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Abstract. We study three-quark and multi-quark potentials in SU(3) lattice QCD. From accurate
calculations for more than 300 different patterns of 3Q systems, the static ground-state 3Q poten-
tial V g�s�

3Q
is found to be well described by the Coulomb plus Y-type linear potential (Y-Ansatz)

within 1%-level deviation. As a clear evidence for Y-Ansatz, Y-type flux-tube formation is ac-
tually observed on lattices in maximally-Abelian projected QCD. For about 100 patterns of 3Q
systems, we perform accurate calculations for the 1st excited-state 3Q potential V e�s�

3Q by diagonal-
izing the QCD Hamiltonian in presence of three quarks, and find a large gluonic-excitation energy
∆E3Q �V e�s�

3Q �V g�s�
3Q

of about 1 GeV, which gives a physical reason on success of the quark model.
∆E3Q is found to be reproduced by “inverse Mercedes Ansatz”, which indicates a complicated bulk
excitation for the gluonic-excitation mode. We study also tetra-quark and penta-quark potentials in
lattice QCD, and find that they are well described by the OGE Coulomb plus multi-Y type linear
potential, which supports the flux-tube picture even for multi-quarks. Finally, narrow decay width
of low-lying penta-quark baryons is discussed in terms of the QCD string theory.
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1. INTRODUCTION

Quantum chromodynamics (QCD), an SU(3) gauge theory, was first proposed by
Yoichiro Nambu [1] in 1966 as a candidate for the fundamental theory of strong in-
teraction, just after introduction of a “new" quantum number, “color" [2]. In spite of
its simple form, QCD creates thousands of hadrons and leads to various interesting
nonperturbative phenomena such as color confinement [3, 4, 5] and dynamical chiral-
symmetry breaking [6]. Even at present, it is very difficult to deal with QCD analytically
due to its strong-coupling nature in an infrared region. Instead, lattice QCD has been
applied as a direct numerical analysis for nonperturbative QCD.

In 1979, the first application [7] of lattice QCD Monte Carlo simulations was done for
the inter-quark potential between a quark and an antiquark using the Wilson loop. Since
then, the study of inter-quark forces has been one of the important issues in lattice QCD
[8]. Actually, in hadron physics, the inter-quark force can be regarded as an elementary
quantity to connect the “quark world" to the “hadron world", and plays an important role
to hadron properties.

In this paper, we perform detailed and high-precision analyses for inter-quark forces
in three-quark and multi-quark systems with SU(3) lattice QCD [9, 10, 11, 12, 13, 14,
15, 16, 17], and try to extract the proper picture for hadrons including multi-quarks.
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2. THE THREE-QUARK POTENTIAL IN LATTICE QCD

In general, three-body forces are regarded as residual interaction in most fields in
physics. In QCD, however, the three-body force among three quarks is a “primary"
force reflecting SU(3) gauge symmetry. In fact, the three-quark (3Q) potential is directly
responsible for structure and properties of baryons, similar to the relevant role of the QQ̄
potential for meson properties. Furthermore, the 3Q potential is a key quantity to clarify
quark confinement in baryons. However, in contrast to the QQ̄ potential [8], there were
only a few pioneering lattice studies [18] done in 80’s for the 3Q potential before our
study in 1999 [9], in spite of its importance in hadron physics.

As for the functional form of the inter-quark potential, we note two theoretical argu-
ments at short and long distance limits.

1. At short distances, perturbative QCD is applicable, and therefore the inter-quark
potential is expressed as the sum of two-body OGE Coulomb potentials.

2. At long distances, the strong-coupling expansion of QCD is plausible, and it leads
to the flux-tube picture [19].

Then, we theoretically conjecture the functional form of the inter-quark potential as the
sum of OGE Coulomb potentials and a linear potential based on the flux-tube picture,

V �
g2

4π ∑
i� j

T a
i T a

j

�ri� r j�
�σLmin �C� (1)

where Lmin is the minimal value of the total length of flux-tubes linking static quarks.
Of course, it is highly nontrivial that these simple arguments on UV and IR limits of
QCD hold for intermediate distances. Nevertheless, lattice QCD indicates that the QQ̄
potential V

QQ̄
�r� is well described with this form as [8, 10, 11]

V
QQ̄

�r� ��
A

QQ̄

r
�σ

QQ̄
r�C

QQ̄
� (2)

For 3Q systems, there appears a junction which connects three flux-tubes from three
quarks, and Y-type flux-tube formation is expected [10, 11, 19, 20, 21]. Therefore, the
(ground-state) 3Q potential is expected to be the Coulomb plus Y-type linear potential,
i.e., Y-Ansatz,

