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Abstract—This paper investigates the parameter estimation
of compound Wishart distribution for statistical modeling of
polarimetric synthetic aperture radar data. We show that the
recently proposed method of matrix log-cumulant may lead to
non-invertible equations and cause unstable performances. In
order to overcome such difficulty, we proposed a Bayesian-based
method to re-estimate the log-cumulants. Simulation experiment
demonstrates that the proposed algorithm provides both im-
proved and stabler results. Finally, we present an application
of the new method for texture analysis of the Germany F-SAR
polarimetric data.

I. INTRODUCTION

Polarimetric synthetic aperture radar (POLSAR) is an im-
portant microwave remote sensing system. It is able to provide
a high-resolution map of the ground terrains and at the
same time polarimetric scattering matrices. However, since
POLSAR is a coherent system, the acquired scattering matrix
is subject to a noise-like phenomenon, often called speckle in
radar community [1]. Although strictly speaking, speckle is not
really noise but a useful signal, it becomes a nuisance in the
context of single-dataset acquisition and should be removed
for quantitative applications.

POLSAR data are characterized by both polarimetric and
spatial information. The former is affected by speckle and
the latter is related to the spatial pattern of the scene. In
order to statistically model their joint behaviors, a product
distribution has been popularly used [2]. It says that the
measured observable is the multiplication of one Wishart-
distributed random matrix and one positive random variable,
which independently account for the speckle structure and
texture variation (see Section II-B). Under this scheme, several
compound distributions have been derived. Particularly, the K-
Wishart distribution has been proved useful in a number of
applications such as image classification or segmentation [3].

Clearly, the accuracy of applying the compound Wishart
distribution depends on the accuracy of parameter estimation.
Recently, based on the matrix-variate Mellin transformation,
Anfinsen et al. [2] proposed a new parameter estimation
method using matrix log-cumulants. It appears to be promising
because of the incorporation of full polarimetric information.
However, as we will point out, this method may sometimes
suffer from non-invertible problem and so unstable perfor-
mances. This paper proposes a solution to overcome such
difficulty. It is organized as follows. In Section II, a brief
introduction of POLSAR data and the associated compound
Wishart distribution is provided. In Section III, we describe

the parameter estimation using the method of matrix log-
cumulant and propose the improved algorithm. In Section 1V,
experiments results with simulated and real POLSAR data are
given. Section V is the conclusion.

II. POLSAR DATA AND COMPOUND WISHART
DISTRIBUTION

A. POLSAR Data

In the horizontal/vertical (H/V) polarization basis, the POL-
SAR system measures, for each resolution cell, the scattering

matrix:
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where Sap represents the scattering coefficient in the A-
receive/B-transmit channel. Under the backscattering recip-
rocal condition, we have Syy = Sypg such that (1) can be
equally written by the vector:
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Both S and k represent the single-look data format of the
POLSAR measurement. The multi-look covariance matrix is

defined as:
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where k; is the i-th independent look and k' denotes its con-
jugate transpose. According to (3), Z is a 3x3 Hermitian and
positive-definite matrix. In this paper, we focus on statistical
modeling of such kind of data.
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B. Product Model

The product model for the multi-look covariance matrix is
given by [2]:

Z =YW, “4)

where W is a Hermitian and positive-definite random matrix
and 7 is a positive random variable that is independent of W.
‘W contains the speckle and polarimetric information and has
a probability density function (pdf) of the Wishart distribution
[4]:
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where d is the dimension of W which equals 3 as in this
paper; T'y(L) = md(d=1)/2 Hf;ol (L —4) is the multivariate
generalization of the gamma function; 3 = E(W) is the mean
covariance matrix. On the other hand, + is a unit-mean positive
random variable which characterizes textures of the scene. Its
pdf can be set flexibly but the gamma distribution [5] as given
in (6) has proved to be both useful and tractable.
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As a result of (4)—(6), the pdf of the observed covariance
matrix Z becomes [4]:
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where K, (-) represents the modified Bessel function of the
second kind. The above distribution is often called the com-
pound K-Wishart distribution due to its generalization of the
K-distribution in the single-variable case [2].

III. PARAMETER ESTIMATION OF K-WISHART
DISTRIBUTION

According to (7), it can be seen that the compound K-
Wishart distribution contains three parameters: L, 3, and v.
In SAR statistics, L is often called the equivalent number of
looks (ENL) indicating the speckle level of the multi-look data.
It can be convenient estimated from a homogeneous (non-
textured) area [6] and maintains the same for a given system.
Hence throughout this paper, L is assumed to be a known
constant. Then the remaining task is to estimate 3 and v.

A. Estimation of Mean Covariance Matrix

Suppose Z;(i = 1,2,,n) are identically and independently
distributed (i.i.d.) K-Wishart samples. According to (4), it is
easy to obtain:

E(Z) =E(y- W) =E(7) - E(W) = X. ®

where the fact that + is a unit-mean variable independent of
W is used. From (8) it is clear that 3 can be straightforwardly

estimated by:
> Z. ©)
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B. Estimation of Shape Parameter
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In [2], Anfinsen et al. proposed that by the matrix-variate
Mellin transform, the shape parameter v of the K-Wishart
distribution can be related to the second-order matrix log-
cumulant as follows:
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where (1) (-) is the trigamma function and the second-order
log-cumulant is estimated by:
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Inversion of v from (10) can be numerically accomplished by,
e.g., the Newton method. However, since ¢(1)(1/) > 0 for all
v > 0 [7], the solution to (10) exists if and only if

d-1
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Unfortunately, this condition cannot be always satisfied due
to the estimation uncertainty in (11). The situation becomes
especially worse with small samples. For example, simulation
by the true parameters of L = 3, v = 10, and
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indicates that with 49 independent samples, around 15%
of the cases lead to the invertible equation of (10). This
phenonmenon necessitates to modify 7 in order to ensure its
non-negativeness. The simplest method is to threshold it to
zero whenever it becomes negative. It means forcing v = oo
while the K-Wishart distribution degenerates to the standard
Wishart distribution. However, such treatment may lead to very
unstable results, as will be seen in Section IV-A.

