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Abstract 
This paper presents an ECG data compression 
technique by the multiscale peak analysis. We 
define the multiscale peak analysis as the wavelet 
maxima representation of which the basic wavelet 
as the second derivative ofa symmetric smoothing 
function. The wavelet transform of an ECG shows 
maxima at the start, peak and stop points of five 
transient waves P through T. The number of 
wavelet maxima is expected to be less than the 
number of original data samples. The wavelet 
maxima can be enough to reconstruct original 
signals precisely. The wavelet maxima 
representation can hence lead to the ECG data 
compression and analysis. The compressed data 
still keep the peaks of QRS waves, abnormal 
behavior search will be feasible in practice. The 
result of the compression shows that a normal 
ECG data is compressed by a factor 10. 

1. Introduction 
Electrocardiogram (ECG) is generated by 

the ambulatory measurement. Recorded samples 
are more than 10 millions a day. The amount of 
ECG data is so large that two problems can arise: 
data analysis and data compression. 

Computerized analysis algorithms"] have 
been proposed to detect abnormal behavior in 
the ECG data. Especially, analyzing QRS 
complexes is important for the diagnosis. QRS 
detection algorithms['] which measure the peak 
locations in QRS complexes are hence developed. 

The other problem is data compression to 
record long period data in a small-capacity 
storage. ECG data compression can be divided 
into two groups: direct methods and transform 
methods[21. 

Direct methods are performed by irregular 
sampling of original waveforms in the time- 
domain. Transform methods are based on 
orthogonal transforms (Fourier, Walsh, K-L, DCT 

or wavelets 16') and achieve higher compression 
ratio than direct methods. It is not yet possible 
to detect QRS waves from compressed data by 
orthogonal transform methods. If compressed 
data still keep the peaks of QRS waves, abnormal 
behavior search will be more feasible in practice. 
Also, it needs neither reconstrction nor additional 
QRS detection processing. 

In this paper, we introduce an ECG data 
compression algorithm which has following 
advantages: 

(1) Compression ratio is higher than direct 

(2)QRS complexes can be detected in com- 
methods. 

pressed data. 

The proposed ECG compression technique 
is based on the wavelet maxima repre~entation[~-'. 
The wavelet maxima representation was 
introduced for multiscale edge analysis[31. In 
image analysis, the basic wavelet is defined as 
the first derivative of a smoothing functionr3! 
The wavelet maxima represent the location of 
edges. In ECG analysis, we define a basic wavelet 
as the second derivative of a symmetric smoothing 
function. With this wavelet, a wavelet maxima 
represent the location of a peak of the waveform. 
The wavelet transform of an ECG shows maxima 
at the start, peak and stop points of five transient 
waves P through T. The number of wavelet 
maxima is expected to be less than the number 
of original data samples. The wavelet maxima 
representation can hence lead to the ECG data 
compression and analysis. In section 2, we explain 
wavelet transforms and the wavelet maxima 
representation. Section 3 describe the ECG data 
compression by the wavelet maxima representa- 
tion. Compression ratio and reconstruction 
precision are also given. 
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2. Wavelet Maxima Representation 
The discrete dyadic wavelet transform is 

defined as a inner product between wavelets g,(x) 
and a signal J ( X ) [ ~ - ~ .  

QRS 

Wi (n) = cQi(x - n), fix)) (1) 

where < * > denotes the inner product. gi(x)  
are produced from the basic wavelet g(x> by 
scaling with factor 2.'. A signalf(x) is represented 
by y ( n )  (i=l through M) and a smoothed signal 
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S,(n) = (2-Mh(2-Mx-n) , f ix>)  (2) 22 
where h(x) is the smoothing function. The wavelet 
maxima is defined at a point n where the wavelet 
transform satisfies 

and 
Wi(n- lif I wj(n) t3b) s&) 

for Wi(n) > 0, 

and 
Wi(ll+ 11) 2 W&Z) (4a) 

Wi(n-1) 2 wi(n) (4b) 

for Wi(n) < 0. The wavelet maxima point n in 
the ith scale is denoted by mi, k. The wavelet 
maxima representation describes the original 
signal by wavelets maxima Y(n) at n = mi, and 
a discrete smoothed signal s,(n). 