V g�s�
3Q ��A3Q ∑

i� j

1
�ri� r j�

�σ3QLmin �C3Q� (3)

where Lmin is Y-shaped flux-tube length.
For more than 300 different patterns of spatially-fixed 3Q systems, we calculate the

ground-state 3Q potential V g�s�
3Q

from the 3Q Wilson loop W3Q using SU(3) lattice QCD
[10, 11, 12, 13] with the standard plaquette action at the quenched level on various
lattices, i.e., (β=5.7, 123�24), (β=5.8, 163�32), (β=6.0, 163�32) and (β � 6�2, 244).
For accurate measurements, we construct ground-state-dominant 3Q operators using
the smearing method [10, 11]. Note that the lattice QCD calculation is completely
independent of any Ansatz for the potential form.
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To conclude, we find that the static ground-state 3Q potential V g�s�
3Q

is well described by
the Coulomb plus Y-type linear potential (Y-Ansatz) within 1%-level deviation [10, 11].
To demonstrate this, we show in Fig.1(a) 3Q confinement potential V conf

3Q , i.e., the 3Q
potential subtracted by its Coulomb part, plotted against Y-shaped flux-tube length Lmin.
For each β , clear linear correspondence is found between 3Q confinement potential V conf

3Q
and Lmin, which indicates Y-Ansatz for the 3Q potential.

Recently, as a clear evidence for Y-Ansatz, Y-type flux-tube formation is actually
observed in maximally-Abelian (MA) projected lattice QCD from measurements of the
action density in spatially-fixed 3Q systems [14, 22]. (See Figs.1 (b) and (c).) In this
way, together with recent several analytical studies [23, 24], Y-Ansatz for the static 3Q
potential seems to be almost settled.
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FIGURE 1. (a) 3Q confinement potential V conf
3Q , i.e., the 3Q potential subtracted by its Coulomb part,

plotted against Y-shaped flux-tube length Lmin at β =5.8, 6.0 and 6.2 in the lattice unit. (b) A bird’s-eye
view and (c) a contour map of the lattice QCD result for Y-type flux-tube formation in a spatially-fixed
3Q system in MA projected QCD. The distance between the junction and each quark is about 0.5 fm.

3. GLUONIC EXCITATIONS IN 3Q SYSTEMS

In this section, we study excited-state 3Q potentials and gluonic excitations in 3Q
systems using lattice QCD [12, 13]. The excited-state 3Q potential V e�s�

3Q is the energy
of the excited state in the static 3Q system. The energy difference ∆E3Q � V e�s�

3Q �V g�s�
3Q

between V g�s�
3Q

and V e�s�
3Q is called as the gluonic-excitation energy, and physically means

the excitation energy of the gluon-field configuration in the static 3Q system. In hadron
physics, the gluonic excitation is one of interesting phenomena beyond the quark model,
and relates to hybrid hadrons such as qq̄G and qqqG in the valence picture.

For about 100 different patterns of 3Q systems, we calculate the excited-state po-
tential in SU(3) lattice QCD with 163� 32 at β=5.8 and 6.0 at the quenched level by
diagonalizing the QCD Hamiltonian in presence of three quarks. In Fig.2, we show the
1st excited-state 3Q potential V e�s�

3Q and the ground-state potential V g�s�
3Q

. The gluonic exci-
tation energy ∆E3Q �V e�s�

3Q �V g�s�
3Q

in 3Q systems is found to be about 1GeV in hadronic
scale as 0�5fm� Lmin � 1�5fm. Note that the gluonic excitation energy of about 1GeV is
rather large compared with excitation energies of quark origin. This result predicts that
the lowest hybrid baryon qqqG has a large mass of about 2 GeV.
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FIGURE 2. The 1st excited-state 3Q potential V e�s�
3Q and the ground-state 3Q potential V g�s�

3Q
. The lattice

results at β � 5�8 and β � 6�0 well coincide apart from an irrelevant overall constant. The gluonic
excitation energy ∆E3Q �V e�s�

3Q �V g�s�
3Q

is about 1GeV in hadronic scale as 0�5fm� Lmin � 1�5fm.

