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1. Introduction 
 
 Model-based scattering decomposition [1-4] is an effective and popular tool for analyzing 
polarimetric SAR (PolSAR) data due to its clear physical explanation, convenient implementation, 
and easy visual interpretation. This technique aims to express the measured PolSAR data as the 
combination of different scattering mechanisms. However, the original three-component model 
proposed by Freeman and Durden [1] assumes azimuthal reflection symmetry and consequently 
does not use the complete information of the covariance or coherency matrix. Recent advances 
focused on increasing component numbers (e.g., the four-component model [2]) or reducing the 
number of knowns (e.g., by matrix rotation [3]), with the purpose to account for more elements in 
the matrix data. Nevertheless, it is to the best knowledge of the authors that finding a physically 
meaningful matrix expansion (i.e., model-based) that exactly (but not approximately) matches the 
measured data remains an unresolved task.  
 This paper is dedicated for addressing such a problem. We demonstrate that a coherency 
matrix can be exactly decomposed into three components respectively representing surface 
scattering, double-bounce scattering, and volume scattering. In particular, we show that solving for 
the expansion coefficients as well as the expansion matrices in fact amounts to a generalized 
eigenvalue problem. This equivalence guarantees that 1) positive powers are always maintained 
during the decomposition, and 2) the three-component expansion perfectly matches the measured 
data.  
 
2. Three-Component Scattering Model 
 
 In this paper, we consider decomposition of the coherency matrix (CM) of the PolSAR data 
format, which is the second order statistic obtained by ensemble averaging the Pauli vectors [3]. In 
general, under the condition of scattering reciprocity the CM is a 3×3 complex positive-semidefinite 
and conjugate symmetric matrix. The rank of the CM, however, depends on the number of Pauli 
vectors involved in the ensemble averaging, or in SAR terminologies, on the equivalent number of 
looks (ENL) [5]. In this paper, we assume that the ENL of the image is sufficiently large so that the 
CM is always regarded as full-ranked (i.e., rank 3) and consequently positive-definite. 
 The purpose of model-based scattering decomposition is thus to express the CM as the 
weighted sum of different scattering mechanisms. In particular, we study the three-component 
scattering scheme where the measure CM can be expanded to three components as follows [1, 4]: 

,
S S D D V V
f f f= + +T T T T          (1) 

where ࢀ is the measured CM; ࢀௌ, ࢀ஽, and ࢀ௏ denote the CMs for the surface scattering, double-
bounce scattering, and volume scattering, respectively; ௌ݂ , ஽݂ , and ௏݂  are the corresponding 
expansion coefficients which by physical meaning should be all positive numbers because they 
represent component powers. The original Freeman decomposition models the three scattering 
components with the following CMs [1, 4]:  
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In principle, the model parameters (ߙ and ߚ) as well as the expansion coefficients ( ௌ݂, ஽݂, and ௏݂) 
can be obtained by solving (1) according to (2). Nevertheless, this only results in an inexact solution 
to (1) because obviously the elements ଵܶଷ and ଶܶଷ in ࢀ cannot be accounted for by any of the three 
scattering models of (2).  
 In order to overcome such a problem, i.e., to obtain an exact decomposition of the measured 
CM, we consider a more generalized model in which no specific parametric forms is specified for ࢀௌ and ࢀ஽ as in (2). The only constraint for ࢀௌ and ࢀ஽ is that they are single-rank matrices. Note 
that this constraint in fact contains (2) as a special case. 
 
3. Exact Scattering Decomposition: A Generalized Eigenvalue Solution 
 
 In this section, we show how to solve the expansion of (1) under the constraint that both ࢀௌ 
and ࢀ஽ are single-rank matrices. First note that (1) can be rewritten as: 

.
V V S S D D
f f f− = +T T T T       (3) 

Then it is easy to know ࢀ െ ௏݂ࢀ௏ is at most a rank 2 matrix because both ࢀௌ and ࢀ஽ are rank 1. 
Consequently, the determinant of ࢀ െ ௏݂ࢀ௏ is bound to vanish, that is: 

0.
V V
f− =T T

         
(4) 

Note that the above equation is a cubic equation about ௏݂ which can be easily solved. However, it 
can be also seen that (4) actually corresponds to the following generalized eigenvalue problem: 