In detection of QRS complexes, a peak 
detector is a filter of which impulse response is 
the second derivative of a symmetric smoothing 
function'". The peak detection is done by seeking 
maxima points of the filter output. We extend 
the single peak detector to a set of peak detectors 
which is defined at several resolution. If the 
impulse response is an admissible wavelet, and if 
the multiscale peak detectors are derived by 
scaling, then we obtain a characterization of a 
wavelet maxima representation. Hence the 
multiscale peak analysis describes the evolution 
of peaks across different scales and entire sets 
ot  those multiscale peaks can reproduce the 
original waveforms. 

Fig. I shows the multiscale peak analysis of 
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Fig. 1 Multiscale peak analysis of an ECG 
waveform 

an ECG waveform. Generally one-period 
segment in ECG waveforms consists of a transient 
part and a slowly-varying part. The transient is 
an abrupt large amplitude changes called Q, R 
and S. The long-period trends are slow and called 
P and T. Thus the multiscale peak analysis of P 
and T waves produces a few peaks only in larger 
scales. In contrast, a fast change component such 
an Q, R and S leads to a sequence of several 
peaks across coase-to-fine scales. If the 
orthogonal wavelet transform is applied to peak 
point detection, the sampling grid of the 
orthogonal wavelets is too coarse to detect peak 
point. 

The reconstruction from the wavelet maxima 
representation is executed by iterative projection 
between two closed convex spaced' 'I. One ot 
these spaces is the linear space of all the possible 
wavelet transforms. The other is characterized 
by the 
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Fig. 2 
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maxima representation. The iteration of projec- 
tions guarantees the convergence to the 
intersection of two spaces. Every function in 
the intersection approximates the wavelet 
transform of the original signal. We can hence 
get an approximation of the original signal by 
the inverse wavelet transform of the result of 
iteration. 

3. ECG Data Compression 
We then apply the wavelet maxima 

representation to an ECG data taken from MIT- 
BIH Arrhthmia ECG Record 103. The ECG is 
recorded by the Holter ECG recorder during 
about 30 minutes at sampling rate 360- with 
wordlength 1 1  bits. 

Every maximum is quantized to 8 bits. 
Maxima that shrinks to zero after quantization 
are removed. We record the wavelet maxima by 
following process. 

( 1  ) Seek a maximum of the wavelet transform 
at the largest scale. If the maximum was 
found, it is defined as a root maximum and 
record its position and value. If the root 
maximum was not found, seek the root at 
next finer scale. 

0 1 0 0  200 300 

Time 

Fig. 3 Original waveform 
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Fig. 4 Reconstruction after compression 

At next finer scale, seek maxima of which 
sign is same as the root maximum. Next, 
select a maximum which is the closest to the 
root maximum. If the closest maximum is 
found, record its value and the distance 
between its position and the position of the 
root maximum. Next, repeat seeking of a 
maximumu at next finer scale. If a maximum 
is not found, record a seek-stop code and 
repeat from (1). 

.2 shows the seeking process. Every maxima 
locates around peaks of the original signal. We 
hence record the position difference for efficient 
entropy coding, The Lempel-Ziv coding is 
applied for position, distance and amplitude data 
respectively. The smoothed signal sM(n) is 
recorded in the form of the position and the 
value of extrema. s,(n) is also recovered through 
the convex projection. The original waveform 
and the reconstructed waveform are shown in 
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Fig. 3 and Fig. 4. The rejection of small maxima 
by quantization reduces the noise and preserves 
sharp variations of Q, R and S waves. In this 
case, the amount of data decreased to 1/10. 

Fig 5. plots the compression ratio versus 
reconstruction error in terms of percent mot- 
mean-square difference (PRD). In this case, we 
quantized value of maxima to 8 ,7  or 6 bits. The 
solid curve indicates the PRD vs by SAPA (Scan- 
Along Polygonal Approximation) The SAPA 
is the piecewise linear approximation and widely 
used for ECG data compression. In compression 
by SAPA, Lempel-Ziv coding is also applied. 
In all compression, PRD of the proposed method 
is 3 or 2% superior to SAPA. 

5. Conclusion 
In this paper, we proposed an ECG 

compression technique by the wavelet multi-scale 
peak analysis. ECG waveforms, especially the 
swift changes in Q,R and S waves are characterized 
in the multiscale peaks. The compression ratio 
is higher than the direct method (SAPA). Since 
the compressed data still keep the peaks of QRS 
waves, abnormal behavior search will be feasible. 
The wavelet multi-scale peak analysis will lead 
an unified approach to both ECG compression [4] Z. Berman and J. S. Baras, "Properties of 
and analysis. the multiscale maxima and zero-crossings 
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Fig. 5 Compression ratio vs reconstruction error 
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