Inverse Mercedes Ansatz for Gluonic Excitations in 3Q Systems

Next, we investigate the functional form of ∆E3Q �V e�s�
3Q �V g�s�

3Q
, where the Coulomb

part is expected to be canceled between V g�s�
3Q

and V e�s�
3Q . After some trials, as shown in

Fig.3, we find that the lattice data of the gluonic excitation energy ∆E3Q � V e�s�
3Q �V g�s�

3Q
are relatively well reproduced by “inverse Mercedes Ansatz” [13],

∆E3Q �
K
L

Ȳ

�G� L
Ȳ
�

3

∑
i�1

�
x2

i �ξ xi �ξ 2 �
1
2 ∑

i �� j

PiQ j �xi � PQi� ξ � PPi�� (4)

where L
Ȳ

denotes “modified Y-length" defined by a half perimeter of “Mercedes form"
as shown in Fig.3(a). As for (K, G, ξ ), we find (K � 1�43, G� 0.77 GeV, ξ � 0.116 fm)
at β � 5�8, and (K � 1�35, G � 0.85 GeV, ξ � 0.103 fm) at β � 6�0.

Inverse Mercedes Ansatz indicates that the gluonic-excitation mode is realized as a
complicated bulk excitation of the whole 3Q system.
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FIGURE 3. (a) Mercedes form for a 3Q system. (b) Lattice QCD results of the gluonic excitation energy
∆E3Q�V e�s�

3Q �V g�s�
3Q

in 3Q systems plotted against modified Y-length L
Y

at β � 5�8. (c) The same at β =6.0.
The dashed curve denotes inverse Mercedes Ansatz.

Behind Success of the Quark Model

Here, we consider connection between QCD and the quark model in terms of gluonic
excitations [12, 13, 14, 15]. While QCD is described with quarks and gluons, the simple
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quark model successfully describes low-lying hadrons even without explicit gluonic
modes. In fact, gluonic excitations seem invisible in low-lying hadron spectra, which
is rather mysterious.

On this point, we find the gluonic-excitation energy to be about 1GeV or more, which
is rather large compared with excitation energies of quark origin. Therefore, contribu-
tion of gluonic excitations is considered to be negligible and dominant contribution is
brought by quark dynamics such as spin-orbit interaction for low-lying hadrons. Thus,
the large gluonic-excitation energy of about 1GeV gives a physical reason for the invis-
ible gluonic excitation in low-lying hadrons, which would play a key role for success of
the quark model without gluonic modes [12, 13, 14, 15].

In Fig.4, we present a possible scenario from QCD to the massive quark model in
terms of color confinement and dynamical chiral-symmetry breaking (DCSB).
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FIGURE 4. A possible scenario from QCD to the quark model in terms of color confinement and DCSB.
DCSB leads to a large constituent quark mass of about 300 MeV, which enables non-relativistic treatment
for quark dynamics approximately. Color confinement results in color flux-tube formation among quarks
with a large string tension of σ � 1 GeV/fm. In the flux-tube picture, gluonic excitations are described as
flux-tube vibrations, which are expected to be large in hadronic scale. Indeed, the large gluonic-excitation
energy of about 1 GeV observed in lattice QCD leads to absence of gluonic modes in low-lying hadrons,
which plays a key role to success of the quark model without gluonic excitation modes.

4. TETRA-QUARK AND PENTA-QUARK POTENTIALS

In this section, we perform the first study of multi-quark potentials in SU(3) lattice QCD,
motivated by recent experimental discoveries of multi-quark hadrons, i.e., X(3872) and
Ds�2317� as candidates of tetra-quark (QQ-Q̄Q̄) mesons, and Θ��1540�, Ξ���1862�
and Θc�3099� as penta-quark (4Q-Q̄) baryons [25]. As unusual features of multi-quark
hadrons, their decay widths are extremely narrow, e.g., Γ�X�3872�� � 2�3MeV (90%
C.L.). For physical understanding of multi-quark hadrons, theoretical analyses are nec-
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essary as well as experimental studies. In particular, for realistic model calculations of
multi-quark hadrons, it is required to clarify inter-quark forces such as the quark con-
finement force in multi-quark systems based on QCD.

OGE Coulomb plus Multi-Y Ansatz

As a theoretical form of the multi-quark potential, we present one-gluon-exchange
(OGE) Coulomb plus multi-Y Ansatz [15, 16, 17] based on Eq.(1), i.e., the sum of OGE
Coulomb potentials and the linear confinement potential proportional to multi-Y-shaped
flux-tube length Lmin.

On the 4Q potential V4Q, we investigate QQ-Q̄Q̄ systems where two quarks locate at
(r1, r2) and two antiquarks at (r3, r4) as shown in Fig.5. For connected 4Q systems, a
plausible form of V4Q is OGE plus multi-Y Ansatz [17],

Vc4Q ��A4Q��
1

r12
�

1
r34

��
1
2
�

1
r13

�
1

r14
�

1
r23

�
1

r24
���σ4QLmin �C4Q� (5)

while V4Q for disconnected 4Q systems would be approximated by “two-meson" Ansatz
as V

2QQ̄
�V

QQ̄
�r13��V

QQ̄
�r24�.

