2 により生成された ΔV_{b1} と直流バイアス V_{b0} の和算によって作られ、 $cos(\omega_b t)$ と掛け合わされることにより、 $V_{b1}cos(\omega_b t)$ が生成される。さらに、 V_0 を加え、波長フィルターへの信号が生成される。VCA によって生成された信号は、 $\{V_0+V_{b1}cos(\omega_b t)\}$ である。 $V_{b1}cos(\omega_b t)=0$ のときの信号は V_0 であり、この V_0 によって中心波長 λ_0 は決められる。 $V_bcos(\omega_b t)=(\Delta V_b+V_{b0})$ $cos(\omega_b t)$ が RF ドライバーに印加され、 f_{FR} が周波数変調される。これを FM-DEM で復調し V_{b2} を得る。 V_{b2} は波長査振幅 b に比例している。また、この V_{b2} を測定して距離を計測する。

第7章 音響光学可変波長フィルターを用いた実験結果

7-1 $Z_b=\pi$ による安定点の測定

図 7-1 に全体の信号処理系の構成を示す。SWS-LS は SWS 光源、FG はファンクション・ジェネレーター、OSC は発振器、DIV は分周器、FM-DEM は FM 復調器を表している。OSC1、OSC2 はそれぞれ f_b 、 f_c =64 f_b の正弦波を出力している。中心波長 λ_0 =842.086[nm]であった。 f_b =240[Hz]とした。

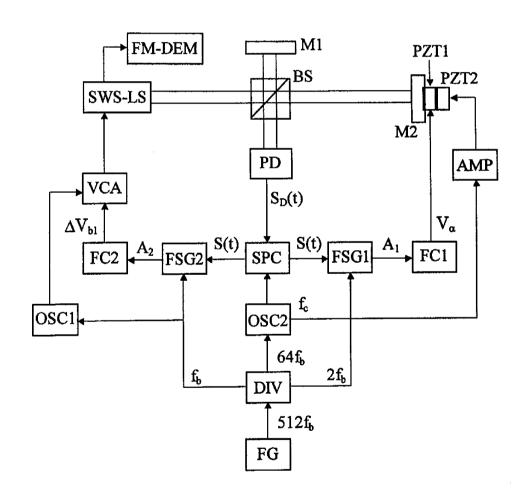


図 7-1 全体の信号処理系の構成

光路差計測に必要な測定として、安定点 V_{b2} の測定をした。図 7-1 の構成で 2 重フィードバック制御をしたことにより、光路差変化は 1 波長ずつとなり、このときの安定点 V_{b2} を測定した。

結果を図7-2に示す。横軸のNは安定点の番号である。光路差が大きくなるほど、安定点の番号Nが大きくなり、徐々に安定点の値の間隔が小さくなっている。

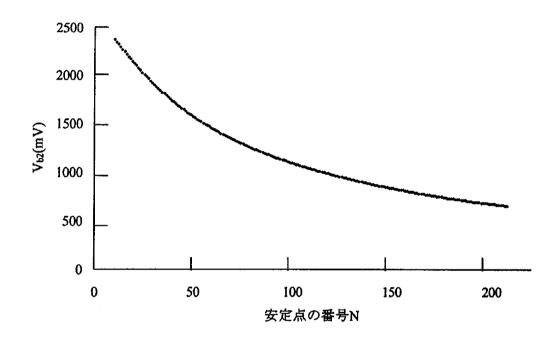


図 7-2 安定点の測定 (Z_b=π)

7-2 V_{b2}とbの関係

光路差 L_Z を求めるためには、 V_{b2} b の関係が必要となる。 V_{b2} b の関係式を

$$b=EV_{b2}+F \tag{7-1}$$

とする。E とF にある値を与えて、測定した V_{b2} をb に変換する。このb の値から $L_{Zb} = \lambda_0^2/2b$ より L_{Zb} を求める。求められた L_{Zb} から次式によって、 m_c を算出する。

$$m_c = \frac{L_{Zb}}{\lambda_0} \tag{7-2}$$

本来 m_c は整数値をとるが L_{Zb} の測定誤差のため、 m_c は整数値を取らない。 この m_c が整数値に近くなるように、E と F の値を調整する。より多くの V_{b2} について、 m_c が整数値に近いときの E と F の値から、 V_{b2} と F の関係が求まる。 その結果、次の関係が得られた。

$$b=0.0023V_b$$
 (7-3)

この関係式を用いて求めた m_c の値について、整数値との差 $m-m_c$ を図7-3に示す。

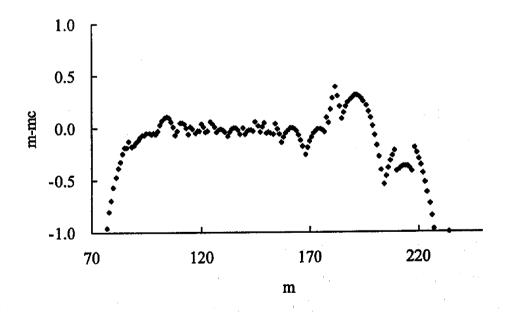


図 7-3 m-m_cの値

7-3 V_{b2}から L_Zの測定

915

910

2.10

2.09

得られた V_{b2} を式(7-3)により b に変換する。次に、 $L_{Z=\lambda_0}^2/2b$ の式から L_Z を求めた。ここで求められた L_Z は、測定誤差を含むため L_{Zb} とする。 $m_c = L_{Zb}/\lambda_0$ より m_c を求め、四捨五入により m を「求める。 m_λ 0 より光路差 L_Z を得た。以上の流れに沿って求められた値を、表 7-1 に示す。 m_c の値が整数値に近いことから正しく測定が行われているのがわかる。

 $V_{h2}(mV)$ b(nm) $L_{Zb}(\mu m)$ $L_7(\mu m)$ m m 2197 5.05 70.166 83.3 83 69.893 70.941 70.735 2173 5.00 84.2 84 2149 4.94 71.733 85.2 85 71.577 1376 3.16 112.031 133.0 133 111.997 1366 3.14 112.851 134.0 134 112.839 1356 3.12 113.683 135.0 135 113.681 145.703 173.0 145.680 2.43 173 1058 146.534 174.0 174 144.522 2.42 1052 175 147.365 2.41 147.375 175.0 1046 2.12 167.559 199.0 199 167.575 920

200.1

201.2

200

201.2

168.417

169.259

表 7-1 V_bから L_Zを計算

 V_{b2} の変動が $\pm 1 [mV]$ 以上り、 V_{b2} の変化が小さいところ、つまり b の変化が小さくなる点では、安定点の判別が難しくなる。したがって、m は m=230 程度までとした。m=230 のとき、 L_Z は $L_Z=193.679$ (μm)となった。 V_b と m との対応を表 7-2 に示す。

