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1. Introduction 
As regards the characteristic polarization stales of a radar target for the completely 

polarized wave case, Boerner et. a1. [1]. [2] have already derived eight characteristic 
polarization states based on the polarization transfonnation ratio, for which a radar receives 
optimum power. These states are two co-polarization maximums (CO-POL Maxs). two 
co-polarization nulls (CO-POL Nulls), two cross-polarization maximums (X-POL Maxs), 
two cross-polarization saddles (X-POL Saddles), and two cross-polarization nulls (X-POL 
Mins). Since the pair of X-POL Nulls and CO-POL Maxs is identical, there exisls a total 
of eight physical characteristic polarization states. 

The purpose of this paper is to present an alternative method for deriving the 
characteristic pOlarization Slates in the cross-polarized radar channel for the monostatic 
reciprocal case based on a Stokes veClOr formulation [3] - [5]. The Stokes vector 
fonnulation has an advantage in its applicability for finding solutions for both completely 
polarized wave and partially polarized wave cases. In the following, we show that the 
optimization procedure to the cross-channel power for the coherent case leads to an 
eigenvalue equation which explains the characteristic polarization state propenies 
mathematically and physically. 

2. Cross· polarized Channel Power 
Consider the case for which a monostatic radar transmits a completely polarized 

(coherent) wave and receives a coherent scattered wave from a target Assuming that the 
transmitted wave has unit magnitude, the wave can be expressed in tenns of Stokes vector 
as follows 

g~ = ( 1, Xl , X2, xJ), (1) 

where T denotes transpose, and Xi ( i =1, 2, 3 ) is the component of Stokes vector gtr 

which constitutes sub· Stokes vector X. 

(2) 
The radar is assumed to have two polarimetric receiving channels; the Erst channel has a 

co· polarized receiving antenna whose polarization state is the same as that of the 
transmitting antenna, the other has a cross· polarized antenna whose polarization state is 
orthogonal. The channel power depends on the transmitting polarization state and target 
scattering propeny such as shape, orientation, size, material, etc. Since the scattering 
propeny of a target cannot be controlled, we obtain the target infonnation by changing 
polarization state of transmitting wave in a polarization agiJe radar. The problem here is [0 

find polarization states for which the cross· polarized channel power is optimal for a given 
target. If we concentrate on polarimetric infonnation excluding amplitude dependency due 
to path length in a scattered wave, the power in the cross· polarized radar channel in tenns 
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of o-ansmitting Stokes vector is expressed [3} as follows 

[
I 0 0 0] 1 TO- I 0 0 -T -P'=2 g" 0 0 -10 [Mlg,,=t(-x [N] X+mool. 
o 0 0 1 

where [M] is defmed as Mueller matrix representing scattering property of target 

and we define 

_ mlO ffill ml2 ml3 

[
moo mol mo2 tno:J ] 

[M1 - ffi20 ffi2l ffi22 mZJ ' 
fi30 rnJI fi32 fi33 

[
mil ml2 m13 ] [mil ml2 ml3 ] 

[N] = ffi21 ffi22 ffi23 = ml2 run m23 . 

-m31 -m32 -ffiD ml3 m23 -ffi33 

It should be noted that the matrix [N] is syrruneoic for the monostatic reciprocal case. 

3. Eigenvalue Problem and Characteristic Polarization States 
We optimize the X-POL power (3) subject to the constraint 

(3) 

(4) 

(5) 

<I> = .J xl + Xl + xj - 1 = 0 . (6) 

This constraim is due to an assumption that the transmitted wave is coherent. The 
optimization procedure employing Lagrangian method wilh multiplier J.1 

ap, _"d<!> =0 ~ (i=I,2,3) 
aXj Chi 

leads to the following matrix equation 

This equation reduces to an eigenvalue equation of general fonn. 

[-N] X=AX 

(7) 

(8) 

(9) 

where A is the eigenvalue of X and is equal to J..L in this case. Mathematically, Px in eq(3) 
is essentially of Hermitian form, hence the optimization of Px leads to the eigenvalue 
equation (9). Since [- N] is also real and symmetric, we find from mathematical point of 
view that 

1. This 3 x 3 matrix equation has three real eigenvalues, 1..( . 1..2, and 1..3 

( AI > 1..1' 1..3) including degeneracy of 1..2 = 1..3 . 
2. The eigenvectors corresponding to the eigenValues are onhogonal to each other. 

