H9 空間・時間ブロック符号化並列組合せSS方式に関する一検討

早川 誠、佐々木 重信 、周 杰 、村松 正吾 、菊池 久和 、

新潟大学大学院自然科学研究科

[†]:新潟大学工学部**電**気電子工学科

1.はじめに

近年、スペクトル拡散(Spread Spectrum: SS)通信方式[1]に基づく符号化分割多重接続(Code Division Multiple Access: CDMA)が第3世代移動体通信システムの国際標準 IMT・2000 として実用化され、今以上に伝送速度の高速化が求められている。その解決方法として、マルチバスフェージングにおいてダイバーシティを用いることが考えられる。しかし、受信端末の小型化が求められているため受信ダイバーシティのブランチ数に限界が生じる。そこで受信側だけでなく送信側にもダイバーシティを適用することでデータ伝送と品質の向上を図る技術として空間・時間符号化(Space-Time Coding:STC)が提案されている[2][3]。

SS 通信方式において高速データ伝送能力という 点からマルチコード CDMA 方式のひとつとして並 列組合せ SS(Parallel Combinatorial SS:PC/SS)方式が 提案されている[4][5]。これは、データを複数の拡散 系列の組合せで表現されていることにより高速デー タ伝送をねらった方式である。

本報告では、STC 通信路に PC/SS 通信方式を用いてビット誤り率(Bit Error Rate: BER)特性の変化についてシミュレーションにより検討・評価を行う。

2.並列組合せスペクトル拡散通信方式

図1に本方式の送信側、受信側のシステムモデル を示す。PC/SS 方式では、データは①組み合わせデ ータと②状態データに分けられ伝送される。送信側 では、k ビットの入力データを 1/k 倍の速度の並列デ ータに変換する。このうち、 $\log_2 |_{M} C_r |$ ビットを 組合せデータ、残りのrビットを状態データとする。 すなわち、 $k = r + \log_2 |_{M} C_r |$ の関係がある。M は 用意する拡散系列の数、rは選択する拡散系列の数 である。組合せデータによって M 個の拡散系列の中 から使用するr個の拡散系列の組合せを決定し、状 態データによって r 個の各系列に+1,-1 の状態をつ けて送信する。受信側では、まず入力信号に対して、 送信側で用いたものと同じ M 個の拡散系列それぞ れとの相関を取る。その出力を用いて、送信された r個の拡散系列の組を推定し、重み一定復号をおこ なう。そこから組合せデータを得る。そして、これ から、送信側の方法と逆の方法で、並列データを復 元し、これを直列に変換することにより、受信デー 夕の復調を行う。

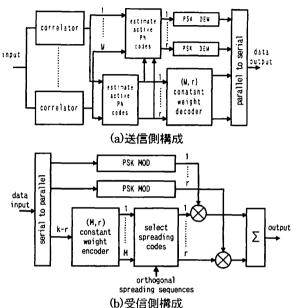


図 1. 送信側/受信側構成

3. 空間・時間プロック符号化[3]

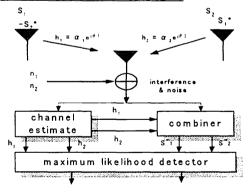


図 2. STBC(Tx 2, Rx 1) 送受信モデル

送信アンテナを Tx、受信アンテナを Rx とする。図 2 に、Tx 2 本,Rx 1 本における空間・時間ブロック符号化(Space-Time Block Codes: STBC)[3]の送受信モデルを示す。STBC における入力シンボルは、2 つのシンボルに分けられ、あるタイムフレーム t で 2 つのアンテナから同時に送信される。アンテナ 1 から信号 s_1 が送信され、アンテナ 2 から信号 s_2 が送信されたとする。次のタイムフレーム t+T で $-s_2$ も

がアンテナ1から送信され、アンテナ2からs.*が 送信される。ここで*は、複素共役を表している。送 信アンテナ1,送信アンテナ2から受信アンテナま での通信路パラメータは、それぞれh、とh、で示され る。2つの連続したタイムフレームにおいてん、と h、は、ほぼ同じであると仮定される。 つまり

 $h_1(t) = h_1(t+T) = h_1 = \alpha_1 e^{j\theta_1}$

 $h_2(t) = h_2(t + T) = h_2 = \alpha, e^{j\theta_2}$ で表される。受信信号は、2つの連続したタイムフ レームにおいて r_1 , r_2 と推定できる。 ここで、受信信号は次のように書くことができる。