168.474

169.400

表 7-2 V_{b2}と m の対応(Z_b=π)

$V_b(mV)$	m	$V_b(mV)$	m	V _b (mV)	m	$V_b(mV)$	m
2373	76	1578	116	1173	156	935	196
2348	77	1564	117	1165	157	930	197
2323	78	1551	118	1158	158	925	198
2297	79	1538	119	1151	159	920	199
2272	80	1526	120	1144	160	915	200
2247	81	1513	121	1137	161	910	201
2222	82	1500	122	1130	162	905	202
2197	83	1488	123	1123	163	900	203
2173	84	1477	124	1116	164	895	204
2149	85	1465	125	1109	165	891	205
2124	86	1453	126	1102	166	887	206
2101	87	1441	127	1095	167	883	207
2076	88	1430	128	1088	168	879	208
2053	89	1419	129	1082	169	875	209
2031	90	1408	130	1076	170	870	210
2009	91	1397	131	1070	171	866	211
1988	92	1386	132	1064	172	862	212
1967	93	1376	133	1058	173	858	213
1946	94	1366	134	1052	174	854	214
1926	95	1356	135	1046	175	850	215
1906	96	1346	136	1040	176	846	216
1886	97	1336	137	1034	177	842	217
1867	98	1326	138	1029	178	839	218
1848	99	1317	139	1023	179	835	219
1830	100	1307	140	1018	180	831	220
1813	101	1298	141	1013	181	827	221
1796	102	1289	142	1008	182	823	222
1779	103	1280	143	1002	183	819	223
1762	104	1271	144	996	184	815	224
1745	105	1263	145	990	185	811	225
1728	106	1254	146	985	186	807	226
1711	107	1245	147	980	187	803	227
1694	108	1237	148	975	188	799	228
1679	109	1229	149	970	189	795	229
1665	110	1220	150	965	190	792	230
1650	111	1212	151	960	191		
1635	112	1204	152	955	192]	
1620	113	1196	153	950	193		
1605	114	1189	154	945	194		
1592	115	1181	155	940	195		

7-4 $Z_b=2\pi$ による安定点の拡大

測定範囲を拡大するために、 $Z_b=2\pi$ でフィードバック制御を行った。そして、 $Z_b=\pi$ のときと同様に V_b を測定した。 $Z_b=\pi$ のときの結果は表 7-3 のようであり、 $Z_b=2\pi$ ときの結果は表 7-4 のようになった。

 $V_{h2}(mV) \Delta V_{h}(mV)$ $L_2(\mu m)$ b(nm) $L_{7b}(\mu m)$ m_c m 756 1.74 203.866 242.1 241 202.942 204.950 242 203.784 752 4 1.73 243.4 749 3 205.771 244.4 243 204.626 1.72

表 7-3 Z_b=πのときの安定点

表 7-4 Z_b=2πのときの安定点

V (r	nV) AV (mV)	b(nm)	I (um)	m	m	L ₇ (μm)
_{b2} (1	$nV) \Delta V_b(mV)$	O(IIII)	L _{Zb} (μm)	m _c	111	Z(pari)
154	2 8	3.55	199.900	237.4	241	202.942
153	6 6	3.53	200.680	238.3	242	203.784
153	30 6	3.52	201.476	239.3	243	204.626
134	3 4	3.09	229.567	272.6	282	237.468
133	39 4	3.08	230.253	273.4	283	238.310
133	35 4	3.07	230.942	274.3	284	239.152

2 つの結果から $Z_b=2\pi$ のフィードバック制御によって、 $Z_b=\pi$ に比べて安定点の間隔 ΔV_{b2} が光路差の同じ場所でも、拡大されているのがわかる。 $Z_b=\pi$ のときは ΔV_{b2} が小さくて安定点の区別が難しいところも $Z_b=2\pi$ のフィードバック制御により安定点の区別がつくようになる。 V_b と m の対応を表 7-5 に示す。

また、m の有効範囲は m=290 程度であった。よって、測定範囲の上限は約 $240(\mu m)$ 程度だった。

表 7-5 V_{b2}と m の対応(Z_b=2π)

$V_b(mV)$	m	$V_b(mV)$	m	$V_b(mV)$	m	$V_{h}(mV)$	m
2358	154	1907	194	1589	234	1372	274
2345	155	1897	195	1583	235	1368	275
2332	156	1887	196	1576	236	1364	276
2319	157	1878	197	1570	237	1359	277
2306	158	1869	198	1563	238	1355	278
2293	159	1860	199	1557	239	1351	279
2280	160	1851	200	1550	240	1347	280
2267	161	1842	201	1542	241	1343	281
2254	162	1833	202	1536	242	1339	282
2242	163	1824	203	1530	243	1335	283
2230	164	1815	204	1524	244	1332	284
2218	165	1807	205	1518	245	1329	285
2206	166	1799	206	1513	246	1326	286
2194	167	1791	207	1507	247	1323	287
2182	168	1783	208	1501	248	1319	288
2170	169	1 7 75	209	1496	249	1316	289
2158	170	1767	210	1490	250	1313	290
2147	171	1758	211	1484	251	1310	291
2135	172	1750	212	1479	252	1307	292
2123	173	1742	213	1474	253	1305	293
2111	174	1734	214	1468	254	1302	294
2100	175	1727	215	1462	255	1299	295
2089	176	1720	216	1457	256	1296	296
2077	177	1712	217	1452	257		
2066	178	1704	218	1447	258		
2055	179	1696	219	1442	259		İ
2044	180	1688	220	1437	260		
2033	181	1680	221	1432	261		
2022	182	1672	222	1426	262		
2012	183	1664	223	1421	263		
2002	184	1657	2243	1416	264		
1992	185	1650	225	1411	265		
1982	186	1643	226	1406	266		
1972	187	1636	227	1401	267		
1962	188	1629	228	1397	268		
1953	189	1622	229	1393	269		
1944	190	1615	230	1388	270		
1934	191	1608	231	1384	271		
1925	192	1601	232	1380	272		
1916	193	1595	233	1376	273		

7-5 距離計測

図 7-1 で M1 にマイクロメーターで変位を与えた。マイクロメーターは、1 目盛 0.0005(mm)であった。2 重のフィードバック制御を行い、 V_{b2} と、 V_{α} を測定した。式(4-4)から V_{α} で L_{α} を計測した。