The solutions to eq(9) provide stationary points in Px and characteristic polarization 
states for a given target [M]. From the frrsl propeny and from the fact that the matrix [-N] 
is of Hermitian fonn assoc iated with physical power, tbe largest eigenvalue A, gives the 

largest power (X-POL Max), tbe smallest eigenvalue A) gives the minimal (X-POL Min), 

while the intennediate eigenvalue 1..2 gives the second max or the second min (X-POL 
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Saddle) when A.2* A] . For the case of /...2 = 1.3' the X-POL Saddle points vanish and 
hence the corresponding power does not exist. The power in the characteristic polarization 
state associated with me eigenvalue is given by 

P,~tO.i+moo) (10) 

From the second propeny, the eigenvectors are onhogonal to each other, which, in 
turn, implies these solution sub-Stokes vectors are orthogonal. Since the basis vectors of 
sub-Stokes vector X constitute three rectangular coordinate axes of the Poincare sphere, 
solution vectors constitutes a new frame of rectangular coordinate in the Poincare sphere 
{2] due to this spatial property. Hence, this spatial orthogonality on the Poincar€ sphere 
always applies to the propeny of characteristic polarization states in the cross-polarized 
radar channel. 

For a given eigenvalue, say AI , we obtain two solution vectors under the condition (6), 

that is, if xi = (x .. X2, X3) is a solution vector, then xi = (-Xl, -X2. -x3 ) also becomes 

the solution vector. The condition X r X2 = - 1 is the polarimetric orthogonality condition 
for two polarization states. Since the tip of a solution vector on the Poincar6 sphere surface 
represents a characteristic polarization state, the tips of these two solution vectors must 
locate on the anti-padal points on the Poincare sphere representing orthogonal polarization 
states to each otber. Even though the polarization states are orthogonal, they produce the 
same power because the pair solution vectors are detennined from the same eigenValue. 

5. Numerical Examples 
If a Mueller matrix [M] is given as 

[ 

1.0000 0.0762 
[MJ ~ 0.0762 0.7682 

0.1399 0.3832 
-0.0264 0.0615 

then the eigenvalue equation becomes 

0.1399 
0.3832 
-0.2302 
-0.0596 

0.0264 ] 
-0.0615 
0.0596 ' 
-0.4619 

[
-0.7682 -0.3832 0.0615 ][ XI ] [ XI ] 
-0.3832 0.2302 -0.0596 X, ~ A x, . 
0.0615 -0.0596 -0.4619 X3 x3 

The eigenvalues and solution vectors are listed in Table I. The power spectrum as a 
function of the transmitting polarization state , tilt angle and ellipticity angle, is illustrated in 
Fig.l (a). One can find six stationary points which correspond to the characteristic 
polarization states (X-POL Maxs, X-POL Mins, and X-POL Saddles) in the cross­
polarized channel. These points are displayed on the Poincare polarization sphere in 
Fig.l(b). It should be noted in Fig.l(b) that each pair locates anti-pedal points on the 
sphere and that three lines connecting each pair intersect at the origin at right angle. 

6. Conclusion 
Although these characteristic polarization states derived by this method are exactly the 

same as those derived by Sinclair matrix optimization method using the polarization 
transfonnation ratio [2], the fonnulation associated with this eigenValue equation provides 
a comprehensive physical and mathematical interpretation. 
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AI = 0.3673 
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2
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Table I Eigenvalues, eigenvectors, and power 

power xI 

0.6837 - 0.3228 

0.6837 0.3228 

0.2673 0.0553 

0.2673 - 0.0553 

0.0491 0.9448 

0.0491 - 0.9448 

<aJ 

x2 x3 

0.9420 - 0.0917 

- 0.9420 0.0917 

0.1155 0.9918 

- 0.1155 - 0.9918 

0.3151 0.0894 

- 0.3151 - 0.0894 
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Fig.l Example of characteristic polarization states. (a) Cross-polarized channel power as a 
function of transmitting polarization state, (b) Otaracteristic polarization states on 
Poincar~ sphere. 
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