On the 5Q potential V5Q, we investigate QQ-Q̄-QQ systems where the two quarks
at (r1, r2) and those at (r3, r4) form 3̄ representation of SU(3) color, respectively, and
the antiquark locates at r5, as shown in Fig.5. For the 5Q system, OGE Coulomb plus
multi-Y Ansatz is expressed as V5Q �V Coul

5Q �σ5QLmin �C5Q with the Coulomb part as

V Coul
5Q ��A5Q��

1
r12

�
1

r34
��

1
2
�

1
r15

�
1

r25
�

1
r35

�
1

r45
��

1
4
�

1
r13

�
1

r14
�

1
r23

�
1

r24
��� (6)

We theoretically set �A4Q�σ4Q� and �A5Q�σ5Q� to be �A3Q�σ3Q�� �0�1366�0�046a�2�
in the 3Q potential [11]. Note that there is no adjustable parameter in the theoretical
Ansätze apart from an irrelevant constant.

d

d1 d

d 4

3

2

Q 1

Q 2 Q 4

H1 2H

h

Q 3

d

d1 d

d

h h1

4

3

2

Q Q 31

Q 2 Q 4

Q

2

5

H1 2H
d

d1 h h1 2

2 d4

d3

Q

Q

Q

3

Q 1

Q 2 4

5
H1

H2

FIGURE 5. (a) A planar tetra-quark (QQ-Q̄Q̄) configuration. (b) A planar penta-quark (4Q-Q̄) configu-
ration. (c) A twisted penta-quark configuration with Q1Q2 � Q3Q4. We here take d1 � d2 � d3 � d4 � d.

Multi-quark Wilson loops and multi-quark potentials

In QCD, static multi-quark potentials can be obtained from the corresponding multi-
quark Wilson loops. As shown in Fig.6, we define the 4Q Wilson loop W4Q and the 5Q
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Wilson loop W5Q [15, 16, 17] by

W4Q �
1
3

tr�M̃1L̃12M̃2R̃12�� W5Q �
1
3!

εabcεa�b�c�

M̃aa�

�L̃3L̃12L̃4�
bb�

�R̃3R̃12R̃4�
cc�

� (7)

where L̃i� R̃i�M̃�M̃j �i � 1�2�3�4� j � 1�2� are given by

L̃i� R̃i�M̃�M̃j � Pexp�ig
�

Li�Ri�M�Mj

dxµ Aµ�x�� � SU�3�c� (8)

i.e., L̃i� R̃i�M̃�M̃j �i � 3�4� j � 1�2� are line-like variables and L̃i� R̃i �i � 1�2� are staple-
like variables, and L̃12� R̃12 are defined by

L̃a�a
12 �

1
2

εabcεa�b�c�

L̃bb�

1 L̃cc�

2 � R̃a�a
12 �

1
2

εabcεa�b�c�

R̃bb�

1 R̃cc�

2 � (9)

Note that both the 4Q Wilson loop W4Q and the 5Q Wilson loop W5Q are gauge invariant.
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FIGURE 6. (a) The tetra-quark (4Q) Wilson loop W4Q. (b) The penta-quark (5Q) Wilson loop W5Q.

We calculate the multi-quark potentials (V4Q, V5Q) from the multi-quark Wilson loops

(W4Q, W5Q) in SU(3) lattice QCD with β � 6�0 (i.e., a � 0�1fm) and 163 � 32 at
the quenched level [15, 16, 17], using the smearing method to reduce excited-state
components. In this paper, we investigate planar and twisted configurations for multi-
quark systems as shown in Fig.5, and show the results for d1 � d2 � d3 � d4 � d and
h1 � h2 � h�2.

Figure 7 shows the 4Q potential V4Q [17]. For large h, V4Q coincides with the energy
Vc4Q�d�h� of the connected 4Q system. For small h, V4Q coincides with the energy
V

2QQ̄
� 2V

QQ̄
�h� of the “two-meson" system composed of two flux-tubes. Thus, we

get the relation of V4Q � min�Vc4Q�d�h��2V
QQ̄

�h��, and find the “flip-flop" between
the connected 4Q system and the “two-meson" system around the level-crossing point
where these two systems are degenerate as Vc4Q�d�h� � 2V

QQ̄
�h�.