最初に、 $Z_b=\pi$ とし、変位を $5(\mu m)$ ずつ与えた。光路差で $10(\mu m)$ ずつとなる。 その結果を表 7-6 に示す。 $10(\mu m)$ 動かすと、最大で $2(\mu m)$ の誤差が現われたた。 これは、マイクロメーターを動かす際の誤差によるものと思われる。

Lの測定誤差は、 V_{α} の変動が約 0.1(mV)であることから、約 8(nm)となった。

累計L $L_{\alpha}(\mu m)$ $V_{a}(V)$ ΔL $L(\mu m)$ $2D V_{b2}(mV) m$ $L_7(\mu m)$ 74.212 0.108 2076 74.104 1.3 0 88 -0.37583.833 9.621 -4.5 1830 100 84.209 10 20,496 94.564 10.730 3.0 0.250 1635 112 94.314 20 30.971 104.469 9.905 0.050 124 104.419 0.6 30 1479 40.174 115.699 11.231 4.0 0.333 137 115.366 1337 40 50.854 124.937 9.238 3.7 0.308 1236 148 124.629 50 60.457 133.133 8.196 0.083 158 133.050 1.0 60 1159 143.772 10.639 -2.7 -0.225 171 143.997 70 1070 4.3 0.358 152.776 9.00 181 152,418 1013 80 162.356 9.580 193 162.523 -2.0 -0.167 90 949 -4.7 -0.392173.078 10.722 206 173.470 887 100

表 7-6 Lz=10(µm)ずつ変位を与えた結果

次に、変位を $25(\mu m)$ ごと与えた。 $Z_b=\pi$ のときに、L は $200(\mu m)$ 程度で計測できなくなるので、途中で $Z_b=2\pi$ にした。 $Z_b=2\pi$ のときには、変位を $10(\mu m)$ ごと与えた。そして、 $Z_b=2\pi$ の有効範囲内で測定した。その結果、移動距離で約 $180(\mu m)$ で計測できた。結果を表 7-7 に示す。

表 7-7 Lz=50(µm)ずつ変位を与えた結果

2D	V _{b2} (mV) m	L _z (µm)	V _a (V)	$L_{\alpha}(\mu m)$	L(µm)	ΔL
0	2270	80	67.367	1.2	0.100	67.467	
50	1325	138	116.208	-4.0	-0.333	115.874	48.407
100	929	197	165.891	3.1	0.258	166.149	50.275
100	1879	197	165.891	3.1	0.258	166.149	
120	1697	219	184.417	-2.7	-0.225	184.192	18.042
140	1542	241	202.943	3.1	0.258	203.201	19.009
160	1416	264	222.311	1.5	0.125	222.436	19.235
180	1326	286	240.837	3.9	0.325	241.162	18.726

上段は Z_b=π、下段は Z_b=2πの場合

第8章 実時間段差形状計測の干渉計構成

8-1 波長走査光源の構成方法

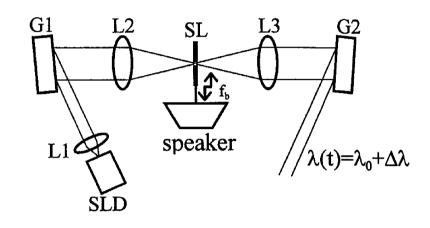


図 8-1 正弦波状波長走査 SLD 光源の構成

図 8-1 に正弦波状波長走査 SLD(SWS-SLD)光源の構成を示す。SLD からの平行光は回折格子 G1 で回折され、その 1 次回折光をレンズ L2 でフーリエ変換すると、図 8-2 のような光スペクトラム分布がフーリエ変換面に得られる。ここで SLD の中心波長 λ_0 は 792.3nm であり、光スペクトラムの半値幅は約 20nm である。スリット SL により特定の波長成分を取り出し、レンズ L3 で逆フーリエ変換する。この光場が回折格子 G2 で回折されると、すべての波長の 1 次回折光は等しい伝搬方向を持つ平行光となり、干渉計への入射光となる。このとき、スリット SL をスピーカーで正弦波状に振動させると光源の波長は、 $\lambda(t)=\lambda_0+b\cos\omega_bt$ のように走査される。変調周波数 $\omega_b/2\pi$ は 400Hz とし、スリット幅は 50μ m のものを用いた。また、回折格子は 1200 本/mm であり、レンズは焦点距離 25mm とした。

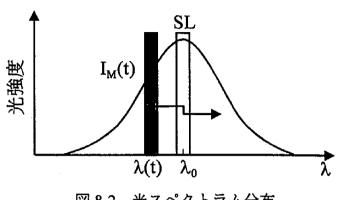


図 8-2 光スペクトラム分布

8-2 干渉信号

図 8-1 の光源を用いて SWS-SLD 干渉計を構成すると、得られる干渉信号は

$$S_D(t)=I_M(t)\{A+B\cos[Z_b\cos\omega_b t+\alpha]\}$$
 (8-1)

で表される。ここで、I_M(t)は波長走査による光強度の時間的変化であり、A お よび B は定数である。また、Z_b は位相変調振幅、αは従来の位相であり、それ ぞれ

$$Z_b = (2\pi b/\lambda_0^2)L, \quad \alpha = (2\pi/\lambda_0)L \tag{8-2}$$

である。これらを検出し、光路差しを求める。

干渉信号を処理する際、光強度の時間的変化が存在すると正しい処理が行え ないため $I_M(t)$ を検出し、電子回路によって除算を行う。これにより、光強度の 時間的変化が除去された干渉信号

$$S(t)=A+B\cos\{Z_{b}\cos\omega_{b}t+\alpha\}$$
 (8-3)

を得る。

8-3 2重フィードバック制御による測定原理

8-3-1 フィードバックによる Laの測定

今、光源の発振中心周波数Ao、光路差Lであるため被検面の初期位相は

$$\alpha_0 = (2\pi/\lambda_0)L \tag{8-4}$$

となる。ここで、干渉信号より検出するフィードバック信号 $A_i=g\cos\alpha$ をフィードバック制御系で制御電圧 V_{α} へ変換し、 $A_i=0$ となるように参照ミラーに取り付けた圧電素子(PZT)にフィードバックすると、このとき、制御電圧 V_{α} によって光路差が ΔL だけ変化するため、被検面の位相は

$$\alpha_1 = (2\pi/\lambda_0)(L + \Delta L) = 3\pi/2 + 2m\pi$$
 (m=0,1,2···) (8-5)

となり、 α_1 の点、すなわち 2π の整数倍の点にロックされる。このロックされたときの光路差を L_2 とすると

$$L_z = L + \Delta L = 3\lambda_0/4 + m\lambda_0 \tag{8-6}$$

となるため、実際の光路差しは

$$L=L_2-\Delta L=L_2+L_{\alpha}=3\lambda_0/4+m\lambda_0+L_{\alpha}$$
(8-7)

