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Starch biosynthesis

Sucrose and starch biosynthesis 
Arrival of sucrose into terminal sink organs is a dynamic 

process that can take either a symplastic and/or apoplastic 
route depending on the type of organ and developmental 
state (Patrick, 1997). In either case, the overall ability of the 
heterotrophic organ to attract photoassimilates is strongly 
dependent on the capacity of individual cells to import, 
metabolize and store sucrose, ultimately determining plant 
productivity and crop yield (Ho, 1988).

In organs where apoplastic sucrose unloading occurs, 
different routes can be envisaged for the subsequent uptake 
into storage cells: (a) hydrolysis of sucrose by an apoplastic 
invertase and subsequent uptake of glucose and fructose, 
and/or (b) import of sucrose by plasmalemma bound carriers. 
In addition, sucrose can also be taken up by endocytosis and 
transported to the central vacuole (Etxeberria et al., 2005) 
Subsequent conversion of internalized sucrose to starch 
involves a series of enzymatic reactions wherein sucrose 
synthase predominantly controls sucrose breakdown and 
production of a C6 starch precursor molecule entering the 
amyloplast (Baroja-Fernández et al., 2003). Results obtained 
from sycamore cultured cells, potato tuber slices and 
developing barley endosperms treated with potent endocytic 
inhibitors suggest the presence of an important pool of 
apoplastic sucrose produced by endocytosis  prior to its 
subsequent conversion into starch in heterotrophic organsn 
of both mono- and di-cotyldonous plants (Baroja-Fernández et 
al., 2006) 

Pathway of starch biosynthesis
Genetic and biochemical data demonstrate that starch 

biosynthesis is mediated by at least four enzymes: ADP-
glucose pyrophosphorylase (ADP: α-D-glucose-1-phosphate 
adenyltransferase, AGPase, EC 2.7.7.27), starch synthase 
(ADP-glucose:(1,4)-α-D-glucan 4-α-D-glucosyltransferase, SS, 
EC 2.4.1.21 and 2.4.1.242), starch-branching enzyme ((1,4)-α- 
D-glucan: (1 ,4) -α-D-glucan 6-α-D-( (1 ,4) -α-D-glucano) -
transferase SBE, EC 2.4.1.18), and starch-debranching enzyme 
(DBE; EC 3.2.1.68 for isoamylase-type and EC 3.2.1.41 for 
pullulanase-type). In starch biosynthesis, ADP-glucose is the 
glucose donor for α-glucan elongation and is formed from 
ATP and glucose 1-phosphate (G1P) by AGPase. SS catalyzes 
the transfer of glucose moiety from ADP-glucose to the non-
reducing end of an α-glucan and is responsible for the 
elongation of amylose and amylopectin molecules. SBE 
catalyzes hydrolysis of an α-1,4-linkage and the subsequent 
transfer of an α-1,4 glucan to form an α-1,6 branching point. 
Hence, the catalytic actions of these enzymes synthesize non-
branched and branched glucans; the sequential actions by SS, 
theoretically synthesize non-branched glucans and a 
cooperative actions of SS and SBE produces  branched 
glucans. In fact, the analysis of glucans synthesized by E. coli 
cells co-expressing maize SSs and SBEs suggested that the 
function of SS and SBE is important for determining the 
structure of α-glucan, but the in vivo synthesis of amylose 
and amylopectin is not so simple. Sugary-1 (su1) mutants 
isolated form maize and rice have the reduced starch content 
and accumulation of water-soluble and highly branched 
phytoglycogens. Since the su1 loci encoded the genes for 
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Summary
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isoamylases, the formation of the highly ordered amylopectin 
in vivo has been believed to require the actions of as well SSs 
and SBEs as of isoamylases. For more detailes reviews on 
starch biosynthesis are recommended (e.g. Smith, 1999; 
Kavakli et al., 2000; Kossmann and Lloyd, 2000; Myers et al., 
2000; Nakamura, 2002; Ball and Morell, 2003). Although 
participation of various players in plant starch biosynthsis 
has been demonstrated, much remains to be elucidated about 
the regulation of each of these players, the interactions 
between the players and the influence of environment, finally.

 Regulation of AGPase

Function of small and large subunits
Plant AGPase is a heterotetrameric enzyme composed of 

a pair of small and large subunits that are encoded by 
distinct genes (Smith-White and Preiss, 1992). Comparison of 
amino acid sequences of AGPases from various plant species 
showed that there are (i) about 90% identity among small 
subunits, (ii) 50-70% identity among large subunits, and (iii) 
40-50% identity between small and large subunits, suggesting 
that both subunit genes were diverged from a common 
ancestral gene (Ballicora et al., 2005). Both subunits have 
evolved differentially with a different function. Small subunits 
have kept the catalytic ability, while large subunits have 
acquired the modulatory function without catalytic ability by 
discarding the critical residues for catalysis.

Most plant AGPases are allosterically regulated by small 
effector molecules. Analysis of potato tuber AGPase 
expressed in E. coli cells indicated that both subunits are 
required for the optimal enzyme activity but have non-
equivalent roles in enzyme function (Iglesias et al., 1993). The 
large subunit plays more of regulatory role while the small 
subunit has both catalytic and regulatory functions (Kavakli 
et al., 2002; Frueauf et al., 2003; Cross et al., 2004). In the 
absence of large subunits, small subunits are able to self-
assemble to yield a homotetrameric enzyme that still shows 
the catalytic ability and regulatory properties (Ballicora et al., 
1995).

Allosteric and redox regulation of AGPase
AGPase is a key regulatory enzyme of plant starch 

biosynthesis as it controls carbon flux via the allosteric and 
redox regulation. The importance of AGPase activity in 
starch metabolism is readily seen in genetic mutants 
defective in small or large subunit such as the shrunken2 and 
brittle2 of maize (Giroux and Hannah, 1994) and the adg1 and 
adg2 of Arabidopsis (Wang et al., 1997 and 1998). Seeds from 
the maize mutants have a high sugar content and the 
decreased starch levels, and leaves from the Arabidopsis 
mutants accumulate a low or no transitory starch. A similar 
situation can be observed by antisense expression of AGPase 
gene (Müller-Röber et al., 1992).

The plant AGPases are allosterically activated by 
3-phosphoglycerate (3-PGA) and inhibited by orthophosphate 
(Pi) (Sivak and Preiss, 1998). The increased 3-PGA levels by 

carbon fixation and decreased Pi levels by photophosphorylation 
during light period activate AGPase activity and promote the 
biosynthesis of transitory starch, while the decreased 3-PGA 
and phosphate metabolites during dark period inactivate 
AGPase activity and suppress starch biosynthesis. Likewise 
leaf enzymes, AGPases from potato tubers and maize and 
rice endosperms are also allosterically regulated by 3-PGA 
and Pi (Sowokinos and Preiss, 1982; Plaxton and Preiss, 1987; 
Sikka et al., 2001). In contrast, AGPases from barley and 
wheat endosperms and pea and bean embryos show a little 
sensitive or insensitive to 3-PGA and Pi (Ballicora et al., 2004). 
It is completely unclear, but in maize mutant with AGPase 
allosteric mutation of decreased sensitivity to Pi, the seed 
weights have 15% increase of normal seeds, suggesting the 
allosteric regulation of AGPases is important for storage 
starch synthesis in maize (Giroux et al., 1996).

Recently, the crystallographic structure of potato tuber 
AGPase was elucidated (Jin et al . , 2005). The three-
d imensional  structure was of  an inact ive form of 
homotetrameric enzyme, but provided some insight into the 
conformational change by the binding of allosteric effectors. 
Site-directed mutagenesis study indicated that the mutations 
in the ATP binding site reduce the affinity for not only ATP 
but also G1P and 3-PGA. Interestingly, the ATP binding site 
on the structural model locates between the allosteric effector 
binding site and oscillatory structure, suggesting that the 
ATP binding to large subunit functions like an allosteric 
effector and causes a conformational change. Structural 
analysis of a heterotetramer will lead to better understanding 
of the allosteric regulatory property.

Redox regulation is an essential system for maintaining 
the homeostasis of the reduction/oxidation state in a cell. The 
ferredoxin-thioredoxin system plays a central role for light-
dependent regulation of some chloroplastic enzymes. Reduced 
thioredoxin reduces the disulfide bonds of various target 
enzymes and consequently their enzyme activities are 
modulated (Buchanan and Balmer, 2005). Potato tuber 
AGPase has an intermolecular disulfide bridge between the 
cysteine residues of the two small subunits. Reduction of the 
disulfide bond is achieved by thioredoxin due to the increases 
in affinity for ATP and in sensitivity to 3-PGA (Ballicora et al., 
2000). Recent studies showed that sugars provide the redox 
activation of potato tuber AGPase via two signaling pathways 
involving in a sucrose non-fermenting (SNF)-related kinase 
and hexokinase (Tiessen et al., 2002 and 2003). Likewise, leaf 
AGPase of Arabidopsis was also found to be subject to redox 
activation by not only light but also sugars including 
trehalose 6-phosphate (Hendriks et al., 2003; Kolbe et al., 2005; 
Lunn et al., 2006). The cysteine residue is conserved in small 
subunits of leaf AGPases except for the monocot endosperm 
forms that are cytosolic enzymes (See the following section, 
“Subcellular localization of AGPases”). While some issues, 
such as identification of AGPase activating thioredoxin 
isoforms and elucidation of sugar-signaling pathways for 
redox regulation, still remain to be solved, the results 
obtained to date suggest that plant leaf AGPases are redox-
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regulated via light- and sugar-dependent signals and the 
reduction leads to the conformational change for effective 
binding of allosteric effectors.