In Fig.8, we show the 5Q potential V5Q. The lattice data denoted by the symbols
are found to be well reproduced by the theoretical curve of OGE plus multi-Y Ansatz
[15, 16, 17] with �A5Q�σ5Q� fixed to be �A3Q�σ3Q� in the 3Q potential [11].

As a remarkable fact, we find universality of the string tension and the OGE result
among QQ̄, 3Q, 4Q and 5Q systems as [10, 11, 12, 13, 14, 15, 16, 17]

σ
QQ̄

� σ3Q � σ4Q � σ5Q�
1
2

A
QQ̄

� A3Q � A4Q � A5Q� (10)

This result supports the flux-tube picture on the confinement mechanism even for multi-
quark systems [15, 16, 17].
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FIGURE 7. The 4Q potential V4Q in the lattice unit for planar 4Q configurations with d � 1 (left) and
d � 2 (right) as shown in Fig.5(a). The symbols denote lattice QCD results. We add the theoretical curves
for the connected 4Q system (the solid curve) and for the “two-meson" system (the dashed curve).
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FIGURE 8. The 5Q potential V5Q in the lattice unit for planar configurations (left) and twisted con-
figurations (right) as shown in Figs.5(b) and (c). The symbols denote lattice QCD results. We add the
theoretical curve of OGE plus multi-Y Ansatz with �A5Q�σ5Q� fixed to be �A3Q�σ3Q�.

5. QCD STRING THEORY FOR PENTA-QUARK DECAY

Our lattice QCD studies on various inter-quark potentials indicate the flux-tube picture
for hadrons, which is idealized as the QCD string model. In this section, we consider
penta-quark dynamics, especially for its extremely narrow width, in terms of the QCD
string theory.

The ordinary string theory mainly describes open and closed strings corresponding to
mesons and glueballs, and has only two types of reaction process as shown in Fig.9:

1. String breaking (or fusion) process.
2. String recombination process.

On the other hand, the QCD string theory describes also baryons and antibaryons
as Y-shaped flux-tubes, which is different from the ordinary string theory. Note that
appearance of Y-type junctions is peculiar to the QCD string theory. Accordingly, the
QCD string theory includes third reaction process as shown in Fig.10:

3. Junction (J) and anti-junction (J̄) pair creation (or annihilation) process.

Through this J-J̄ pair creation process, baryon and anti-baryon pair creation can be
described.

As a remarkable fact in the QCD string theory, decay process (or creation process)
of penta-quark baryons inevitably accompanies J-J̄ creation [26] as shown in Fig.11.
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FIGURE 9. Reaction process in the ordinary string theory: string breaking (or fusion) process (left) and
string recombination process (right).

FIGURE 10. Junction (J) and anti-junction (J̄) pair creation (or annihilation) process peculiar to the
QCD string theory.

Here, the intermediate state is considered as a gluonic-excited state, since it clearly
corresponds to a non-quark-origin excitation.

Our lattice QCD study indicates that such a gluonic-excited state is a highly-excited
state with an excitation energy above 1GeV. Then, in the QCD string theory, the decay
process of penta-quark baryons near the threshold can be regarded as a quantum tun-
neling, and therefore the penta-quark decay is expected to be strongly suppressed. This
leads to a very small decay width of penta-quark baryons.

FIGURE 11. A decay process of penta-quark baryons in the QCD string theory. The penta-quark decay
process inevitably accompanies J-J̄ creation, which is a kind of gluonic excitation.

Now, we try to estimate the decay width of penta-quark baryons near the threshold in
the QCD string theory. In the quantum tunneling as shown in Fig.11, the barrier height
corresponds to the gluonic excitation energy ∆E of the intermediate state, and can be
estimated as ∆E � 1GeV. The time scale T for this tunneling process is expected to be
hadronic scale as T � 0�5 	 1fm, since T cannot be smaller than the spatial size of the
reaction area due to causality. Then, the suppression factor for this penta-quark decay
can be roughly estimated as

�exp��∆ET ��2 � �e�1GeV��0�5�1�fm�2 � 10�2 	 10�4� (11)

Note that this suppression factor �exp��∆ET ��2 appears in the decay process of low-
lying penta-quark baryons for both positive-parity and negative-parity states.
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For the decay of Θ��1540� into N and K, the Q-value Q is Q � M�Θ���M�N��
M�K� � �1540� 940� 500�MeV � 100MeV. In ordinary sense, the decay width is
expected to be controlled by Γhadron � Q� 100MeV. Considering the extra suppression
factor of �exp��∆ET ��2, we get a rough order estimate for the decay width of Θ��1540�
as Γ�Θ��1540��� Γhadron��exp��∆ET ��2 � 1	 10�2MeV.
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