で表される。但し L_α=-ΔL である。

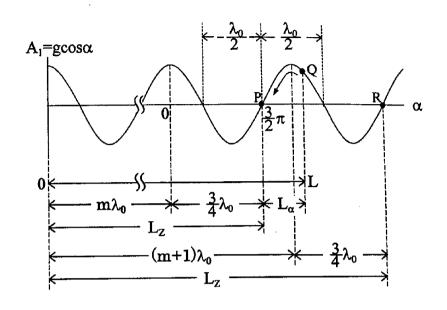


図 8-3 L_zと L_αの関係

図 8-3 に L_z と L_α の関係を示す。今、図のように光路差 Lのとき A_1 は Qの値をとる。ここで A_i =0 となるようにフィードバック制御を行うと P もしくは R に移動する。どちらに移動したかは L_α すなわち V_α の大きさと極性から分かる。また、P および R はどちらも光路差が L_z であり、これより、 L_z は 1 波長毎の値しか取らない。従って、 L_α と L_z もしくは m が分かれば L を求めることができる。

ここで、 L_{α} は制御電圧 V_{α} によって与えられており、また、比例関係にあるため、

$$L_{\alpha} = \beta V_{\alpha}$$
 (8-8)

が成り立つ。従って、 L_{α} =0 のとき V_{α} =0 の条件を与えれば、制御電圧 V_{α} を測定することにより、 L_{α} が求まる。

実験的に β の値を求めたところ β =83.37(nm/V)であった。よって V_{α} を 0.1V 単位で読んだ場合、精度は約 8nm となる。

8-3-2 フィードバックによる L2の測定

光路差がLであるとき、 $\alpha=3\pi/2$ となるようにフィードバック制御を行うと、 光路差は PZT によって L_{α} だけ変位し、 L_{z} となる。 このとき干渉信号 S(t)は

$$S(t)=A+B\cos\{Z_{b}\cos\omega_{b}t+3\pi/2+2m\pi\}=A+B\sin\{Z_{b}\cos\omega_{b}t\}$$
(8-9)

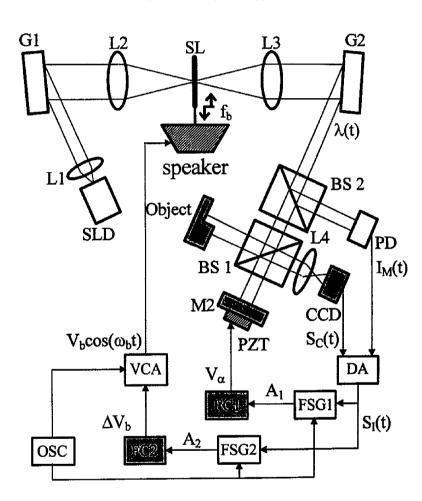
となる。この信号から検出するフィードバック信号 A_2 =hsin Z_b をフィードバック制御系で制御電圧 V_b へ変換し、 A_2 =0 となるように V_b を振幅電圧としてスピーカーにフィードバックする。このとき、波長走査振幅 b が変化し次式が成り立つ。

$$Z_{b} = (2\pi b/\lambda_{0}^{2})L_{z} = \pi$$
 (8-10)

また、同時に、式(3-3)も成り立っているため、 V_b が b と比例関係にあるとすると、b の値は次式で表される。

$$b = \lambda_0^2 / 2L_z = 2\lambda_0 / (4m + 3) = D_1 V_b + D_0$$
 (8-11)

上式から分かるように、b はある間隔で安定点を取るため V_b も同様に安定点をとる。この V_b の安定点と m が対応するため、 V_b の安定点から m が求まれば、式(8-7)より光路差 L を求めることができる。


8-3-3 mの決定

測定された V_b の安定点を式(3-8)によって b に変換し L_c を求めた場合、 L_c には誤差が含まれるため、まず、次式によって m_c を算出する。

$$m_c = \frac{L_z - 3\lambda_0/4}{\lambda_0}$$
 (8-12)

本来 m は整数値をとるが L_z の測定誤差のため、 m_c は整数とならない。ここで、 L_z の測定誤差が $\lambda_0/2$ よりも小さければ m_c の整数値からのずれが 0.5 未満とな

り、四捨五入することにより正しい m の値が得られる。従って式(8-7)により L_z の測定誤差が除去でき、波長以上の光路差を L_α の測定誤差で求めることができる。

8-4 信号処理系の構成

図 8-4 全体の構成

図 8-4 に全体の構成を示す。得られた干渉信号 S(t)をフィードバック発生回路 FSG1 に通すことにより $A_1=g\cos\alpha$ を得る。これを、偏差信号として $A_1=0$ となるようにフィードバック制御回路 FC1 によりフィードバック制御を行う。

の V_{α} を参照ミラーに取り付けた圧電素子(PZT)に印加することで光路差Lを変化させて $\cos \alpha = 0$ にロックする。

同様に、FSG2 により A_2 =hsin Z_b を得る。FC2 は FC1 と同じく積分・比例制 御であり、制御電圧 ΔV_b を出力する。これを図 8-5 に示す振幅制御回路 VCA で処理することにより、 $V_b cos \omega_b t$ が得られ、スピーカーにフィードバックすることで波長走査振幅 b が変化し、 A_2 =0 となる。

また、OSC は発振器であり変調周波数 f_b の正弦波および矩形波を出力している。

 V_{α} および V_{b} を測定することで物体光と参照光の光路差 L を求めることができる。

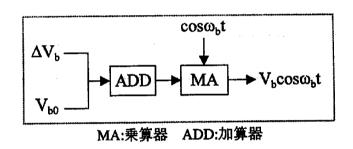
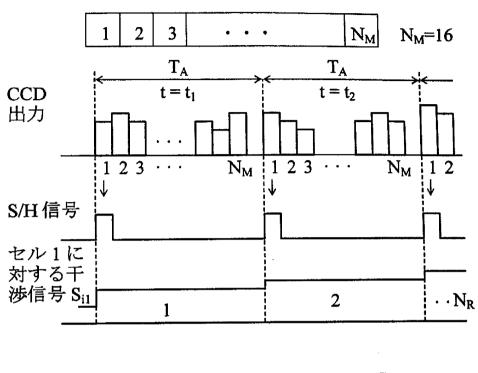