,
V V
f=Tx T x           (5) 

where ࢞ is the generalized eigenvector and ௏݂ is the generalized eigenvalue. Since both ࢀ and ࢀ௏ 
are positive-definite and conjugate symmetric, it can be proved that all the eigenvalues of (5) are 
positive (cf. Appendix). Then suppose ߣ୫୧୬ is the minimum eigenvalue and by letting ௏݂ ൌ  ୫୧୬, itߣ
can be proved that ࢀ െ ௏݂ࢀ௏ is a positive-semidefinite matrix (cf. Appendix). As a result, according 
to (3) the two other expansion coefficients ௌ݂, ஽݂ will be the two positive eigenvalues of ࢀ െ ௏݂ࢀ௏ 
with ࢀௌ and ࢀ஽ corresponding to the respective eigenvectors, i.e.: 

1 1 1 2 2 2
.H H

V V S S D D
f f fλ λ− = + = +T T u u u u T T    (6) 

Without loss of generality we assume ߣଵ ൒  ଶ to ௌ݂ and ஽݂ can be basedߣ ଵ andߣ ଶ. Assignment ofߣ
on the elements in ࢀ െ ௏݂ࢀ௏. If ଵܶଵ െ 2 ௏݂ ൐ ଶܶଶ െ ௏݂, surface scattering is considered dominant 
and we have ௌ݂ ൌ ,ଵߣ ஽݂ ൌ ,ଶߣ  ௌࢀ ൌ ࢛ଵ࢛ଵு, ஽ࢀ ൌ ࢛ଶ࢛ଶு; otherwise, the double-bounce scattering is 
dominant and we have ௌ݂ ൌ ,ଶߣ ஽݂ ൌ ,ଵߣ  ௌࢀ ൌ ࢛ଶ࢛ଶு, ஽ࢀ ൌ ࢛ଵ࢛ଵு . It can be verified that this 
derivation yields an exact solution to (1) with always positive expansion coefficients.  
 To conclude this section, the entire procedure for exact decomposition of the PolSAR CM 
data is summarized in Algorithm 1. 
 
Algorithm 1 Exact Decomposition of CM 
INPUT: ࢀ 
1:  Solve the generalized eigenvalue problem: ࢞ࢀ ൌ ௏࢞ࢀߣ ֜ ௏݂ ൌ   ୫୧୬ߣ
2:  Solve the eigenvalue problem of ࢀ െ ௏݂ࢀ௏: ߣଵ, ଵߣଶ ሺߣ ൒ ଶߣ ൐ 0ሻ, ࢛ଵ, ࢛ଶ 
4:  IF ଵܶଵ െ 2 ௏݂ ൐ ଶܶଶ െ ௏݂ 
5:   ௌ݂ ൌ ,ଵߣ ஽݂ ൌ ,ଶߣ  ௌࢀ ൌ ࢛ଵ࢛ଵு, ஽ࢀ ൌ ࢛ଶ࢛ଶு 
6:   ELSE 
7:    ௌ݂ ൌ ,ଶߣ ஽݂ ൌ ,ଵߣ  ௌࢀ ൌ ࢛ଶ࢛ଶு, ஽ࢀ ൌ ࢛ଵ࢛ଵு 
8:   ENDIF 
9:   ௌܲ ൌ ௌ݂, ஽ܲ ൌ ஽݂, ௏ܲ ൌ 4 ௏݂. 
OUPPUT:  ௌܲ, ஽ܲ, ௏ܲ , ,ௌࢀ  ஽ࢀ
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4. Experiment 
 
 In this section, the PolSAR data acquired by JAXA’s ALOS-PALSAR over the Kyoto city 
of Japan is selected for method validation. The original data format is the single-look complex 
(SLC) scattering matrix with a resolution of 30m in the range direction and 5m in the azimuth 
direction. In order to obtain the second order CM data, a spatial multilooking has been performed 
by ensemble averaging 12×2 (azimuth×range) pixels. The final image thus possesses an 
approximately square spacing of 60m in both the range and azimuth directions. Fig. 1 shows the 
decomposition result by the proposed method. For comparison, two more results by the original 
Freeman decomposition [1] and the Freeman decomposition with orientation angle compensation 
[4] have been also shown alongside in Fig. 1. It can be seen that the proposed method has the best 
discrimination in the urban area with the strongest double-bounce scattering power (red) therein. 
We also note that positive powers are guaranteed over the entire image. However, the original 
Freeman decomposition appears to over-estimate the volume scattering power by which parts of the 
urban areas are wrongly determined as volume scattering dominant (green). It also produces 
negative power for 131814 in total of 958460 pixels of the image. On the other hand, the Freeman 
decomposition with orientation angel compensation shows performance improvement with an 
increased double-bounce scattering power in urban areas and reduced number of negative powers 
(38103 in total of 958460 pixels) but negative power yet remains. 
 In addition, it needs to be emphasized again that the decomposition result by the proposed 
method is exact in that the solution gives a perfect match to the measured CM data. The Freeman 
decomposition either with or without orientation angle compensation only gives a partial fit to the 
data by ignoring certain elements.  
 