 $r_1 = r(t) = h_1 s_1 + h_2 s_2 + n_1$

 $r_2 = r(i+T) = -h_1 s_2^* + h_2^* s_1^* + n_2$ (2) ここで、 $n_1 \ge n_2$ は電力スペクトル密度 $N_0/2$ の互 いに独立な AWGN である。受信信号に、推定され た通信路パラメータ h_1, h_2 を用い合成する。合成後 の信号は、

$$\widetilde{S}_{1} = h_{1} r_{1} + h_{2} r_{2}.$$

 $\widetilde{s}_2 = h_2 r_1 - h_1 r_2$ (3)

となる。(1),(2)と(3)から

 $\widetilde{S}_1 = (\alpha_1^2 + \alpha_2^2) s_1 + h_1 n_1 + h_2 n_2$ $\widetilde{S}_2 = (\alpha_1^2 + \alpha_2^2) s_2 - h_1 n_2 + h_2 n_1$ (4) が得られる。これに、最大推定(ML detection)を行 うことにより送信シンボルを推定する。

この例で STBC は、2 ブランチの最大比合成 (maximal-ratio receiver combining: MRRC) と同じダ イバーシティ効果を得る。

最尤推定の代わりに、本方式では受信側の相関器 において、送信側で用いたものと同じ直交系列と合 成信号 \tilde{s}_i , \tilde{s}_i との相関をとる。そして、相関値より 送信系列を推定し重み一定符号器の復号を行った組 合せデータと、推定された相関値の正負符号から受 信データを得る。それぞれの組合せ・受信データか ら送信シンボルを判定する。

4.シミュレーション結果

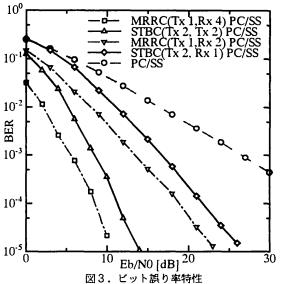
本報告では、レイリーフェージング通信路を想定 し、受信側で通信路推定が完全にできるものと仮定 した。シミュレーション諸元を表1に示す。

表1シミュレーション諸元

41.フマエレーフコン昭元	
直交系列数M	8 (Hadamard 行列)
選択系列数r	2
送信ビット数 k	6 ピット
MRRC	(Tx 1,Rx 2), (Tx 1, Rx 4)
STBC	(Tx 2,Rx 1) ,(Tx 2, Rx 2)

MRRC,STBC にそれぞれ PC/SS 方式を適用した。 シミュレーション結果を図3に示す。比較のために、 MRRC,STBCを適用しない PC/SS のグラフを示した。 STBC を適用しない場合に比べ、BER 10⁻³で比較 すると STBC(Tx 2,Rx 1)では約 10dB、STBC(Tx 2,Rx では約 18dB の利得が得られた。

また、それぞれ MRRC(Tx 1,Rx 2)から MRRC(Tx 1, Rx 4)、STBC(Tx 2,Rx 1)から STBC(Tx 2, Rx 2)に受信


アンテナ数を増やすことにより BER 特性において 改善が得られた。

MRRC に比べ、STBC は同じビット誤り率で見る と約3dBほど差がそれぞれ表れる。これはSTBC では、合計の送信電力を同じにするために2つのア ンテナ送信電力を分割しており、そのために生じた ものと考えられる。

5.まとめ

本報告では、計算機シミュレーションによる性能 評価を行った。STBC に PC/SS を適用できることが わかった。本方式を用いることで、受信アンテナ数 を減らしてもダイバーシティ効果が得られることが わかった。

今後の課題としては、通信路推定を行った場合に ついての性能評価、PC/SS 通信方式に誤り訂正符号 化を適用した場合に関する詳細な検討があげられる。

参考文献

- 丸林、中川、河野: "スペクトル拡散通信とその応用", 電子情 報通信学会, 1998.
- V. Tarokh, Nsehadri, and A.R.Calderbnk,"Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,"IEEE Trans. Information Theory, vol.44, No.2, pp. 744-765, March 1998
- Siavash M. Alamouti "A Simple Transmit Diversity Technique [3] for Wireless Communications" IEEE J.Select.Areas.Commun., vol.16,pp.1451-1458,Oct.1998
- 佐々木、朱,丸林:"並列組合せ SS 通信方式における誤り 制御に関する検討",信学論(A),J76·A,No.3,pp. 519·527,
- S. Sasaki, H. Kikuchi, J. Zhu and G. Marubayashi, "Performance of parallel combinatory spread spectrum communication systems in Rayleigh fading channel," IEICE Trans. Fundamentals, Vol.E77-A, no.6, pp.1028-1032, June 1994