Subcellular localization of plant AGPases in non-photosynthetic 
tissues

Currently, at least two distinct types of AGPases, 
cytosolic and plastidial forms, are believed to be in cereal 
endosperms (Fig. 1) (Beckles et al., 2001; James et al., 2003). 
Thorbjørnsen et al. (1996) indicated that an alternative 
splicing of the first exon for the barley AGPase small subunit 
gene gives rise to two distinct transcripts whose products 
locate in the plastid and cytosol in the barley endosperm. 
Similar observations are obtained from the small subunit 
genes for wheat and rice AGPases (Burton et al., 2002a; 
Ohdan et al., 2005). Unlike these plants, maize utilizes two 
different genes for AGPase small subunits of cytosolic and 
plastidic forms (Hannah et al., 2001).

The regulation of the cytosolic AGPases is not fully 
understood. As explained above, conformational change by 
reduction of the cysteine residues is required for the effective 
allosteric regulation of AGPase in leaves.  However, the 
cysteine residue involved in the redox regulation is not 
conserved in the cytosolic AGPase small subunits of cereal 
endosperms. Because AGPases from barley and wheat 
endosperms are insensitive to allosteric effectors, these 
enzymes are likely not regulated by redox. In contrast, rice 
and maize cytosolic AGPase activities are affected by the 
allosteric molecules.  This suggests that these AGPases are 
allosterically regulated without the reduction or that another 
cysteine residue engages with the redox regulation.

ADP-glucose translocator
The occurrence of extraplastidial AGPases implies that 

ADP-glucose formed in cytosol needs to be transferred to 
plastids via a carrier protein. Endosperms of the maize 
brittle1 (bt1) mutant display a low starch phenotype, since 
they accumulate 20% of the normal starch content.  In 
addition, this mutant accumulates high levels of ADP-glucose 
(10-fold higher than wild-type), strongly suggesting that BT1 
is an ADP-glucose translocator. The deduced amino acid 
sequence showed the BT1 protein shares homology with a 
mitochondrial adenine nucleotide transporter (Shannon et al., 
1998). Recently ADP-glucose transporter from wheat 
endosperm amyloplast has been shown to transport ADP-
glucose from cytosol in exchange for ADP (Bowsher et al., 
2007). A comprehensive study on gene expression for 
putative rice plastidic translocators revealed that one 
(OsBT1-1) of three BT1 homolog genes is exclusively 
expressed in the seeds, and the other two are predominantly 
in photosynthetic tissues, indicating the possibility that 
OsBT1-1 is responsible for the transport of ADP-glucose from 
the cytosol to amyloplasts in rice endosperms (Toyota et al., 
2006). Interestingly, a homolog of BT1 is also found in non-
cereal plants such as potato and Arabidopsis. Although the 
physiological advantage of synthesizing ADP-glucose in 
cytosol of cereal endosperms is not fully understood, the 
mechanism is speculated to be responsible for the carbon 
partitioning from sucrose into starch without the utilization 
of hexose phosphates to other metabolisms (Beckles et al., 
2001; James et al., 2003).

ADP-glucose producing sucrose synthase
Sucrose synthase (UDP-D-glucose:D-fructose 2-glucosyl-

Fig.1 Sucrose metabolism and starch biosynthesis in plant cells.
　TP, triose phosphate; HXP, hexose phosphate; G1P and G6P, glucose 1-phosphate and glucose 6-phosphate; Glc, glucose; Mal, 
maltose; ADPG, ADP-glucose; AGPase, ADP-glucose pyrophsophorylase. Open and closed circles, TP and ADPG transporter; 
open hexagon, hexose and maltose transporter; closed hexagon, HXP transporter.
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transferase, SUS, EC 2.4.1.13) is a highly regulated enzyme 
(Alexander and Morris, 2006) composed of subunits with a 
molecular size of about 90 kDa (Nguyen-Quoc et al., 1990) that 
catalyzes the reversible conversion of sucrose and UDP to 
UDP-glucose and fructose. Different isoforms of SUS are 
temporally and spatially expressed in distinct parts of the 
plant. In maize for instance, SUS-SH1 is predominant in 
developing kernels, while SUS1 is highly expressed in the 
leaf elongation zone, internode cortex tissue, and etiolated 
shoots and roots. SUS2 is present in all tissues, but 
particularly abundant in kernels at various pollination stages. 
Furthermore, SUS1 and SUS-SH1, but not SUS2, are 
associated with membranes in vivo. The isoform complex of 
SUS1/SUS2 might have roles in both cytosolic and 
membrane-associated sucrose metabolism (Duncan et al., 
2006). In rice leaf tissues, RSUS1 (SUS-SH1) was localized in 
the mesophyll while RSUS2 (SUS1) was in both the phloem 
and the mesophyll. RSUS2 was ubiquitously expressed in the 
developing seed tissues. In contrast, RSUS1 was present in 
the aleurone layers of developing seeds, and RSUS3 (SUS2) 
was localized predominantly in the endosperm (Wang et al., 
1999).

SUS is thought to be the major determinant of sink 
strength in starch storing organs (Zrenner et al., 1995; 
Chourey et al., 1998). Although UDP is the most preferred 
nucleotide diphosphate for the enzyme reaction of SUS, 
several studies have revealed that ADP serves as an effective 
acceptor substrate to form ADP-glucose (Murata et al., 1966; 
Delmer, 1972; Su, 1995; Baroja-Fernández et al., 2003). Baroja-
Fernández et al. (2003) demonstrated that maximal activities 
of ADP-glucose synthesizing SUS are several fold higher than 
those of AGPase in developing barley seeds. Furthermore, in 
the S-112 SUS antisensed and starch deficient potato tuber 
(Zrenner et al., 1995), the contents of ADP-glucose and UDP-
glucose were shown to be 35% and 30% of these measured in 
wild-type plants, whereas both G1P and G6P contents were 
normal as compared with the wild-type. On the other hand, 
SUS-overexpressed potato leaves exhibited a marked increase 
of both ADP-glucose and starch (Muñoz et al., 2005). Although 
some controversy still remains (Neuhaus et al., 2005; Baroja-
Fernández et al., 2005), these observations suggested that 
SUS catalyzes the de novo production of ADP-glucose linked 
to starch biosynthesis in both sink and source tissues.

ADP-glucose hydrolytic enzymes
ADP-glucose pyrophosphatase (AGPPase) catalyzes the 

hydrolytic breakdown of ADP-glucose to G1P and AMP 
(Rodríguez-López et al., 2000). This activity also occurs in E. 
coli and is catalyzed by the enzyme designated as adenosine 
diphosphate sugar pyrophosphatase (ASPP) (Moreno-Bruna et 
al., 2001). Sequence analysis revealed that ASPP is a member 
of the ubiquitously distributed group of nucleotide 
pyrophosphatases designated as “nudix” hydrolases. The 
Nudix hydrolases constitute a family of metal-requiring 
phosphoanhydrases that catalyze the hydrolytic breakdown 
of nucleotide diphosphates linked to some other moiety such 

as a phosphate, sugar or nucleoside (Bessman et al., 1996). 
They possess a conserved GX5EX7REUXEEXGU motif where 
U is usually isoleucine, leucine or valine. ASPP activity in E. 
coli is inversely correlated with the intracellular glycogen 
content. Furthermore, ASPP-overexpressing cells display a 
glycogen-less phenotype (Morán-Zorzano et al., 2007). These 
strongly suggest that ASPP plays a role in preventing carbon 
flow toward glycogen biosynthesis in bacteria. Recently, 
Nudix hydrolases have been identified and characterized in 
Arabidopsis and potato plants that catalyze the hydrolytic 
breakdown of ADP-glucose (Muñoz et al., 2006). Leaves of 
transgenic plants overexpressing plant ASPPs displayed a 
starch-deficient phenotype, indicating that plant ASPPs have 
access to a sizable pool of ADP-glucose linked to starch 
biosynthesis.

Members of other ADP-glucose hydrolytic enzymes 
(designated as nucleotide pyrophosphatase/phosphodiestrase 
(NPP)) were purified and characterized from several plant 
species (Rodríguez-López et al., 2000; Nanjo et al., 2006). NPPs 
were glycoproteins, however, one of them (NPP1) was shown 
to occur in the plastidial compartment (Nanjo et al., 2006). 
Rice genome possesses six NPP encoding genes (Mitsui 
unpublished data). The physiological functions of NPPs are 
still unknown. 

Biosynthesis of amylose and amylopectin

Starch synthases
Starch synthase (SS) is responsible for the elongation of  

α-1,4-glucan chains of starch molecules. Multiple SS isozymes 
have been found in various plant species and classified into 
five classes (GBSSI, SSI, SSII, SSIII, and SSIV) based on their 
primary sequences (Ball and Morell, 2003). Each SS isozyme 
has a distinct enzymatic property and a different role in the 
starch biosynthesis, and the physiological role of GBSSI 
members is understood than that of other SS members. In 
2005, Nomenclature Committee of the International Union of 
Biochemistry and Molecular Biology assigned a new enzyme 
code (EC 2.4.1.242) to the members for GBSSI class because of 
the specificity of glucosyl donors and the physiological role 
for amylose biosynthesis.

