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Elementary excitations associated with atomic motion in non-crystalline solids and liquids

are studied with particular attention paid to the dependence of their diepersion on local order.

In doing this, aD attempt ie made to obtain an exact formal erpression for an effective dy'

na.mical matrix giving the eigenfrequencies of phonons in a non.c4rstalline solid in terme of
.efiective pair-correlation functions". A bdef remark ie also given on the moment method

and suo rules for the dynamic structure factor to study high-frequency collective motion in

liquids. It is suggested that uncler certain restrictions the phonon-roton'like bebavior of ex-

"iltion. 
as observed in liquid helium is likely to exist in almost all types of structure or

topological disorder systems (amorphous and glassy solids, liquids, etc.). To substantiate this,

a *od"l one-dimensional eystem is chosen to show how a phonon dispersioa curve in a crystal

lattice is modified, as t[e partial disorder characterizing a structure disorder system is intro'

do"ud. Such a local disorder is shown to give rise to a frequency gap which decreases with

increasing local order and eventually vanishes in the case of complete ordet. This result is

also in qualitative agreement with the pressure- and the temperature'dependence of the roton

Jrri*r.t* energy in liquid helium. Simple numerical calcul:ations are made to compare the

J*i,,.a results with erperiroents for collective motion in liquid argon and also in liquid

helium. Fairly good agreement is obtained'

S f. Irrtroduotion

In spite of growing interest in the physical properties of disordered systems,

little theoretical work has been made on elementary excitations in non-crystalline

solids such as amorphous and glassl' solids't)-s) Recent development of neutron

scattering measurements has brought attention to collective motion in classical

liquids.r),6) It has been suggested that high-frequency collective modes in simple

liquids are rather similar to phonons in polycrystalline or amorphous solids.u)'t)

Historically, elementary excitations in disordered systems have been studied most

extensively for quantum liquids or liquid helium.s)'e) On the other hand, several

works, both experimentall0-lr) and theor€tical,2)'r)'ral-t8) have implied that dispersion

curves of collective motion in simple liquids bear some resemblance to those of

phonon-roton-Iike excitations as observed in liquid helium. It is worthy of note

irr this cor:.nection that the general behavior of phonon dispersion curves in solid

helium, which is a typical quantum crystal, is little different from those in ordinary

*) present address: Department of Nuclear Engineering, KyoJo University, Kyoto.
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or classical solids.tg)'t0) The present authors have occasionally wondered why

there has been little discussion on the interrelationship of phonon-like excitations

in crystal lattices, non-crystalline solids and liquids, including quantum solids and

quanturn liquids themselves.

One of the most important points in studying the properties of phonon-like

excitations in non-crystalline solids and liquids, being categorized as topological

or structure disorder systems,tl) is probably the dependence of their dispersion

on the degree of local ordering. Almost all previous theoretical results for the

dispersion of collective motion in classical liquids have been obtained by means

of numerical calculations.t)'r)'13)-1E)*) With such numerical results, however, it is

not always easy to understand the general aspects of physical situations.

It is the purpose of this paper to study phonon-like elementary excitations

in non-crytstalline solids and liquids. Generally speaking, two points should be

taken into account in making a theoretical study of such a problem. One is the

structural disorder inherent in the systems and the other is atomic vibrations in

disordered systems in general for rvhich the conventional harmouic approximation

may not always be guaranteed. (This is particularly so in liquids.) In this

paper we are concerned with the first point, limiting our discussion to the

properties of an effective dynamical matrix associated with an averaged phonon

Greens's function over spatial configurations of atoms and employing the harmonic

approrimation. Particular attention is paid to see how the dispersion of such

excitation modes depends on local order. An approach to the second point was

made in a previous paper by the present authorsr) by using the self-consistent

phonon scheme.re) In contrast to our previous work,r) an attempt is made here

to understand the general properties of elernentary excitations which may have

several things in common in almost all types of structure disorder systems, and

also their bearing on crystal phonons as a limiting case of complete ordering.

For this purpose, the formulation of the problem is made which aims at obtaining

analytical forms for the frequency eigenvalues of excitation modes.

The outline of this papet is as follows: In the next section a compact self-

consistent method is presented to calculate the effective dynamical matrix for the

evaluatiou of phonon eigenfrequencies in a non-crystalline solid. In $ 3 tbe notion

of effective pair-correlation functions is introduced to obtain an exact formal

expression for the effective dynamical matrix. A brief remark is given in $ 4

on high-frequency collective motion in liquids, classical or quantum, using the

moment method and sum rules and also on its similarity to phonons in non-

crystalline solids. In $ 5 a brief discussion is given on the general properties

of phonon-like elementary excitations in classical structure disorder systems and

also in liquid helium. I:n S 6, an analytically tractable one-dimensional model

*) It does not appear
is probably due to the lack
systems.

that similar calculations have been done for non-crystalline solids, This

of reliable information on pair-correlation functions in such disordered
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system is employed to obtain analytical expressions for dispersion curves of

excitation modes. Results thus obtained are compared witl experiments for liquid

argon and liquid helium. The last section is devoted to a brief summary of the

the results contained ia this paper.