図 8-5 振幅制御回路 VCA

8-4 CCDによる干渉信号検出

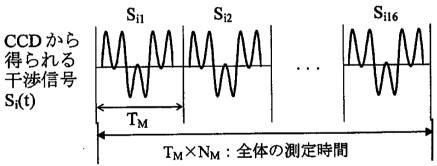


図 8-6 CCD による干渉信号の検出

干渉信号の検出に 1 次元 CCD イメージセンサを用いた。図 8-6 に示すように、1 次元イメージセンサでは、セルが N_M 個並んでいる。CCD 出力は蓄積時間 T_A ごとにセル 1、セル 2 と順番に積分値を出力し、 N_M 番目のセルまで繰り返される。そして次の TA の間に、またセル 1 から順番に出力、それが繰り返

される。ここで、セル1の値をサンプルホールドすることによって、セル1に対する干渉信号が得られる。サンプルホールドは N_R 回繰り返される。すなわち N_R は1つの測定点に対する繰り返し測定回数である。その後、セル 2、セル3とサンプルホールドが移っていく。このとき、1つの測定点に対する干渉信号の長さは $T_M=T_A$ × N_R である。そして T_M の時間だけセル1を測定したのち、次のセルへと測定が移っていく。こうして、 N_M 番目のセルまで測定が行われ、それぞれの干渉信号が順番に得られる。全体の測定時間は T_MN_M となる。 T_M の時間だけ、各点における干渉信号が得られるので、それぞれの点において2 重フィードバック制御を行う。

8-5 A₁の生成回路の構成

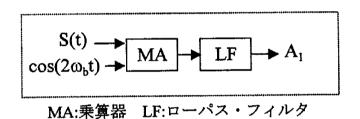


図 8-7 FSG1 の回路構成

図8-7に FSG1 の回路構成を示す。CCD 面上で得られる干渉信号 S(t)をベッセル関数 J_n を用いて展開すると

$$\begin{split} S(t) &= A + B\cos\{Z_b cos \omega_b t + \alpha\} \\ &= A + B\cos\alpha\{J_0(Z_b) - 2J_2(Z_b) cos 2\omega_b t + \cdots\} \\ &- B\sin\alpha\{2J_1(Z_b) cos \omega_b t + 2J_3(Z_b) cos 3\omega_b t + \cdots\} \end{split}$$

となる。S(t)を電荷蓄積時間 T_A で積分するとき、出力信号に含まれる周波数成分は、 $-2BD_1 \sin\alpha J_1(Z_b) \cos\omega_b t \ (n=1)$ $-2BD_2 \cos\alpha J_2(Z_b) \cos2\omega_b t \ (n=2)$

のように展開される。但し、 $D_n=\sin(n/P)\pi/(n/P)\pi$ で表される。ここで $\cos 2\omega_b t$

の成分を取り出し、これに $\cos 2\omega_{bt}$ を掛け合わせることにより $2\omega_{b}$ の周波数成分を 0 にシフトする。これをローパス・フィルタに通し、余分な周波数成分を除去することで $\cos \alpha$ を含む信号

$$A_1 = BD_2J_2(Z_b)\cos\alpha = g\cos\alpha \qquad (8-13)$$

が得られる。 ω_b の周波数 f_b は 400Hz であるため、ローパス・フィルタのカットオフ周波数は f_c = f_b /10=40Hz とした。

8-6 A₂の生成回路の構成

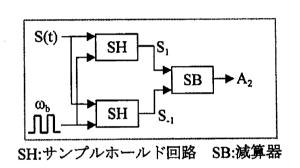


図 8-8 FSG2 の回路構成

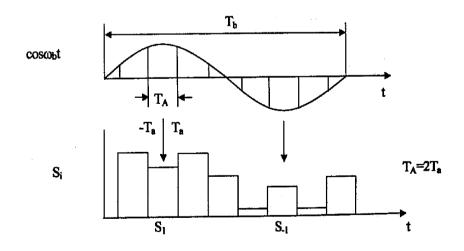


図 8-9 CCD 出力のサンプルホールド

図 8-8 に FSG2 の回路構成を示す。フィードバック制御によりα=3π/2 となっ

ているため、このときの干渉信号は

$$S(t)=A-B\cos\{Z_b\cos\omega_bt+3\pi/2+2m\pi\}=A-B\sin\{Z_b\cos\omega_bt\}$$

となる。波長走査の周波数を f_b =1/ T_b とする。ここで、 $cos\omega_b$ t=1 および-1 となる時間においてサンプルホールド回路 SH で干渉信号をサンプルするのであるが、光検出器に CCD イメージセンサを用いているので、干渉信号は S(t)を電荷蓄積時間 T_A = T_b /p だけ積分した値となる。CCD による光出力が図 8-4 のように表されているとする。それぞれの時間においてサンプルホールドした値を、

$$S_1 = \int_{-T_a}^{T_a} S(t)dt = (1/\omega_b) \int_{-\beta_a}^{\beta_a} S(t)d\beta$$

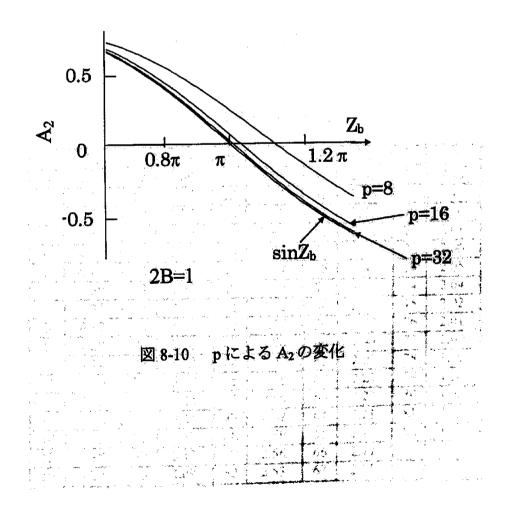
S₁、S₋とすると、それぞれの値は、

$$S_{-1} = \int_{\underline{I}_{a}^{\bullet} - T_{a}}^{\underline{T}_{a} + T_{a}} S(t) dt = (1/\omega_{b}) \int_{t - \beta_{a}}^{t + \beta_{a}} S(t) d\beta$$