GBSSI (granule-bound starch synthase I) is encoded by 
the waxy (wx) allele. Genetic mutants lacking GBSSI (e.g. 
Shure et al., 1983; Hovenkamp-Hermelink et al., 1987; Denyer 
et al., 1995) and transgenic plants with expression of an 
antisense RNA eliminating GBSSI (Shimada et al., 1993; 
Kuipers et al., 1994) synthesize starch without amylose or 
with a reduced amylose content. These observations show 
that GBSSI, which is exclusively bound to starch granules, is 
responsible for the synthesis of amylose (Denyer et al., 2001). 
In addition, GBSSI is also involved in amylopectin synthesis 
(Myers et al., 2000). Some experiments in which ADP-glucose 
was supplied to the isolated starch granules have indicated 
that GBSSI can transfer a glucose residue to the extra-long 
chains in the amylopectin fraction (Baba et al., 1987; Denyer 
et al., 1996). Moreover, the mutant of Chlamydomonas lacking 



53

Mitsui&Itoh&Hori&Ito: Biosynthesis and Degradation of Starch

GBSSI activity generates amylose-free starch with the altered 
structure of amylopectin (Delrue et al., 1992). Hence, GBSSI 
contributes to synthesizing amylose and amylopectin, 
although it is still unclear how the synthesis of amylose by 
GBSSI is accomplished and how the GBSSI protein is entirely 
associated with starch granules.

The nature of GBSSI enzyme is not fully understood, 
because it is difficult to prepare the native enzyme from 
starch granules. Several attempts to solubilize an active 
GBSSI protein from starch granules have been unsuccessful. 
Maize GBSSI solubilized from endosperm starch granules by 
α-amylase showed the low specific activity compared with 
GBSSI within granules (Macdonald and Preiss, 1985). 
Recentry the recombinant potato GBSSI was prepared by 
using E. coli and the some properties was shown in vitro 
(Denyer et al., 1999; Edwards et al., 1999a). Potato GBSSI 
under the granule-bound state showed high affinity against 
malto-oligosaccharide (MOS) and added glucose residues by a 
processive manner (Denyer et al., 1996), whereas the 
recombinant enzyme extended MOSs by a distributive 
manner in vitro with a low affinity against the substrate. 
However, the presence of amylopectin not only stimulated 
the elongation reaction of MOSs by the recombinant GBSSI, 
but also shifted the manner from a distributive to a 
processive mode. It was also shown that the effector response 
by amylopectin was highly activated in the presence of a 
higher amylopectin concentration. From these results, a 
hypothesis was proposed for MOS-primed amylose synthesis 
in plants: amylose can be synthesized from MOS by GBSSI in 
the amylopectin matrix because GBSSI has MOS elongating 
activity even in the semicrystalline in the presence of a high 
concentration of amylopectin, while the other enzymes, 
particularly branching enzymes and/or starch synthases 
except GBSSI can not act in such conditions (Zeeman et al., 
2002a) . An alternative model was also proposed for 
amylopectin primed amylose synthesis from in vitro 
experiments using starch granules of Chlamydomonas (van 
de Wal et al., 1998; Ball et al., 1998). In this model, it was 
hypothesized that GBSSI can use amylopectin chains as 
substrates for amylose synthesis, and the elongated chains 
can be cleaved and released by GBSSI itself or by an 
unidentified glucan hydrolase. When amylopectin was used 
as a primer, recombinant kidney bean GBSSI caused 
elongation of amylopectin chains processively, but did not 
release the elongated chains (Ito et al., unpublished data), 
suggesting that GBSSI can be responsible for the formation 
of extra-long chains but cannot hydrolyze the elongated 
chains in vitro. Although the amylopectin priming model 
might be an innovative idea, it is useful for the identification 
of protein(s) with a hydrolase activity.

In contrast to GBSSI members, other SS members 
contribute to amylopectin synthesis and might not directly 
participate in amylose synthesis. Despite the simple 
enzymatic reaction of SS isozymes, the elongation of each 
chain for amylopectin construction is very daedal because of 
the occurrence of the heterogeneous substrates and various 

SS and SBE isozymes. GBSSI isozyme(s) is believed to be 
included in all higher plants that synthesize starches with 
amylose, whereas other SS members are likely distributed in 
different combinations according to plant species. For 
example, SSI and SSII in maize endosperm (Macdonald and 
Preiss, 1985; Cao et al., 2000), SSI in rice seed (Baba et al., 
1993), SSII in pea embryo (Edwards et al., 1996), and SSII and 
SSIII in potato tuber (Marshall et al., 1996) are showed 
predominant activity for soluble starch synthases.

In the rice mutant that is deficient in SSI isozyme by the 
insertion of retrotransposon, the endosperm amylopectin 
exhibited a decrease in chains with the degree of 
polymerization (DP) 8 to 12 and an increase in chains with 
DP 6-7 and 16-19 (Fujita et al . ,  2006) . Likewise, the 
amylopectin in the Arabidopsis mutant lacking the SSI 
isozyme showed a decrease in short chains with DP 8-12 
(Delvallé et al., 2005). From these results, SSI isozyme is 
believed to be involved in the synthesis of DP 8-12 chains 
from short outer chains of the A or B1 chain in amylopectin. 
Analysis of pea rug5 mutants with SSII activities eliminated 
indicated that the amylopectin had altered branching 
patterns with decreased amounts of intermediate-sized 
glucans and increased amounts of short-chain glucans (Craig 
et al., 1998). Similar results were observed in amylopectin 
from barley mutants lacking starch synthase IIa activity 
(Morell et al., 2003) and antisense transgenic potato plants 
with reduced SSII activity (Edwards et al., 1999b; Lloyd et al., 
1999). These results suggest that SSII isozymes play a role in 
the synthesis or maintenance of intermediate-sized glucan 
chains in amylopectin.

Transgenic potato tuber expressing antisense RNA for 
SSIII have an altered amylopectin with increased proportion 
of extra long chains, which are synthesized by GBSSI 
isozyme (Edwards et al., 1999b; Lloyd et al., 1999), and 
therefore result in fissuring of starch granules (Edwards et 
al., 1999b; Fulton et al., 2002). A similar increase in the 
amount of longer length chains in amylopectin is observed in 
Arabidopsis mutants lacking the SSIII isozyme, but the 
transitory starch granules from the mutants have almost the 
same morphology as those from wild type (Zhang et al., 2005). 
Maize dull1 mutants that are deficient in SSIII isozyme (Gao 
et al., 1998) synthesize amylopectin with increased branching 
frequency, but no fissure was observed in the starch granules 
(Shannon and Garwood, 1984; Wang et al., 1993). The 
morphological differences in starch granules from these 
plants seem to be attributed to the distinct contribution of 
SSIII isozyme in plant species: SSIII is the major SS isozyme 
in potato tuber, but not in maize endosperm and Arabidopsis 
leaves. Interestingly, reduction or elimination of SSIII activity 
in these plants resulted in a higher phosphate content of the 
starches (Lloyd et al., 1999; Zhang et al., 2005). Although the 
biochemical reason is unclear, the higher phosphate level 
appears to be involved in the synthesis of excess extra-long 
chains (Abel et al., 1996; Zhang et al., 2005). Despite analysis of 
these mutants and transgenic plants, the detailed role of the 
SSIII isozyme for starch biosynthesis remains to be 
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elucidated. Because the occurrence of the SSIV isozyme in 
several plants has been shown by actually quite recent 
genome projects, there is very little information on the 
isozyme. However, from more recent analysis of SSIV 
deficient mutants of Arabidopsis, the priming of starch 
granule formation was predicted as a possible function of 
SSIV isozyme (Roldán et al., 2007).

Genetic mutants and/or transgenic plants with 
eliminated or reduced activity of one or more SS isozyme(s) 
has made a great contribution to understanding of the roles 
of the isozyme(s). However, it is difficult to comprehend the 
precise function of each SS isozyme because of the pleiotropic 
effects of the absence or reduction of SSIII activity on other 
starch biosynthetic enzymes (Singletary et al., 1997; Edwards 
et al., 1999b). An alternative approach to understanding the 
role of each SS isozyme in starch synthesis is to investigate 
the biochemical properties of each SS isozyme.  However, 
preparation of each native SS isozyme from plant materials 
has been difficult due to low abundance, multiple isozymes, 
and instability. By recent progress in genetic engineering, 
several recombinant SS enzymes have been expressed in E. 
coli and characterized (Imparl-Radosevich et al., 1998 and 
1999; Knight et al., 1998; Edwards et al., 1999a; Commuri and 
Keeling, 2001; Isono et al., 2003; Senoura et al., 2004). 
Combining the results from in vitro enzymatic properties and 
in vivo analysis of genetic mutants and transgenic plants 
might provide insight into the roles of SS isozymes and 
amylopectin biosynthesis. All the SS isozymes are composed 
of an N-domain and C-domain. The C-domain is a catalytic 
domain and is highly conserved in all SS members, whereas 
no significant similarity is found in the N-domains between 
different classes. The N-domain of SSIII members functions 
as a glucan-binding domain (Machovic and Janecek, 2006; 
Palopoli et al., 2006; Senoura et al., 2007), while the N-domain 
of SSI and SSII members appear to have no significant 
function in their enzymatic catalysis (Imparl-Radosevich et al., 
1998; Edwards et al., 1999a; Commuri and Keeling, 2001). In 
contrast to the N-domain, the C-domain of SS isozymes also 
share high similarity to bacterial glycogen synthases at their 
primary sequence levels. The three-dimensional structure of 
Agrobacterium tumefaciens glycogen synthase (AtGS) was 
recently solved (Buschiazzo et al., 2004). Interestingly, the 
active site architecture of AtGS is strikingly similar to those 
of human glycogen phosphorylase (Rath et al., 2000) and E. 
coli maltodextrin phosphorylase (Watson et al., 1997), 
indicating that AtGS, and probably plant SS isozymes, share 
a common catalytic mechanism to glycogen and maltodextrin 
phosphorylases.