In order to overcome the aforementioned problem, we
propose to re-estimate the posterior mean of 7 with Bayesian
method. Specifically, the posterior pdf of 7 is:

(A1) P(7m)
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where 71, stands for the mean of 7). Clearly, in order to impose
the non-negative constraint, a reasonable choice for p(7,,) is
the uniform distribution:

(14)
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where b is an arbitrarily large positive number. Next we turn
the attention to the conditional pdf p(7)|n,, ). Considering (11)
and (12), we may approximate p(7)|n,,) with a Gaussian dis-
tribution, an assumption justified by the central limit theorem:
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Consequently, in order to determine the functional form of
p(H|nm) it is necessary to obtain o2, i.e., the variance of
7 (or equivalently, the variance of &9{Z}). This can be
accomplished by a moment approach [8]. Specifically, if we
let z; = Z;(: = 1,2,...,n), the variance of £2{Z} can be
estimated by [8]:
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where 62 and éj represent the estimation of the variance and
kurtosis of z; which are respectively given by:
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Finally, we calculate the posterior mean:
Mm = /77mp(77m|77)d77m~ (20)

Since we do not have any prior knowledge of b other than
b > 0, we allow b — +o0 in (20) and perform the integration

to obtain: B
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where ®(-) is the cumulative function of the standard normal
distribution. It can be verified that 7,,, > 0 for any 7} € R and

& € R*. Therefore, instead of solving (10) we solve (22) as
below for the shape parameter.
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To sum, the parameter estimation algorithm for the K-
Wishart distribution is re-stated in Algorithm 1.

(22)

Algorithm 1 Parameter Estimation of K-Wishart Distribution
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9: M (v) = T Jd? = D
10: output: 3, v
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IV. EXPERIMENTAL RESULTS
A. Simulation Evaluation

In this subsection, simulated K-Wishart samples are gener-
ated to evaluate the proposed parameter estimation algorithm.
The sample size is fixed to 49 (corresponding to a 7x7
moving window if adaptive estimation is required in POLSAR
imagery). We choose L = 3 and X given in (13) as true
parameters. Using both the original and proposed methods,
the bias and standard deviation of ¥ are shown in Fig. 1 and
Fig. 2 when its true values varies from 5 to 50 . It should
be noted that by the orignal method, we mean estimation of
the shape parameter directly from (10) and those cases when
7 < 0 are discarded. From Fig. 1 and Fig. 2, large performance
fluctuations can be observed for the orignal method whereas a
significantly improved bias and standard deviation with much
stabler behavior are seen for the proposed method.

The reason behind the performance differences in Fig. 1 and
Fig. 2 can be explained by (21). Especially, the second term

on the right hand side of (21) may be considered as a variance
stablizer. It reduces the uncertainty of 7} due the introduction
of the prior distribution. Such reduction propagates through
(22) and finally leads to a stabler solution of .
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Fig. 1. Bias of the estimated shape parameter.
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Fig. 2. Standard deviation of the estimated shape parameter.

B. Application with Real POLSAR Data

We provide one application of the proposed parameter
estimation algorithm for texture analysis of real POLSAR
images. The data used here is acquired by the Germany F-SAR
system at the S-band. Fig. 3 displays the image color-coded in
Pauli-basis. Multi-look preprocessing has been performed by
combining 3x3 pixels to formulate the covariance matrix as
given by (3). Therefore, the nominal number of looks is nine
but it should be kept in mind that the ENL can be smaller than
this value due to the oversampling of the data. Nonetheless,
we will for the moment assume that L = 9. Later we will see
how to obtain a more accurate of the ENL estimation by using
the texture analysis result.



We assume that the multi-look covariance data follows the
K-Wishart distribution. The shape parameter of the K-Wishart
distribution v is then adaptively estimated by using a 7x7
moving window. Fig. 4 shows the map of the estimated shape
parameters using Algorithm 1 for each position of the image.
Comparing Fig. 3 and Fig. 4, it is easy to see that high values
are identified in homogeneous areas which indicates negligible
texture effects whereas in urban and forested areas, low values
are found, revealing the rich texture information therein.

Fig. 3. Pauli-basis color display of F-SAR data.

Fig. 4. Map of shape parameter estimation (in log-scale).

By thresholding the shape parameter homogeneous areas
can be identified. For example, those areas where v > 5L can
be considered as homogeneous and we may use the pixels
therein to refine the ENL estimation results obtained by [9].
Fig. 5 shows the histogram of the locally estimated ENL within
the areas satisfying v > 5L. We see that the mode of such
histogram approximately corresponds to 6.1. It is this value
that is the true ENL of the synthesized multi-look data.
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Fig. 5. Histogram of local ENL estimates in homogeneous areas.

V. CONCLUSION

In this paper, we have proposed a modified method of
matrix log-cumulant for parameter estimation of the K-Wishart
distribution that is significant in statistical POLSAR data mod-
eling. The new approach applies Bayesian estimation of the
second-order log-cumulant which ensures an always invertible
equation for the shape parameter. Importantly, using simulated
K-Wishart samples we have shown that the new method
presents improved and stabler performance than the original
one. Finally, we have demonstrated a promising application
of the proposed algorithm for texture analysis of the real
POLSAR imagery. It is found that with the extra texture
information, a more accurate ENL estimation can be obtianed.
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