となる。ただし、ω $_b$ t=β $_a$ である。このとき、

$$\begin{split} S_{1} - 2T_{a}A &= (1/\omega_{b}) \int_{\beta_{a}}^{\beta_{a}} \sin(Z_{b} \cos\beta) d\beta \\ &= -(1/\omega_{b}) \int_{\beta_{a}}^{\beta_{a}} \{2J_{1}(Z_{b}) \cos\beta - 2J_{3}(Z_{b}) \cos3\beta + \cdot \cdot \cdot \cdot) d\beta \\ &= -(2/\omega_{b}) [J_{1}(Z_{b}) \sin\beta - \frac{J_{3}(Z_{b})}{3} \sin3\beta + \cdot \cdot \cdot \cdot]_{\beta_{a}}^{\beta_{a}} \\ &= -(4/\omega_{b}) \sum_{n=0}^{\infty} (-1)^{n} J_{2n+1}(Z_{b}) \frac{\sin(2n+1)\beta_{a}}{2n+1} \\ S_{-1} + 2T_{a}A &= (2/\omega_{b}) [J_{1}(Z_{b}) \sin\beta - \frac{J_{3}(Z_{b})}{3} \sin3\beta + \cdot \cdot \cdot \cdot]_{\pi-\beta_{a}}^{\pi+\beta_{a}} \\ &= (4/\omega_{b}) \sum_{n=0}^{\infty} (-1)^{n} J_{2n+1}(Z_{b}) \frac{\sin(2n+1)\beta_{a}}{2n+1} \end{split}$$

よって、


$$A_2 = S_1 - S_{-1}$$

$$= -(8/\omega_b) \sum_{n=0}^{\infty} (-1)^n J_{2n+1}(Z_b) \frac{\sin(2n+1)\beta_a}{2n+1}$$

$$eta_a \to 0$$
 のとき、
$$A_2 = -(8\beta_a/\omega_b) \sum_{n=0}^{\infty} (-1)^n J_{2n+1}(Z_b) \frac{\sin(2n+1)\beta_a}{(2n+1)\beta_a}$$
$$= -8T_a \sum_{n=0}^{\infty} (-1)^n J_{2n+1}(Z_b)$$
$$= -4T_a \sin Z_b$$

となる。 $\beta_a \rightarrow 0$ のとき、すなわち $T_A \rightarrow 0$ のとき、フィードバック信号 A_2 は正弦 波とみなすことができる。 $T_A = T_b/p$ であるとすると、p の値をある程度大きく とる必要がある。

いくつかの p の値による、 Z_b の変化に対する A_2 の値の変化を計算した結果を図 8-10 に示す。p の値が小さいほど、 $\sin Z_b$ から離れていっていることがわかる。実際に実験を行う場合、適切な p の値を設定する必要がある。

8-7 V_bの安定点の測定

光路差測定に必要な特性として、 V_b の安定点と対応する m の関係が必要である。物体ミラーに PZT によって変位を与えていき A_i =0 となる点毎に 2 重フィードバック制御を行った。これにより、与えた光路差変化は 1 波長ずつとなり、このときの V_b を測定した。結果を図 8-11 に示す。横軸は安定点の番号である。また、詳しい値を表 8-1 に示す。

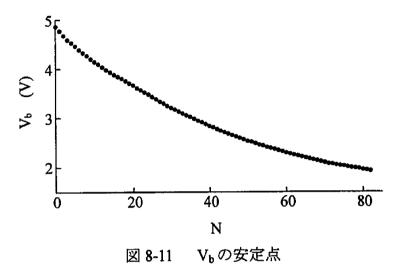


表 6-1 Vbの安定点の値

N	V_b	N	V_{b}	N	V_b	N	V_{b}	N	V_{b}
0	4.86	17	3.80	34	3.05	51	2.51	68	2.13
1	4.78	18	3.75	35	3.02	52	2.48	69	2.12
2	4.68	19	3.70	36	2.98	53	2.46	70	2.10
3	4.59	20	3.66	37	2.94	54	2.44	71	2.08
4	4.53	21	3.61	38	2.91	55	2.41	72	2.06
5	4.46	22	3.57	39	2.87	56	2.39	73	2.05
6	4.39	23	3.52	40	2.84	57	2.37	74	2.04
7	4.33	24	3.48	41	2.81	58	2.34	75	2.02
-8	4.27	25	3.43	42	2.77	59	2.32	76	2.01
9	4.20	26	3.38	43	2.74	60	2.29	77	2.00
10	4.14	27	3.33	44	2.71	61	2.27	78	1.99
11	4.09	28	3.29	45	2.68	62	2.25	79	1.98
12	4.03	29	3.25	46	2.65	63	2.23	80	1.96
13	3.98	30	3.21	47	2.62	64	2.21	81	1.95
14	3.93	31	3.17	48	2.59	65	2.19	82	1.93
15	3.88	32	3.13	49	2.56	66	2.17		
16	3.84	33	3.09	50	2.53	67	2.15		

次に、 $b=1.59V_b+0.059$ という関係と、式(8-11)より、 V_b の安定点と m の対応関係を求めたものを、表 8-2 に示す。この表を用いて、測定した V_b の値から m を求める。

表 8-2 V_bの安定点と

N	V_b	m	N	V_{b}	m	N	V_{b}	m	N	V_{b}	m	N	V _b	m
0	4.86	46	17	3.80	63	34	3.05	80	51	2.51	97	68	2.13	114
1	4.78	47	18	3.75	64	35	3.02	81	52	2.48	98	69	2.12	115
2	4.68	48	19	3.70	65	36	2.98	82	53	2.46	99	70	2.10	116
3	4.59	49	20	3.66	66	37	2.94	83	54	2.44	100	71	2.08	117
4	4.53	50	21	3.61	67	38	2.91	84	55	2.41	101	72	2.06	118
5	4.46	51	22	3.57	68	39	2.87	85	56	2.39	102	73	2.05	119
6	4.39	52	23	3.52	69	40	2.84	86	57	2.37	103	74	2.04	120
7	4.33	53	24	3.48	70	41	2.81	87	58	2.34	104	75	2.02	121
8	4.27	54	25	3.43	71	42	2.77	88	59	2.32	105	76	2.01	122
9	4.20	55	26	3.38	72	43	2.74	89	60	2.29	106	77	2.00	123
10	4.14	56	27	3.33	73	44	2.71	90	61	2.27	107	78	1.99	124
11	4.09	57	28	3.29	74	45	2.68	91	62	2.25	108	79	1.98	125
12	4.03	58	29	3.25	75	46	2.65	92	63	2.23	109	80	1.96	126
13	3.98	59	30	3.21	76	47	2.62	93	64	2.21	110	81	1.95	127
14	3.93	60	31	3.17	77	48	2.59	94	65	2.19	111	82	1.93	128
15	3.88	61	32	3.13	78	49	2.56	95	66	2.17	112	<u> </u>		
16	3.84	62	33	3.09	79	50	2.53	96	67	2.15	113			