Starch branching enzymes
Starch branching enzymes (SBE) make α-1,6 branch 

points in starch molecules. Higher plants have multiple SBE 
isozymes that are classified into two families A and B based 
on their primary sequences (Burton et al., 1995). Members of 
the two families display distinct enzymatic properties such as 
substrate preferences and chain transfer patterns: family A 

SBEs show a lower affinity for amylose than family B SBEs 
and preferentially catalyze the transfer of chains shorter than 
those catalyzed by the latter (Takeda et al., 1993). The SBE 
gene families also show different temporal patterns during 
endosperm or seed development. In most instances, family A 
and B SBE transcripts accumulate in the middle and late 
stages respectively of seed development (Mizuno et al., 1993; 
Burton et al., 1995; Gao et al., 1996; Hamada et al., 2001). Thus 
multiple forms of SBE with different expression patterns may 
synthesize variegated amylopectin with chains of different 
lengths or branched points.

SBE has an important role in determining the 
amylopectin structure of starch. The importance of this 
enzyme activity in starch biosynthesis is readily seen in 
genetic mutants defective in this enzyme activity. Some 
mutants lacking SBE isozyme activity have been identified as 
amylose-extender (ae) mutants of maize (Boyer and Preiss, 
1981; Kim et al., 1998) and rice (Mizuno et al., 1993; Nishi et al., 
2001). These ae loci correspond to the rugosas locus 
represented wrinkled phenotypes (first described by Gregor 
Mendel) of pea (Bhattacharyya et al., 1990). All the loci encode 
family A SBE isozyme, and seeds from these mutants 
accumulate a higher proportion of amylose and its 
amylopectin component is loosely branched. Similar results 
have been also observed in transgenic potato plants with 
reduced family A SBE activity (Jobling et al., 1999). In 
contrast to the ae mutants, in transgenic or mutant plants 
with reduced or eliminated family B SBE activity, only a 
moderate effect on starch structure was observed (Blauth et 
al., 2002; Satoh et al., 2003; Yao et al., 2004).

SBEs together with SSs synergistically contribute to 
amylopectin biosynthesis. When the maize SBEI and SBEII 
were simultaneously expressed in branching-enzyme-deficient 
E. coli, the structure of polymers produced were greatly 
different from that of amylopectin (Guan et al., 1995). Similar 
observations were made when different combinations of 
maize SSs and SBEs were co-expressed in bacterial cells 
(Guan and Keeling, 1998). These observations indicate that 
the function of SS and SBE is essential for amylopectin 
biosynthesis but that other factors are also required for the 
formation of semicrystalline amylopectin (Smith, 1999).

Plant SBEs and bacterial glycogen-branching enzymes 
(GBEs) are members of the α-amylase family (glycoside 
hydrolase family 13; GH13; Kuriki and Imanaka, 1999). The 
alignment of primary sequences, the secondary structure 
prediction, and the three-dimensional structures of the GH13 
members have shown that SBEs contain three domains: an 
amino-terminal (N) domain, a carboxyl-terminal (C) domain, 
and a central catalytic (β/α)8 barrel domain (Abad et al., 
2002). Because the barrel domains of the SBEs of the families 
A and B share a significant homology with each other, it is 
assumed that their distinct enzymatic characteristics are 
largely attributable to the difference in their N- and 
C-domains. Indeed, analyses of several chimeric enzymes 
between families A and B SBEs have indicated that the both 
domains are important for the determination of substrate 
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preference, catalytic capacity, and chain length transfer 
(Kuriki et al., 1997; Hong et al., 2001; Ito et al., 2004; Hamada et 
al., 2007). In addition, analyses by site-directed mutagenesis 
and chemical modification have revealed important amino 
acid residues for branching activity in plant SBEs and 
bacterial branching enzymes (Sivak and Preiss, 1998). It has 
recently been demonstrated that protein phosphorylation-
dephosphorylation regulates wheat SBE activity and the 
formation of a complex between SBEs and starch 
phosphorylase (Tetlow et al., 2004). This study also indicated 
that SBEs and starch phosphorylase are phosphorylated in 
plastids. It is important to shed l ight on the post-
transcriptional regulation of each enzyme, as well as to 
analyze enzymatic properties and transgenic plants and 
genetic mutants to understand the precise physiological roles 
of SBE isozymes in vivo.

Starch-debranching enzymes
Nowadays, it is recognized that the formation of the 

highly ordered amylopectin structure in vivo requires a 
cooperation of not only SSs and SBEs but also starch-
debranching enzymes (DBEs). DBEs catalyze a hydrolysis of 
α-(1,6) glucosidic linkages of polyglucans. In higher plants, 
two types of DBEs with distinct substrate specificities have 
been identified (Doehlert and Knutson, 1991): pullulanase-type 
and isoamylase-type. Pullulanase-type DBEs prefer pullulan 
and β-limit dextrins to amylopectin and glycogen as a 
substrate, whereas isoamylase-type DBEs hydrolyze the α- 
(1,6) linkages of amylopectin and glycogen, but do not act on 
pullulan. The isoamylase-type DBEs are also divided into 
three isoforms (ISA1, ISA2 and ISA3) based on the primary 
sequences (Hussain et al., 2003; Wattebled et al., 2005).

The sugary-1 (su1) mutants from maize and rice show 
the reduced starch content and accumulation of water-soluble 
polysaccharides with highly branched polysaccharides 
(phytoglycogens) in endosperms (Pan and Nelson, 1984; 
Nakamura et al., 1996). Although it was demonstrated 
subsequently that the su1 loci in these mutants encode 
isoamylase-type DBEs (James et al., 1995; Fujita et al., 1999; 
Kubo et al., 1999), there is a decrease of both isoamylase- and 
pullulanase-type DBE activities in these mutants (Nakamura 
et al., 1996; Rahman et al., 1998; Beatty et al., 1999). The 
accumulation of phytoglycogen has been observed in not only 
mutant plants such as Arabidopsis dbe1 (Zeeman et al., 1998a 
and 1998b), barley notch-2 (Burton et al., 2002b), and 
Chlamidomonas sta7 (Mouille et al., 1996), but also antisense 
transgenic potato tubers (Bustos et al., 2004) and Arabidopsis 
(Delatte et al., 2005). In these plants, however, the activity of 
pullulanase-type DBE is at the wild-type level. Therefore, the 
precise cause of the reduced pullulanase-type DBE activity in 
the maize and rice sugary-1 mutants is still unexplained. The 
maize mutant without pullulanase-type DBE accumulates 
branched malto-oligosaccharides in leaves (Dinges et al., 2003). 
In addition, analysis of the maize and Arabidopsis double 
mutants deficient in both isoamylase- and pullulanase-type 
DBEs indicated that pullulanase-type DBE can partially 

compensate the function of isoamylase-type DBE in the 
endosperm and leaves (Dinges et al., 2003; Wattebled et al., 
2005). These results suggest that pullulanase-type DBEs also 
function in both starch degradation and synthesis as well as 
isoamylase-type DBEs.

Two models have been proposed to explain the function 
of isoamylase-type DBE in starch biosynthesis. In the first 
model, the glucan-trimming model, which was proposed from 
the analysis of Chlamidomonas sta7 mutant (Mouille et al., 
1996), isoamylase-type DBE plays a direct role in the 
synthesis of amylopectin and trims the highly branched 
glucans (pre-amylopectin) that are synthesized by SSs and 
SBEs, to produce mature amylopectin (Ball et al., 1996; Myers 
et al. , 2000). In the second model, the water-soluble 
polysaccharide clearing model, which was proposed on the 
basis of analyzing Arabidopsis dbe1 mutants (Zeeman et al., 
1998a and 1998b), isoamylase-type DBE plays an indirect role 
on the synthesis of amylopectin as it functions to prevent the 
formation of soluble branched glucans in plastids. However, 
the conclusive evidence that either model is correct has not 
been provided.