5. Conclusion 
 
 In this paper, we have proposed an exact method for decomposing the PolSAR CM data. 
We showed that the matrix expansion problem can be conveniently accomplished by solving a 
generalized eigenvalue problem. The method does not rely on azimuthal reflection symmetry and it 
gives an accurate expansion of the measured CM. Consequently, no information is lost in the 
decomposition result based on which further quantitative analysis can be reliably conducted. 
 
Appendix 
 
 In this appendix, we briefly prove that the eigenvalues of the generalized eigenvalue 
problem of (5) are all positive. First note that by eigen-decomposition ࢀ ൌ ுࢂࢳࢂ ൌ ࡹ ு whereࡹࡹ ൌ ଵࢳࢂ ଶ⁄ . Then (5) can be equivalently written as the following standard eigenvalue problem: 

1 ,H
V V

f− =M T My y              (A1) 
where ࢟ ൌ ௏ࢀ ு࢞. Recall thatࡹ ൌ diagሺ2,1,1ሻ is a positive-definite matrix. Then it can be easily 
proved that ࡹுࢀ௏ିଵࡹ is also positive-definite. Hence all its eigenvalues are positive.  
 Next we prove that if ߣ௠௜௡  is the minimum eigenvalue of (A1), then ࢀ െ ௏ࢀ୫୧୬ߣ  is 
positive-semidefinite. By eigen-decomposition of ࡹுࢀ௏ିଵࡹ  we have ࡹுࢀ௏ିଵࡹ ൌ ுࢁࢫࢁ . Thus ࢀ௏ ൌ  :ு. Consequently we haveࡹுࢁଵିࢫࢁࡹ

( )1min min
.H H

V
λ λ −− = − ΛT T MU I U M              (A2) 

Remember that ߣ୫୧୬ is the minimum eigenvalue in ࢫ. Hence it can easily proved that ࢀ െ  ௏ࢀ୫୧୬ߣ
is a positive-semidefinite matrix of rank 2.  
  

108



Acknowledgments 
 
 This work was in part supported by Space Sensing Project funded by the Ministry of 
Education of Japan and in part supported by the National Science Foundation of China (No. 
41171317). 
 
References 
 
[1] A. Freeman, S.L. Durden “A three-component scattering model for polarimetric SAR data,” 

IEEE Trans. Geosci. Remote Sens. vol. 36, pp. 963-973, 1998. 
[2] Y. Yamaguchi, T. Moriyama, M. Ishido, H. Yamada, “Four-component scattering model for 

polarimetric SAR image decomposition,” IEEE Trans. Geosci. Remote Sens. vol. 43, pp. 1699-
1706, 2005. 

[3] Y. Yamaguchi, A. Sato, W.M. Boerner, R. Sato, H. Yamada, “Four-component scattering power 
decomposition with rotation of coherency matrix,” IEEE Trans. Geosci. Remote Sens. vol. 49, 
pp. 2251-2258, 2011. 

[4] W. An, Y. Cui, J. Yang, “Three-component model-based decomposition for polarimetric SAR 
data,” IEEE Trans. Geosci. Remote Sens. vol. 48, pp. 2732-2739, 2010. 

[5] S.N. Anfinsen, A.P. Doulgeris, T. Eltoft, “Estimation of the equivalent number of looks in 
polarimetric synthetic aperture radar imagery,” IEEE Trans. Geosci. Remote Sens. vol. 47, pp. 
3795-3809, 2009. 

 
 

 
 

Figure 1: Decomposition Results by Proposed Method (Left), Original Freeman Decomposition 
(Middle), and Freeman Decomposition with Orientation Angle Compensation (Right). 
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