第9章 実時間段差形状計測の結果

9-1 実験装置

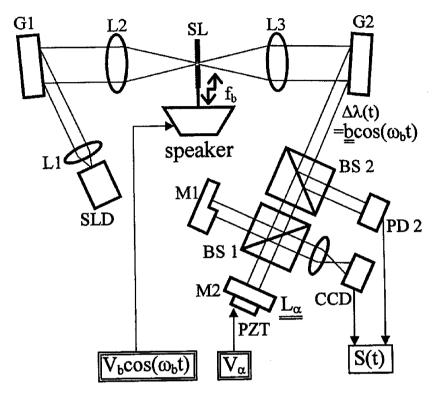


図 9-1 実験装置

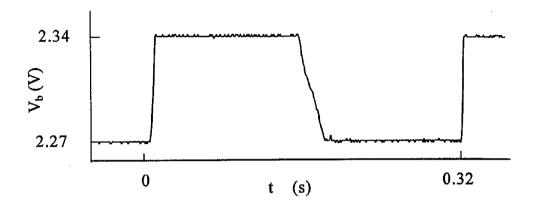
図 9-1 に実験装置の構成を示す。測定物体として図のように段差形状物体を用いた。焦点距離 30mm のレンズを用い CCD 面上で 1/8.5 倍に結像している。 測定点を 16 に設定し、サンプルホールド回路を動作させて各点においてフィードバック制御を行い V_b および V_α を測定した。

測定物体の段差幅を、1μm と 20μm として、測定を行った。

9-2 CCD による測定条件の決定

9-2-1 測定点数の決定

測定物体の形状を検出するために必要な光源の直径は約 2mm 程度である。これを直接 CCD に入射した場合、出力が小さすぎるためほとんど検出できない。よって、レンズを用いて約 8.5 倍に結像した。CCD の 1 セルの間隔は $14\mu m$ である。このとき、物体上における測定点間隔は 119μ m となる。従って測定に用いたセルの数は $N_M=16$ とした。


9-2-2 蓄積時間 T_Aの決定

 T_A の値として、p=8、16、32 について検討を行った。p=32 の場合は、 $T_A=T_b/p$ で表される事からわかるように、電荷蓄積時間が短くなってしまう。そのため、 CCD の出力が小さくなる。よってノイズの影響が大きくなり、測定が困難であった。次に p=8 の場合であるが、2. 4 でも述べたように、p の値が不十分であり、また、図 8-10 からもわかるように、信号 A_2 が $\sin Z_b$ と大きく異なってくるため、測定がうまく行えなかった。P=16 のときは、測定が行えた。よって、p=16 とした。

9-2-3 1点あたりの測定時間

繰り返し測定回数 N_R について検討した。信号の長さは、第5章からもわかるように、 $T_M=(T_b/16)N_R$ となる。測定時間をなるべく短くするため、 N_R はより小さい値をとる必要がある。 A_I の信号は、 $S_I(t)$ と $\cos 2\omega_b t$ を掛け合わせた信号を、カットオフ周波数 $1/10T_b$ のローパスフィルタに通して生成されるため、V の測定には $T_m=10$ T_b 以上が必要である。従って p=16 のとき、 N_R は 160 以上が必要である。

 N_R =128 の時の測定結果を、図 9-2 に示す。このとき、 V_a が定常状態にならずに安定しなかった。このことからも、 N_R が 160 以上が必要ということがわかった。

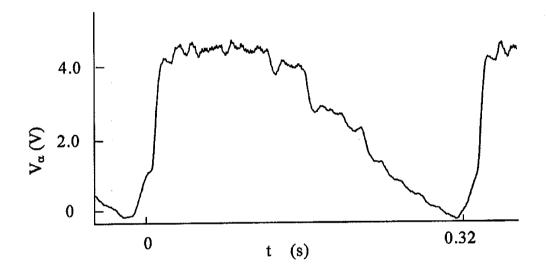


図 9-2 N_R=128 の時の測定結果

9-3 段差幅 1µm の段差形状測定結果

 $1\mu m$ の段差形状の測定結果を図 9-3 に示す。10 番目のセルにおいては段差の境目の部分であるため、光の散乱などの理由により正しい値が得られなかった。 $1\sim 4$ 番目のセルにおいては光の弱い点であるため、正しい測定が行われていないと考えられる。各点における V_b と V_α の測定値を同様に表 9-1 に示す。

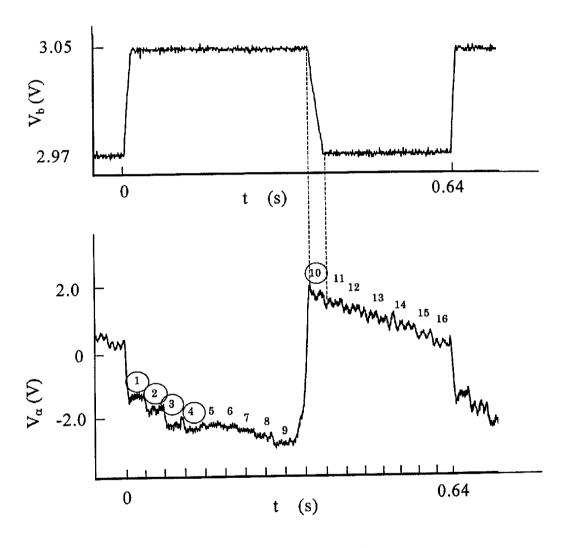


図 9-3 測定結果(1)

表 9-1 測定結果(1)

セル番号	$V_b(V)$	$V_{\alpha}(V)$	m	$L_{\alpha}(nm)$	L(nm)
1	3.05	-1.27	80	-106	63278
2	3.05	-1.73	80	-144	63240
3	3.05	-2.22	80	-185	63199
4	3.05	-2.43	80	-203	63181
5	3.05	-2.34	80	-195	63189
6	3.05	-2.46	80	-205	63179
7	3.05	-2.56	80	-213	63171
8	3.05	-2.72	80	-227	63157
9	3.05	-2.93	80	-244	63140
10	3.02	1.92	81	160	64336
11	2.97	1.66	82	138	65107
12	2.97	1.47	82	123	65092
13	2.97	1.25	82	104	65073
14	2.97	1.02	82	85	65054
15	2.97	0.80	82	67	65036
16	2.97	0.59	82	49	65020

各セルにおけるそれぞれの数値を表 9-1 に示す。セル 9 とセル 11 の値の差より測定段差幅を算出し、983.5nm という値が得られた。この測定においても、回折格子の角度、結像面の調節の具合などにより値にずれが生じていると思われる。より正確な測定のために改善する必要がある。