Like SBEs, both types of DBEs are also members of α- 
amylase family and contain (β/α)8 barrel structure, which is 
responsible for catalysis. Apart from the catalytic domain, 
isoamylase-type DBE has an N-terminal and a C-terminal 
domains, and pullulanase-type DBE has an N-terminal domain. 
However, the functions of these domains are not established. 
Recent studies have shown that ISA2 has no enzymatic 
activity due to lack of catalytic residues and that ISA1 and 
ISA2 form a heteromultimeric complex (Hussain et al., 2003; 
Bustos et al., 2004; Delatte et al., 2005; Utsumi and Nakamura, 
2006). Although two distinct isoamylase forms, the ISA1 
homo-oligomer and ISA1/2 hetero-oligomer, exist in rice 
endosperm, kinetic analysis suggested that the hetero-
oligomer has a predominant role in amylopectin synthesis 
(Utsumi and Nakamura, 2006). The occurrence of ISA1/2 
complex is also supported by the facts that several mutant 
plants with reduced isoamylase-type DBE activity have the 
mutation in the ISA1 or ISA2 gene and that Arabidopsis 
mutants in the ISA1 and ISA2 display identical phenotypes 
(Delatte et al., 2005). In addition, it was recently shown that 
ISA1/2 complex controls starch granule initiation because 
the barley mutant and antisense potato with reduced ISA1 or 
ISA2 level accumulate large numbers of small granules not 
seen in wild type plants (Burton et al., 2002b; Bustos et al., 
2004). In contrast to ISA1/2 complex, ISA3 appears to be a 
monomeric enzyme (Hussain et al., 2003; Takashima et al., 
2007). The Arabidopsis mutants deficient in ISA3 has a 
starch-excess phenotype in leaves and have an altered 
structure of amylopectin with increases in very short chains, 
suggesting that ISA3 plays a role in starch degradation and 
probably removes the short chains on the surface of starch 
granule (Wattebled et al., 2005; Delatte et al., 2006).
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Biological starch degradation

The accumulation and subsequent utilization of reserve 
starches are fundamental processes of living plant cells. 
Photoautotrophic plants obviously rely upon carbohydrate 
reserves when the photosynthetic system is not operating, 
for example, at night. In the germination stage, particularly 
in cereal seeds, growth and metabolic activities entirely 
depend on the utilization of storage starches until the 
photosynthetic machinery has been developed. As mentioned 
above, two types of starches are distinguishable in plants: 
transitory and reserve starches. The physiological aspects of 
these starches are quite different, but both types of starches 
have a similar granule structure with semi-crystalline arrays. 
The semi-crystalline structure of the starch granule with an 
internal lamellar structure, called “growth rings”, is quite 
stable and also relatively resistant to enzymatic attacks. α- 
Amylase, which can act on raw starch, is considered to play 
the main role in starch degradation including the initial 
attack on the starch granules. However, recent investigation 
suggested that the pathway for starch degradation differs 
with the organs and species.

Degradation of reserved starch in germinating cereal 
seeds

The hydrolytic process of reserve starch has been 
studied extensively in the endosperm of germinating cereal 
seeds. It is generally accepted that α-amylases play the 
pivotal role for breakdown of starch in the storage organ 
endosperm including the degradation initiation, since α- 
amylase is the most predominant amylolytic enzyme that can 
attack intact starch granules (Yamamoto, 1988; Beck and 
Ziegler, 1989). In the germinating seeds, α-amylases are 
secreted to the starchy endosperm from the scutellar 
epithelium at the early stage of germination and from the 
aleurone layer at the later stage, where these directly bind 
and degrade the starch granules in dead cell amyloplasts 
(Akazawa et al., 1988). The regulation of starch-sucrose 
conversion in germinating rice seeds is summarized in Fig. 2. 

The starch granules are initially digested and destroyed 
by α-amylase to soluble starch. The complete degradation of 
soluble starches proceeds with the concerted action of α- 
amylase, debranching enzyme (R-enzyme), β-amylase, and α
-glucosidase. The glucose produced in the endosperm is taken 
up and converted to sucrose in the scutellum, then the 
sucrose is provided to the growing tissues, such as the young 
shoot and root tissues.

Enzymic characteristics of α-amylase
Plant α-amylases (EC 3.2.1.1) randomly hydrolyze α- 

(1,4)-glucosidic linkages in glucan polymers. α-Amylases are 
known to be Ca2+-containing metalloenzymes. Ca2+ is essential 
for the expression of enzymatic activity of α-amylase. They 
have a wide  optimum temperature range from 26 to 70 ℃. 
The optimum pH for enzyme reaction is 5.3 to 6.0. 

α-Amylases are composed of a single polypeptide with a 

molecular size ranging from 40 to 50 kDa (Yamamoto, 1988; 
Mitsunaga et al., 2004). α-Amylases in cereal are well-known 
polymorphic enzymes. Barley α-amylase isoforms are 
distinguished as Amy1 and Amy2 with different isoelectric 
points (pI) and are referred to as the low-pI and the high-pI 
isozyme, respectively (Jacobsen and Higgins, 1982). Despite a 
sequence identity of 80%, Amy1 and Amy2 are significantly 
different in their physico-chemical and enzymatic properties 
(Jones and Jacobsen, 1991; Rodenburg et al., 1994 and 2000; 
Jensen et al., 2003). In rice, ten distinct α-amylase genes have 
been cloned and sequenced, and more than 20 native α- 
amylase isoforms have been identified and characterized. 
Rice α-amylase isoforms are also classified into two classes, 
AmyI and AmyII, based on their epitope structures (Mitsui 
et al., 1996), oligosaccharide degradation patterns (Terashima 
et al., 1996), and optimum temperatures for enzymatic activity 
(Mitsunaga et al., 2004; Nanjo et al., 2004a). All deduced amino 
acid sequences of the above α-amylase isoforms contain 
signal sequences characteristic for the translocation of 
endoplasmic reticulum (ER) membrane (O'Neill et al., 1990).

Both barley α-amylase isoforms, Amy1 and Amy2, have 
been crystallized and their three-dimensional structures were 
determined (Kadziola et al., 1994 and 1998; Robert et al., 2005). 
The α-amylase peptide chain folds into three domains: 
domain A, the large central domain of (β/α)8-barrels; domain 
B, a protruding, irregular-structured loop domain; domain C, 
the C-terminal domain mainly forming β-sheet. There exist 
three oligosaccharide binding sites, that is, the active site and 
the starch granule-binding surface site at the domain A-B, 
and the “sugar tongs” binding site at the domain C. Three 
Ca2+-binding sites locate at the loop domain B.

Fig.2  Starch degradation in cereal storage organ.
　Starch-sucrose conversion in germinating rice seed. 
Reserved starch is degraded into glucose by amylolytic 
enzyme, mainly α-amylases, which are secreted from the 
scutellar epithelium and the aleurone layer. Glucose is 
absorbed into the scutellum, and then converted to sucrose. 
The starch-sucrose conversion is coordinated in balance of 
the signal strength of gibberellin, abscisic acid, and metabolic 
sugars. 
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Functional expression of α-amylase isoforms
The starch degradation linked to the germination and 

subsequent growth is finely regulated by the plant hormone 
gibberellin (Fig. 2). The functional expression of α-amylase 
in germinating cereal seeds is precisely controlled with 
gibberellin at both the transcriptional and translational levels. 
The promoter analyses of α-amylase genes have revealed 
the elements involved in gibberellin-regulated gene 
expression (Skriver et al., 1991). Some conserved box 
sequences responsible for gibberellin-response have been 
defined, though there exists little sequence homology in the 
promoter regions of cereal α-amylases (Mitsui and Itoh, 
1997). These conserved elements are called gibberellin-
response complexes (GARCs), and it is likely that each cereal 
α-amylase gene has individual components of GARCs 
(Gómez-Cadenas et al., 2001). In general, the most important 
cis-acting element in GARCs is a TAACAAA motif that is 
common to all gibberellin-responsive genes and the sequence 
is designated as gibberellin-response element (GARE) (Huang 
et al., 1990). The sequence of GARE was found to have 
homology to the animal Myb proto-oncogene consensus 
binding sites, which led to the identification of Myb-related 
trans-acting factor (GAMYB) from barley aleurone cells 
(Gubler et al., 1995). GAMYB specifically binds to GARE. GA 
induces the expression of GAMYB prior to the induction of 
α-amylase. From several lines of evidence, GAMYB is 
hypothesized as a central GA-regulated trans-acting factor, 
which is located at the downstream of GA signal transduction 
leading to the activation of α-amylase gene expression in 
aleurone cells. Further investigation revealed that a Mak-like 
kinase, KGM (kinase associated with GAMYB) operates as a 
repressor of GAMYB in barley aleurone (Woodger et al., 
2003). Furthermore, a number of regulators of gibberellin 
signaling, such as DELLA proteins and protein turnover 
complex (SCF), etc., were identified and characterized 
through the mutational analyses. Recently, Ueguchi-Tanaka 
et al. (2005) proposed that GIBBERELLIN INSENSITIVE 
DWARF 1 (GID1) is a soluble receptor for gibberellin.

α-Amylase isoform I-1 and II-4 that are predominant 
isoforms in rice seedlings exhibited distinct differences in 
their gene structure and mode of expression. The most 
predominant isoform α-amylase I-1 encoded by RAmy1A is 
gibberellin-inducible, and is actively expressed in the scutellar 
epithelium and the aleurone layer and in calli derived from 
the embryo. Moreover, the enzyme isoform is the best-
characterized secretory glycoprotein bearing typical N-linked 
oligosaccharide chains, including both high-mannose and 
modified type oligosaccharides (Hayashi et al. , 1990; 
Lecommandeur et al., 1990): it is synthesized at the rough ER 
and transported to the plasma membrane through the Golgi 
complex. α-Amylase II-4 encoded by RAmy3D is also 
expressed and secreted from the calli, the scutellar epithelium 
and the aleurone layer. α-Amylase II-4 in the aleurone layer 
showed temporal and spatial expression essentially identical 
to α-amylase I-1, although the expression was distinguishable 
in the embryo tissues at the early stage of germination. Rice 

α-amylase gene RAmy3D lacks GARE in the promoter 
region (Huang et al., 1990), though the gibberellin-responsive 
expression of α-amylase II-4 in the aleurone was also similar 
to that of α-amylase I-1 whose gene contains GARE. As 
expected, gibberellin did not increase the level of α-amylase 
II-4 mRNA, indicating that post-transcriptional enhancement 
of α-amylase II-4 expression did occur in the aleurone (Nanjo 
et al., 2004b). Metabolic sugars suppress the gene expression 
of RAmy3D. Recent studies have shown that multiple cis-
elements and trans-acting factors are involved in this 
response (Chen et al., 2006). Metabolic sugars also regulate 
the formation of α-amylase II-4 in rice cells at the post-
transcriptional steps, i.e., mRNA turnover (Chan and Yu, 
1998), protein synthesis, intracellular transport and turnover 
(Mitsui et al., 1999a). Both gibberellin and sugar starvation 
signals raise the cytosolic Ca2+ concentration, [Ca2+]cyt 
markedly (Bush, 1996; Mitsui et al., 1999b). The expression 
and secretion of α-amylases in cereal cells require an 
appropriately high [Ca2+]cyt (Bethke et al., 1997).

