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1. Introduction

In recent years, high-resolution Direction-of-Arrival (DOA) estimation techniques with an array an-
tenna such as the MUSIC[1] have been applied in various fields. There are a lot of error factors when
array antenna is used for the DOA estimation. DOA estimation accuracy deteriorates significantly due
to the errors in actual measurements. When reference data for calibration are obtained in advance, the
error factors can be estimated. For azimuth only DOA estimation, a uniform linear array is often em-
ployed. However, when elevation angle dependency for DOA estimation exists in the array, the DOA
estimation performance of azimuth angle also deteriorates in general. To calibrate this error, we intro-
duce additive virtual elements to the linear array forming a virtual rectangular array, and propose a 2-D
calibration technique with the virtual array. In this report, we show the availability of the proposed 2-
dimensional calibration by the virtual array, and make a comparative analysis of calibration accuracy on
the conventional and the proposed calibration method, respectively, by experiment.

2. The Data Model

In this report, we employ an L-element linear array as shown in Fig.1. Assuming that K incoming
waves having azimuth angle of 6,(k = 1,---, K) impinge on the array, the received data vector x(¢) can
be written by

x() = As()+n(), 1)
A = [a6), - ,ak)], 2
a@) = [eiFhsn .. mi%disinggT )
s@ = [s100),--- ,SK(I)]T, @

where a(6) is the ideal mode vector (without error), A is the L X K mode matrix, s(¢) is the complex
amplitude vector, n(f) is the additive white Gaussian noise vector, and 7 denotes the transpose. In (3),
elevation angle of the waves are assumed to be zero. If elevation angle is varied and the array has angle
dependent error, the mode vector cannot be written by (3). To include this elevational effect, one may
modify the mode vector and mode matrix of the array as,

a(gk, ¢k) — [e—j%dl sin G cos¢k, - e—jZT”dL sin 6y cosqﬁk]T, (5)
A(o’ ¢) = [0(91, ¢1)’ Y a(gK’ ¢K)]a (6)
¢ = [¢1"" ’¢K]’ (7)
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3. The Conventional Calibration Method

If we have several data set for calibration data that contain one wave of known DOA in each, the
received data vector can be written by

x(0,¢) = GO, $)a@,)s@), ®)

where G is an L X L diagonal error matrix which contains error coeflicients of the antenna. In (8), we
ignore the noise vector for simplicity. The error matrix G can be written by

G@O.¢) = X©0.4)A7'0,9), 9)
X©0.¢) = diag{x(0,¢)}, (10)
A@0.¢) = diag{a(d, )}, (11)

If we extend the processing for all of calibration data x(6;,¢;), i = 1 ~ My, j = 1 ~ My, where My
and My are the number of calibration angles for # and ¢, respectively, we have G(6;, ¢;)s. In addition,
G(6, ¢) for arbitrary (0, ¢) can be estimated by interpolation with the nearest 4-Gs (G(6;, ), G(0i11, ¢),
G(0;,¢j+1) and G(Oi11, b j11))-

4. The Proposed Calibration Method

One of the other conventional calibration techniques uses a constant calibration matrix C instead of
G(0, ¢). If the errors have no azimuth (6) dependency, the L X L calibration matrix C(¢) holds,

X(0.9) = C(®)A@0.9), (12)

where X (6, ¢) is the calibration data matrix whose column includes diverse azimuth angle data of the
same ¢, and A(@, ¢) is the ideal mode matrix corresponding to the waves. Azimuth dependent error can
be compensated effectively by using the L x L matrix C(¢). However, we cannot remove elevational
error by this model. Therefore, to solve the problem, we propose to introduce additive virtual elements
to the linear array so as to form a virtual rectangle array. If we place Ly-elements and L,-elements in
the direction of the x-axis and z-axis, respectively, as shown in Fig.2, the L, X L, rectangular array is
obtained. Using this virtual array arrangement the received data vector can be written by

x(0,6) = Cexaex(0,9), (13)
acx (0, ¢i) = a0, ¢1) ® a(¢i), (14)
ax(ei, ¢l) — [e—jz/—f)q sin 0; cosqb,-, e e—jz,_fxlx sin 6; cosqb,-]’ (15)

a(p) = [T st (16)

where a.x is the mode vector of the virtual rectangle array, and ® denotes the Kronecker product. Deriva-
tion of the extended calibration matrix Cex can be done as follows. The calibration matrix C(¢;) in (12)
has the relation:

Cg) = Colul® $DA®,6)" (A6, $)A0,6:f)!
= CuPi, (17)
A(0.0) = [aex(O1.00). -+, aex(Ok, B, (18)

where 7 denotes the complex conjugate transpose. If we have N different calibration matrix C(¢;),
i=1,2,---,N, the next equation can be obtained:

[C(g1)--- C(@N)] = Cex [Py -+~ Py]. (19)

When we define Cy; and Py by the left-side matrices of C(¢;)s and right-side matrices of P;s, respec-
tively, the extended calibration matrix Cex can be derived by

Cex = Cal P (P P (20)

See [2] for more details.
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Table 1: Experimental Parameters

Element antenna Quarter-wavelength monopole
Number of real array elements 4
Number of virtual rectangle array elements 12(3x4)
Frequency 2.45 [GHz]
Element separation 0.5 wavelength
Wire radius of each element 0.5 [mm]
Impedance of each element 50 [Q]
DOA of reference waves —60° ~ +60°
(Azimuth angle) 9 waves with every 15° separation
DOA of reference waves 0° ~ +24°
(Elevation angle) 5 waves with every 6° separation

s(t)
/

 (t)

Figure 1: Uniform Linear Array

Figure 2: Uniform Rectangular Array

5. Experimental Results

In this section, we show experimental results to evaluate calibration performance of the conventional
and proposed calibration methods. Experimental parameters used in this experiment are listed in Table. 1.
We employ a 3 X 4 virtual rectangle array whose z-aligned virtual elements are assumed to be located on
+0.1251 with respect to the center of the adjacent real array element.

In the DOA estimation, two uncorrelated waves are employed. DOA of the first and the second
waves are (61, ¢1) = (10°,0°) and (6>, ¢») = (20°, 15°), respectively. Figure 3 shows the azimuth DOA
estimation results by the MUSIC algorithm. In these estimations, calibration waves for ¢ = 0° are
used, therefore elevational error is not calibrated. The dashed and solid line show the results calibrated
by the interpolated mode vectors (as shown in Sec.3 with ¢ = 0) and by the L X L calibration matrix
C(p = 0), respectively. On the other hand, Figure 4 shows the azimuth DOA estimation results of the
MUSIC algorithm by the conventional (Sec.3) and proposed (Sec.4) method. In this figure, peak value
at each ¢ is plotted as the function of azimuth angle (6). The estimated angles by the conventional and
the proposed method are (61,6,) = (10.4°,20.8°) and (01,6,) = (10.3°,19.6°), respectively, and the
accuracy of azimuth angle estimation is improved. Figures 5(a) and (b) show the 2-D MUSIC spectrum
by the conventional and the proposed method, respectively. The MUSIC spectrum with the conventional
method has several spurious peaks at non-DOA angles, then precise DOA estimation cannot be realized.
On the other hand, the MUSIC spectrum with the proposed method has two peaks clearly, and precise
DOA estimation can be realized.
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6. Conclusions

In this report, we proposed a 2-D calibration by using the virtual array, and show its availability
by the experiment. Peak characteristic of the MUSIC spectrum can be improved by the proposed 2-D
extended calibration. This means that DOA estimation and detection performance is enhanced by the
proposed calibration technique.
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Figure 3: Azimuth DOA estimation results by the
conventional calibration techniques (1-D search)
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