次に、繰り返し測定精度を検討するために、同様の測定を行った。測定結果 を図 9-4 に示す。

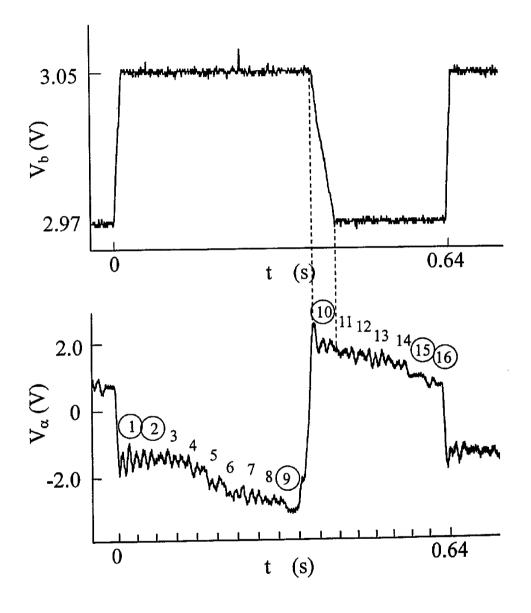


図 9-4 測定結果(2)

表 9-2 測定結果 (2)

セル番号	$V_b(V)$	$V_{\alpha}(V)$	m	$L_{\alpha}(nm)$	L(nm)
1	3.05	-1.45	80	-121	63263
2	3.05	-1.52	80	-127	63257
3	3.05	-1.58	80	-132	63252
4	3.05	-1.88	80	-157	63227
5	3.05	-2.16	80	-180	63204
6	3.05	-2.45	80	-204	63180
7	3.05	-2.71	80	-226	63158
8	3.05	-2.81	80	-234	63150
9	3.05	-2.84	80	-237	63147
10	3.02	2.11	81	176	64352
11	2.97	1.87	82	156	65125
12	2.97	1.75	82	146	65115
13	2.97	1.58	82	132	65101
14	2.97	1.43	82	119	65088
15	2.97	0.94	82	78	65047
16	2.97	0.65	82	54	65023

セル9とセル11のLの値より、測定段差幅は989nmであった。表7.2の結果の値から比べると、繰り返し測定誤差は約5.5nmであった。微小な振動などで値が大きく変化するため、図9-3と図9-4のような違いが現れた。よって、影響を受けにくくする工夫が必要である。

9-4 段差幅 20μm の段差形状測定結果

図 9-5 に段差幅 20µm の段差形状の測定結果を示す。

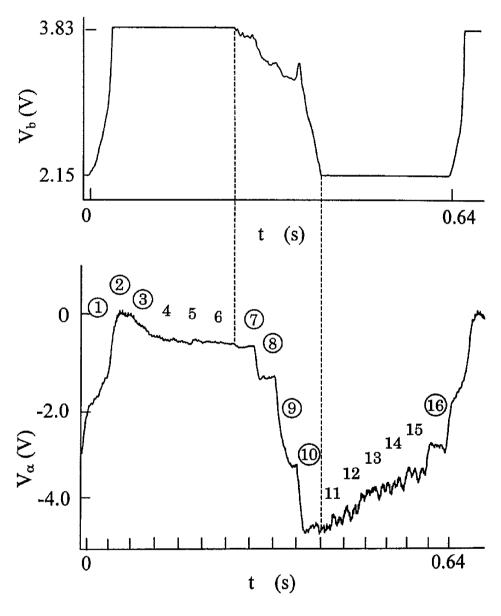


図 9-5 測定結果(1)

表 9-3 測定結果 (1)

セル番号	$V_b(V)$	$V_{\alpha}(V)$	m	$L_{\alpha}(nm)$	L(nm)
1	3.83	-1.81	62	-151	48971
2	3.83	-0.02	62	-2	49121
3	3.83	-0.29	62	-24	49099
4	3.83	-0.51	62	-43	49080
5	3.83	-0.61	62	-5 1	49072
6	3.83	-0.72	62	-60	49063
7	3.66	-0.85	66	-71	52221
8	3.29	-1.33	74	-111	58519
9	3.09	-2.94	79	-245	62347
10	2.65	-4.51	92	-376	72516
11	2.15	-4.53	113	-378	89151
12	2.15	-4.32	113	-360	89169
13	2.15	-4.11	113	-343	89186
14	2.15	-3.95	113	-329	89200
15	2.15	-3.68	113	-307	89222
16	2.15	-2.95	113	-246	89283

セル6とセル11の値の差から、測定段差幅は20044nmであった。

次に、測定条件・日時を変えて行った実験結果を図 9-6 に示す。

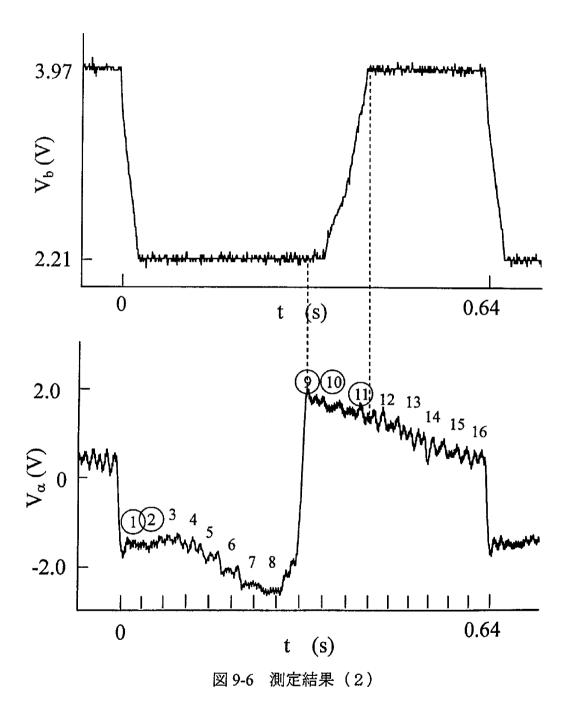


表 9-4 測定結果 (2)

セル番号	V _b (V)	$V_{\alpha}(V)$	m	$L_{\alpha}(nm)$	L(nm)
1	2.21	-1.51	110	-126	87207
2	2.21	-1.52	110	-127	87208
3	2.21	-1.34	110	-112	87041
4	2.21	-1.63	110	-136	87017
5	2.21	-1.74	110	-145	87008
6	2.21	-2.18	110	-182	86971
7	2.21	-2.43	110	-203	86950
8	2.21	-2.59	110	-216	86937
9	2.21	1.72	110	143	87296
10	2.62	1.65	93	138	73684
11	3.21	1.48	76	123	60215
12	3.97	1.31	59	109	46855
13	3.97	1.12	59	93	46839
14	3.97	0.81	59	68	46814
15	3.97	0.63	59	53	46799
16	3.97	0.41	59	34	46780

セル8とセル12の値の差より、測定段差幅は20041nmであった。