Seed germination and seedling growth in a transgenic 
rice line with suppressed expression of α-amylase I-1 
markedly delayed in comparison with those of the wild-type 
(Asatsuma et al., 2005). These findings indicated that α- 
amylase must be the main contributor in the amylolytic 
degradation of starch. Thus, the breakdown of reserve starch 
in cereal seeds is mainly controlled by the expression of α- 
amylase coordinated with multiple factors, such as hormones, 
sugars, Ca2+, and so on.

DBE, β-amylase, and α-glucosidase
As described above, debranching enzymes (DBE) 

catalyze the hydrolysis of α-(1,6)-linkages in glucan polymers. 
The activity of pullulanase-type DBE was shown to be 
substantially expressed in germinating rice endosperm (Iwaki 
and Fuwa, 1981; Daussant et al. , 1983), and the limit 
dextrinase-type increased in germinating barley seeds in 
response to gibberellin (Kristensen et al., 1998). These 
circumstantial evidences indicate that DBEs perhaps involve 
the hydrolysis of α-(1,6) linkages during starch degradation 
in the germination stage.

β-Amylase (EC 3.2.1.2) catalyzes the liberation of maltose 
from non-reduced ends of starch-related α-(1,4)-glucans. β- 
Amylases in soybean, sweet potato and cereals have been 
studied energetically. The optimum pH for enzyme reaction 
is 5.0 to 6.0.  The molecular sizes of enzymes range from 50 
to 60 kDa, except the sweet potato β-amylase which shows 
to be 220 kDa protein composed of four subunits (Yamamoto, 
1988). Crystal structures of β-amylases were solved in 
soybean (Mikami et al., 1993; Adachi et al., 1998), sweet potato 
(Cheong et al., 1995) and barley (Mikami et al., 1999). The 
proteins consist of a core with an (α/β)8 supersecondary 
structure, plus a smaller globular region formed by long loops 
(L3, L4, and L5) extending from β-strands β3, β4, and β5. 
Between the two regions is a cleft that opens into a pocket 
whose floor contains the postulated catalytic center (Mikami 
et al., 1993).
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In germinating cereal endosperm, β-amylase is one of 
the major amylolytic enzymes. In barley, the β-amylase 
protein exists in the dry grain, where it is synthesized and 
accumulated during the period of ripening, and is likely 
bound to the starch granules (Sopanen and Lauriére, 1989). 
On the other hand, in rice, the β-amylase enzyme is 
synthesized de novo during seed germination, although it is 
almost absent in dry seeds (Okamoto and Akazawa, 1980; 
Yamaguchi et al., 1999). Several rice cultivars (Yamaguchi et 
al., 1999; Mitsunaga et al., 2001) and inbred lines of mutant in 
barley (Kreis et al., 1987) and rye (Rorat et al., 1991) show 
markedly reduced β-amylase activity if any in the mature 
seeds. However, no significant growth retardation was 
observed in the mutant seeds with the β-amylase-deficient 
phenotype. Probably, β-amylase plays a subordinate role in 
the breakdown of reserved starch in germinating cereal 
seeds.

α-Glucosidases (EC 3.2.1.20) belong to a group of exo-
glycoside hydrolases, which catalyze the release of α- 
D-glucose from the non-reduced ends of α-linked glucans 
(Frandsen and Svensson, 1998). The seeds of rice, corn, 
buckwheat, barley, and sugar beet contain a relatively large 
amount of α-glucosidase. The optimum pH for enzyme 
reaction is 3.6 to 5.0.  The molecular sizes of enzymes range 
from 65-100 kDa (Matsui et al., 1978; Chiba et al., 1979). A 
couple of research groups have reported that barley, millet 
and rice α-glucosidases are capable of degrading the native 
starch granules in vitro (Sun and Henson, 1990; Yamazaki et 
al., 2005; Nakai et al., 2006). However, the information about 
the physiological aspects of α-glucosidase is limited. There is 
controversy over the contribution efficiency of exo-type 
amylase toward the degradation initiation of starch granules 
yet.

Degradation of reserved starch in potato tubers
The other typical reserve starch is observed in storage 

tubers. In contrast to the starch degradation in the 
endosperm of germinating cereal seeds, the breakdown of 
tuber starch occurs within living cells. A series of starch-
degrading enzyme activities have been detected in potato 
tubers during sprouting (Davies, 1990) and cold-induced 
sweetening (Nielsen et al., 1997), including α-amylase, 
isoamylase, β-amylase, α-glucosidase, and phosphorylase, 
but the nature of the attack on the starch granule is much 
less clear in comparison with that in the germinating cereal 
endosperm.

Plant starch excepting cereal storage starch is 
extensively phosphorylated, and in potato tubers, starch 
contains about 1 monoesterified phosphate group in 150 to 
600 glucosyl residues (Blennow et al., 2002; Tabata et al., 1975). 
The phosphate groups were bound at the C-6 and C-3 
positions of the glucose units (Hizukuri et al., 1970; Tabata 
and Hizukuri, 1971). Recently, it has been identified and 
characterized the starch phosphorylating enzyme, glucan, 
water dikinase (EC 2.7.9.4, GWD), which catalyzes the transfer 
of β-phosphate of ATP to either the C6 or C3 position of 

glucosyl residues within amylopectin (Ritte et al., 2002; 
Mikkelsen et al., 2004). Several lines of evidence strongly 
suggested the importance of starch phosphorylation in starch 
turnover (Lorberth et al., 1998; Yu et al., 2001). Transgenic 
potatoes in which GWD was greatly reduced by an antisense 
construct had very low levels of phosphate in tuber starch, 
and exhibited a starch excess phenotype in leaves and a 
reduction in cold-induced sweetening in tuber (Lorberth et al., 
1998).

As described above, DBEs are involved in both starch 
synthesis and degradation processes. It has been predicted 
that in the Arabidopsis genome there are three genes 
encoding isoamylase-like proteins (ISA1, ISA2, and ISA3) and 
a single gene encoding limit dextrinase (Delatte et al., 2006). 
Three distinct isoamylase isoforms (StISA1, StISA2, and 
StISA3) have been also identified in potato (Hussain et al., 
2003). StISA1 and StISA2 were convinced of importance in 
controlling starch granule initiation (Bustos et al., 2004). On 
the other hand, StISA3 had a markedly high activity on β- 
limit amylopectin in vitro (Hussain et al., 2003), suggesting 
that this isoform is a candidate for the debranching enzyme 
with a specific role in starch degradation. The degradation 
pathway of soluble glucans derived from starch in tuber is 
totally obscure. Cytosolic glucan phosphorylase (Duwenig et 
al., 1997) and transglycosidase (Lloyd et al., 2004), which are 
possibly involved in starch degradation in leaves, may not be 
necessary for tuber starch degradation.

Degradation of assimilatory starch in Arabidopsis 
leaves

Plants fix air CO2 to sugar by the photosynthetic 
machinery during the day, and a portion of the synthesized 
sugar is accumulated as assimilatory starch in their leaves to 
utilize the energy source for the coming night. The 
degradation of assimilatory leaf starch differs topographically 
from that of cereal storage organs: it occurs in chloroplasts in 
living cells, a situation rather similar to that of the intact 
amyloplasts of seed cotyledons and storage tubers. Recent 
investigations employing transgenic and mutant plants of 
Arabidopsis  revealed that β-amylase rather than 
phosphorylase and endoamylase seems to be important in 
leaf starch mobilization. Several excellent review articles are 
available on this subject (Zeeman et al. 2004, Smith et al. 2005, 
Lloyd et al. 2005).

The starch in chloroplasts forms granules organizing 
semi-crystalline arrays and the structure of leaf chloroplastic 
starch is similar to that of crop storage starch in many 
respects (Zeeman et al., 2004). However, it is still uncertain 
whether the transitory starch granules are surrounded by an 
outer pasty layer (Beck, 1985). Whereas starch granules 
isolated from (spinach) chloroplasts could not be degraded by 
the glucan-metabolizing enzymes except α-amylase (Steup et 
al., 1983), the reported pasty appearance could not be caught 
by scanning electron microscopy of starch granules prepared 
using gentle aqueous extraction techniques (Zeeman et al., 
2002b). The structural difference of chloroplastic starch 
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granules from reserve starch seems to be reasonable, when 
considering its diurnal change between net synthesis and 
degradation in contrast to the situation of reserve starch. 

In Arabidopsis leaves, approximately 1 in 2,000 glucosyl 
residues of the starch is phosphorylated (Yu et al., 2001). 
Mutations of the GWD gene, which prevent the expression of 
the enzyme protein or alter its dikinase domain, dramatically 
decreased both the amount of starch phosphorylation and the 
rate of starch degradation. Consequently, the amounts of 
starch accumulated in mature leaves of mutants (starch excess 
1 or sex1) increased to seven times those in the wild-type 
(Casper et al., 1991; Yu et al., 2001). A second type of GWD, 
phosphoglucan, water dikinase (PWD) was recently found in 
Arabidopsis (Baunsgaard et al., 2005; Kötting et al., 2005). 
PWD catalyzes the same reaction as GWD, but the enzyme 
phosphorylates only starch granules phosphorylated by GWD 
and the phosphate group is conjugated to the C3 rather than 
the C6 position of glucosyl residues of amylopectin. Knockout 
mutants lacking PWD exhibited a starch excess phenotype. 
These findings indicate that in leaves, starch turnover 
requires a close collaboration of GWD and PWD. An 
explanation is that the phosphate groups influence the 
packing of the glucose polymers within the granule and 
hence the susceptibility of the granule surface to attack by 
enzyme (Blennow et al., 2002; Zeeman et al., 2004).

As mentioned above, the initial step of starch granule 
degradation is to destroy the surface semi-crystalline 
structure. One of the candidates for initial attacking enzyme 
is α-amylase. In Arabidopsis genome, three proteins are 
predicted to be α-amylases. Triple mutants lacking all three 
α-amylases, however, had normal rates of starch degradation 
in Arabidopsis leaves at night (Yu et al., 2005), indicating that 
the absence of α-amylase can be compensated for by another 
amylolytic enzyme. Recently, both isoamylase and limit 
dextrinase have been shown to contribute to the starch 
breakdown in Arabidopsis leaves. Mutants of ISA3 (Atiso3) 
had more leaf starch and a slower rate of starch breakdown 
than wild-type plants. Mutants of limit dextrinase (Atlda) 
were indistinguishable from the wild-type. However, the 
Atiso3/Atlda double mutant exhibited a more severe starch-
excess phenotype and a slower rate of starch degradation 
than Atiso3 single mutants. In the Atiso3/Atlda double 
mutant, the activity of chloroplastic α-amylase and the 
amount of soluble glucans were increased. These results 
strongly indicated that ISA3 is the major debranching 
enzyme involved in starch degradation and may act directly 
on the granule surface in Arabidopsis leaves (Delatte et al. 
2006). In addition, there exists the pathway of starch 
degradation by α-amylase, although the endoamylase may 
not play a major role for the starch degradation under 
normal circumstances in Arabidopsis leaves. 

Several lines of evidence strongly suggested that, 
following the action of debranching enzymes,  β-amylase is 
responsible for degradation of linear glucans in the 
Arabidopsis chloroplasts. Four of the nine genes encoding β- 
amylase contained putative transit peptides that would target 

them to the chloroplast (Lloyd et al., 2005), and one of these 
proteins has been shown to be in the chloroplast (Lao et al., 
1999). Arabidopsis RNAi lines with lower expression of the 
chloroplastic β-amylase exhibited a starch-excess phenotype, 
and a dramatic decrease in maltose accumulation upon cold 
shock (Kaplan and Guy, 2005).  Increase in maltose level at 
night in leaves of Arabidopsis was observed, suggesting that 
it is perhaps an intermediate of starch catabolism (Chia et al., 
2004; Weise et al., 2004 and 2005). Mutations of a maltose 
transporter gene (mex1) caused accumulation of both starch 
and maltose in leaves. Maltose levels were at least 40 times 
those of wild-type leaves, showing that maltose produced 
during starch degradation is exported to the cytosol via a 
specific maltose transporter MEX1.  It is consistent with a 
block in the metabolism of maltose produced by β-amylolytic 
degradation of starch (Niittylä et al., 2004). 
The disproportionating enzyme (D-enzyme), DPE1, is also 
involved in the catabolism of linear maltooligosaccharides. 
DPE1 is  a (1 ,4 ) -α-D-glucan :  (1 ,4 ) -α-D-glucan ,  4 -α- 
D-glucanotransferase (EC 2.4.1.25) which can catalyze a wide 
range of reactions, transferring 1,4-α bonds from one donor 
glucan molecule to another. The smallest donor and acceptor 
molecules are maltotriose and glucose, respectively, though 
the enzyme can use large glucans as donors and acceptors. 
The preferred substrate is maltotriose, which is converted to 
glucose and maltopentaose (Jones and Whelan, 1969). In 
Arabidopsis, a single gene encodes DPE1 that predicted to be 
chloroplastic. Knockout mutants of DPE1 have been isolated 
and characterized in Arabidopsis, showing that at night the 
rate of starch degradation in the mutant decreased in 
comparison with the wild-type and appreciable amounts of 
malto-oligosaccharide, exclusively maltotriose, accumulated in 
the mutant leaves (Critchley et al., 2001). In addition, these 
results provide evidence that β-amylase rather than glucan 
phosphorylase is responsible for the metabolism of linear 
glucans. β-Amylase can hydrolyze maltotetraose to two 
maltoses and maltopentaose to maltose and maltotriose, but 
not or hardly act maltotriose (Chapman et al., 1972), while the 
phosphorylase enzyme can catalyze the reaction of 
maltopentaose to maltotetraose and glucose-1-phosphate and 
maltotetraose is the end product of phosphorolytic 
maltodextrin degradation (Setup and Schächtele, 1981). 
Accumulation of maltotriose in mutants lacking DPE1 thus 
suggested that glucan phosphorylase weakly or scarcely 
contributes to the degradation of linear glucans. Actually, the 
plastidial phosphorylase (PHS1)-destroyed Arabidopsis was 
the normal rate for starch degradation in leaves (Zeeman et 
al. 2004).

Both lines of evidence obtained by biochemical and 
knockout mutant studies have revealed that in Arabidopsis, 
most of the carbon from starch degradation is exported as 
maltose (Niittylä et al., 2004; Weise et al., 2004 and 2005). 
Export of triose-phosphate and glucose may not be essential 
for normal starch degradation (Häusler et al., 1998; Weber et 
al. , 2000; Yu et al. , 2001). Maltose exported from the 
ch lorop las t s  to  the  cytoso l  i s  metabo l i zed  v ia  a 
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transglycosylation reaction. A cytosolic transglycosidase 
(DPE2), that is similar in sequence to the E. coli enzyme 
amylomaltase, catalyzes the release of one of the glucosyl 
moieties of maltose and the transfer of the other to a glucan 
acceptor (Lloyd et al., 2004). 

Mutat ions in the DPE2 gene led to a massive 
accumulation of maltose, excess starch, reduced the rate of 
growth and slightly pale appearance (Chia et al., 2004; Lu and 
Sharkey et al., 2004). However, the nature of the endogenous 
acceptor is still obscure. One candidate is a specific type of 
soluble arabinogalactan detected in leaves of some plants 
(Yang and Steup, 1990; Fettke et al., 2004). This heteroglycan 
is a good substrate in vitro for the cytosolic glucan 
phosphorylase (PHS2) (Matheson and Richardson, 1976; 
Duwenig et al., 1997). It is possible, hence, that glucosyl 
moieties from maltose are transferred to the heteroglycan by 
DPE2 and released again as G1P by PHS2 in cytosol. The 
final product glucose is used for the synthesis of sucrose and 
for cellular metabolism. The recently proposed pathway of 
starch degradation in Arabidopsis leaves at night is 
summarized in Fig. 3A.

Like starch biosynthesis , starch degradation in 
Arabidopsis leaves is highly regulated. The starch in leaves is 
synthesized during the day, by and little or no starch 
degradation occurs. After the onset of darkness, the rate of 
starch degradation increases to a maximum within the first a 
couple of hours (Zeeman et al., 1999). On the other hand, 
mutations and environmental changes that reduce the starch 
accumulation during the day cause a decline in the rate of its 
consumption at night (Lin et al. , 1988). However, the 
information about the mechanisms for switching-on and 
subsequent control of the starch degradation is limited. One 
possibility for the diurnal control of starch degradation in 
leaves is the circadian clock regulation at the transcriptional 
level (Harmer et al., 2000). Indeed, transcripts encoding 
essential enzymes for starch degradation, such as GWD, 
PWD, DPE1, DPE2 and ISA3, showed a coordinated decline 
in the light followed by rapid accumulation in the dark. The 
other starch degradation-related enzymes including a 
plastdial α-amylase AMY3, PHS1 and PHS2 were also 
similarly cycled. Quite surprisingly however, the protein 
amounts of most important enzymes, β-amylases and MEX1, 
do not change essentially through the diurnal cycle (Smith et 
al., 2004). The facts that the levels of enzymes of starch 
degradation did not change in parallel with gene expression 
strongly suggested the importance of posttranslational 
regulation of this process (Grennan, 2006). Possible factor 
candidates operated in the posttranslational regulation are 
pH shift, malto-oligosaccharide level, redox potential, and 
protein phosphorylation (Kerk et al., 2006; Niittylä et al., 2006). 
The pH in the stroma shifts from 8 to 7 during the transition 
from light to dark. This pH decrease is thought to enhance 
activity of starch-degrading enzymes (Stitt and Heldt, 1981). 
The dpe1, dpe2, and mex1 mutants accumulate abnormally 
high levels of maltose or maltotriose. Malto-oligosaccharides 
inhibit α-amylase, probably by competing with granular 

starch for a starch-binding domain necessary for attack on 
the granule (Witt and Sauter, 1996). Maltose inhibits some β- 
amylases at a high concentration (Lizotte et al., 1990). 
Chloroplastic thioredoxin is reduced during photosynthesis 
by electrons from PSI, transferred via ferredoxin. Many 
enzymes interacting with thioredoxin were reported, 
including a spinach β-amylase (Balmer et al., 2003 and 2006). 
The results that starch excess 4 (sex4) mutants, which have 
strongly reduced rates of starch metabolism, lack a protein 
predicted to be a dual specificity protein phosphatase 
indicated that protein phosphorylation may be involved in 

Fig.3  Different pathways of starch degradation in plant 
living cells.

　(A) Arabidopsis pathway: GWD, PWD, isoamylase3, β- 
amylase and DPE1 mainly contribute the starch degradation 
in chloroplasts. The produced maltose is export to cytosol 
through maltose transporter MEX1. Maltose is further 
metabolized by DPE2 in cytosol. (B) Classical pathway: α- 
Amylase degrades starch granule to branched glucan, 
maltotriose, maltose and glucose. Branched glucan and 
maltooligosaccharides are further hydrolyzed to glucose by 
the concerted action of amlyases and R-enzyme. The 
resulting glucose is exported to cytosol via glucose 
transporter, and then entered to the usual metabolic 
pathway.
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the control of starch metabolism in Arabidopsis leaves 
(Niittylä et al., 2006).

Starch degradation in cereal living cells

There is little information on the degradation mechanism 
of transitory starch in  living cells in the seedling, leaf sheath 
and culm of cereal plants. However, the results obtained from 
studies on transgenic rice plants with suppressed expression 
and overexpression of α-amylase isoform I-1 (AmyI-1) 
(Asatsuma et al., 2005 and 2006) evoked an idea that 
endoamylase mainly contributes to the mechanism of starch 
breakdown (Fig. 3B, Perez et al., 1971). that is distinguishable 
from that in Arabidopsis leaves (Grennan, 2006). 

Accompanied with the suppressed expression of AmyI-1, 
seed germination and subsequent seedling growth were 
markedly delayed in comparison with those in the wild-type 
plants. The slow germination seems to be due to the 
reduction of carbon source supply by the amylolytic 
breakdown of reserve starch in the endosperm. As expected, 
the growth retardation was overcome by supplementation of 
sugars, indicating that the phenotype is resulted from the 
inactivation of AmyI-1 expression. Interestingly, a significant 
increase of starch accumulation in the young leaf tissues was 
observed under sugar-supplemented condition. In contrast, 
the starch content of leaves harvested immediately after 
sunset was lower in the plants overexpressing AmyI-1. If 
AmyI-1 is involved in the starch metabolism in living cells, it 
must be in the plastids. The plastidial localization of AmyI-1 
was confirmed through immunocytochemical and cell 
fractionation analyses, and expression and targeting of AmyI-
1 fused to green f luorescence protein (GFP) in re-
differentiated green cells (Asatsuma et al., 2005). α-Amylase 
probably plays a significant role in starch degradation. This 
idea may not be limited to cereals. The correlation between 
the increase in α-amylase activity and starch degradation 
has been observed in cotyledons during germination of 
starch-storing legume (Yomo and Varner, 1973; Tarrágo and 
Nicolás, 1976) and pea seeds (Juliano and Varner, 1969). In 
addition, during development of the spadix of cuckoo-pint 
(Arum maculatum) prior to thermogenesis, dramatic increase 
of the act ivity of endoamylase and appearance of 
oligosaccharides is consistent with the idea that the enzyme 
activity is responsible for granule degradation (Bulpin and ap 
Rees, 1978).

In Arabidopsis leaves, the plastidic β-amylase and 
maltose transporter without doubt play essential roles in 
normal starch degradation. By contrast, positive evidence for 
involvement of β-amylase in starch degradation in cereal 
living cells has not been reported yet. The β-amylase 
activity-deficient rice cultivars and inbred lines of mutant 
barley and rye exhibited normal growth and development. 
(Kreis et al., 1987; Rorat et al., 1991; Yamaguchi et al., 1999; 
Mitsunaga et al., 2001) Recent expression profiling studies of 
starch-metabolism-related plastidic translocator genes in both 
photosynthetic and non-photosynthetic organs of rice showed 

that the plastidic glucose transporter was substantially 
expressed in both source and sink organs, while the 
expression of the maltose transporter was obviously low 
(Toyota et al., 2006). These circumstantial evidences appear to 
indicate that the contribution of plastidic α-amylase and 
glucose transporter to starch degradation are physiologically 
important rather than the set of β-amylase and maltose 
transporter.

Novel targeting pathway of plastid proteins

All plastids in a particular plant species contain multiple 
copies of the same relatively small genome. However, most of 
the proteins existing in these organelles are encoded by the 
genes of nuclear genome, since the plastid genome has 
limited coding potential. Nuclear-encoded plastidial proteins 
are usually synthesized in the cytosol and posttranslationally 
imported into the organelle. In most cases, precursor proteins 
are synthesized with an NH2-terminal pre-sequence called 
transit peptide. The transit peptide is necessary for and also 
sufficient for plastidial targeting and translocation initiation. 
Upon import, the transit peptide is proteolytically removed 
by a stromal processing peptidase and the mature protein 
attains the proper conformation. The transit peptide is 
recognized on the chloroplast surface by receptors, which are 
integral subunits of the Toc (translocon at the outer envelope 
of chloroplast) complex, and the import across the inner 
envelope is facilitated by the Tic (translocon at the inner 
envelope of chloroplast) complex (Soll and Schleiff, 2004; 
Kessler and Schnell, 2006). Several enzymes involved in 
starch metabolism, such as α-amylase (AMY3: Yu et al. 2005), 
β-amylase (BMY8: Lao et al., 1999), GWD (Yu et al., 2001), 
PWD (Kötting et al., 2005), pullulanase (LDA1: Renz et al., 
1998), isoamylase (ISA1,2,3: Hussain et al., 2003), glucan 
phosphorylase (PHS1, Schächtele and Steup, 1986), possessed 
the typical N-terminal extensions acting as plastid-addressing 
domains in the precursor proteins, and were actually targeted 
to the plastids. This strongly suggests that these proteins are 
translocated to the plastid stroma through the canonical 
import machinery from the cytosol (Fig. 4). However, recent 
investigations have demonstrated that some glycoproteins 
including AmyI-1 and NPP1 are localized in the plastids 
(Asatsuma et al., 2005; Nanjo et al., 2006).

One carbonic anhydrase isoform (CAH1) in Arabidopsis 
was shown to be glycosylated and localized in the chloroplast 
(Villarejo et al., 2005). The nature of plastid targeting of 
CAH1-GFP fusion protein was investigated in transiently 
transformed Arabidopsis protoplasts. In the cells treated with 
brefeldin A (BFA), which blocks in the secretory system of 
eukaryotic cells (Ritzenthaler et al., 2002), accumulation of 
CAH1-GFP in the ER and Golgi-like structures was observed. 
Moreover, CAH1-GFP was redistributed to the chloroplast 
after removal of BFA (Villarejo et al., 2005). BFA also 
prevented NPP1-GFP accumulation in the chloropoasts of rice 
cells, and GFP fluorescence was distributed in the ER 
network (Nanjo et al., 2006). These experimental results 
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indicate that the ER-to-Golgi traffic is necessary for the 
plastid targeting of glycoproteins.

If there exists a traffic route from the Golgi apparatus to 
the plastid, a possible communication between these two 
organelles might go on. To test this idea, three-dimensional 
time-lapse and quantitative examinations were carried out by 
using high-performance conforcal laser scanning microscopic 
system. When fluorescent transe-Golgi marker (ST-mRFP) 
and plastid marker (WxTP-GFP) were simultaneously 
expressed together with AmyI-1 in onion epidermal cells, 
significant merging of ST-mRFP with GFP-labelled plastids 
was observed. A statistical analysis indicated that a large 
portion of ST-mRFP was incorporated into the plastids in the 
cells. Moreover, the time-lapse scanning revealed the 
occasional close contact of the Golgi and the plastids, and the 
presence of small membrane vesicles derived from the trans-
Golgi on the surface of the plastid, which did not stay long on 
the envelope membranes, and that were finally located inside 
the plastid (Kitajima et al., 2009).

A hypothetical model for the plastid targeting of enzyme 
glycoproteins via secretory pathway is summarized in Fig. 4. 
The plastid-destined glycoproteins are synthesized in the ER 
lumen and transported to the Golgi apparatus in a way 
susceptible to BFA. In the Golgi apparatus, the glycoproteins 

are sorted and redirected to the plastids by as yet unknown 
receptor. The Golgi bodies with cargo move to the plastid, 
and the Golgi-derived vesicles fuse with the envelope 
membrane of the plastid. The fused membrane and cargo are 
imported inside the stroma by a mechanism totally unknown.
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デンプン生合成と分解
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要　約
　高等植物は、光合成器官である葉緑体および従属栄養器官であるアミロプラストにそれぞれ一過性または貯蔵性デンプンを
蓄積する。デンプン生合成にはプラスチドに加え細胞質もまた制御に関与している。これらのコンパートメントはプラスチド
膜に局在するキャリアーによって代謝的につながっている。デンプン蓄積の表現型が異なるさまざまな変異体植物の遺伝学的
および生化学的解析により、デンプン生合成に関与する複数の酵素が同定されてきた。特に、トウモロコシの変異体はデンプ
ン生合成における様々な酵素の機能と役割を決める情報を提供してきた。さらに、近年の遺伝子操作技術にともない、新規か
つ有用なデンプンの性質を持つ植物体の作製および操作が可能になっている。
　我々は植物のデンプン代謝についての知見を概説するとともに、デンプン生合成の制御とその手法の発達およびデンプン分
解によるエネルギー回収のメカニズムを紹介する。
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