S 2. Effective dynamioal matrix for o non crystalline solid

We consider a non-crystalline solid composed of atoms of a single species.

We study phonon-like elementary excitations in the system within the framework

of the harmonic or the renormalized harmonic approximation. Let uo(n) be the

d-component of the displacement vector u(n) oL an atom located at the equilibrium

position z. Then, the time-independent equation of motion obeyed by the z's can

be written in the form

九残メαα(π)一Σ Σ Kαβ(π解){πβ(π)一αβ(π))=0,
9JI(キ“)β

where o is the circular frequency, M is the atomic mass and the K's are bare

or effective force constants.*) We shall hereafter use a symbolic notation, whenever

appropriate, to rewrite Eq. (2'1) as

(Mo ' -  K )  u :O  o r (or '  -  D) u:0 ,

where

D=ζ /ν

is the dynamical matrix determining the eigenfrequencies of phonons for a fired

spatial configuration of atoms in the system.

From F,q. (2'2), a phonon Green's function g is defined by

(2・1)

(2・2)

(203)

ク(ω)≡ク=(ω
'一D)-1

Let A be a quantity which contains the positions of atoms in the system as a

set of parameters. We are then interested in an average value (A) of zI, rather

than ,4 itself, over all spatial configurations of the atoms in the systems. We

define an effective dynamical matrix I bV the equation

(g):  (a '  -  0)- ' -  (2 '5)

To set up the self-consistency condition for the determination of this quantity,

we write down an equation of motion for / as

(204)

(2・6)

(207)

(208)

y=く J〉十〈ク〉(D一 gDJ.

Also deined here are a transition matrix T and a wave matrix ρ:38)

y=〈g〉+くg〉T〈J〉,

y=ρ〈g〉。

*) For a discussion of effective force constants associated with

vibrations and also of the renormalized harmonic approxination, see,

the anharmonicity of atomic

for example, Refs. 19) and 37),
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Equations obeyed by these two quantities are

T=D― の十(D一`りぐ〉7・,

ρ=1+くか(D一り)ρ,

with

r=(D一 」りρ.
′
rhen, the condition to be satisied by 7・,

〈T〉 =0     _

can be expressed in terimls of・9 as follows:

』 =〈Dの   wiぬ 〈0=10

EquatiOns(2・10)and(2・ 13)determhe the erective dynamical matrix

self_energy of phonons)in a seliCOnsistent imtanner。

The lowest order approximatiOn to Eq。 (2・13)is

g=〈 D〉くの=(D〉。 (2014)

This is equivalent to setting ((tot-D;-'): (art-(D>)-t or (D'):(D>n (P:L,2,

3,...). We hereafter assume that the distribution of the atoms in the system

is homogeneous. The quantity I then becomes diagonal with respect to A (in

the momentum representation). An explicit form of F;q. (2'14) is obtained by

comparing Eq. (2.2) with Eq. (2.1). It is given by

9,r(k) : <(7/N)4E"P"t@m) lL-exp{ -ik' (n-m)ll> , (2'L5)

where N is the total number of the atoms in the system. Equation (2'15) is

easily calculated to be'r)

』αβ(た)==(ρ/■イ)fグπg2(Oπ)亀β(οZ)(1-―eXp(〃し
・π)}.

793

(209)

(2・10)

( 2 0 1 1 )

(2012)

(2013)

≦D (Or tihe

(2016)

Here, gt(on) is the pair correlation function normalized to unity at Large lnl,a'
and we have taken the origin of the coordinate (denoted by the inder " zero")

to be one of the equilibrium positiou of the atoms. Also, g:N/V is the number

density of the atoms in which I/ is the total volume of the system. It is of interest

to note that Eq. (2.76) reduces to a conventional expression for the dynamical

matrix for a crystal lattice if all the atoms in the system are taken to be defi-

nitely located at lattice points, namely

pg,(on): 
firr} 

(m- n). (z'LT)

In this sense Eq. (2.16) can be called a quasi-crystalline approximation.$)

s3.
Equation (2' 16) has

effects of higher order

Effeotive pair oorrelation funotions

been derived using the lowest order approxirnation in which

correlations other than pair correlations have been neglect-
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ed. In this section an attempt is made
pair correlation functions in which the
are exactly taken into account. For this
of Eq. (2.13) . It is given by

(el Delkb:(el glk)-9 (k)
=〈ハ「1浮嘉票LD(ππ)僣(ππ

′)一ρしπ′)}exp{―ゴル0(π―π′)}〉.(301)

For the evaluation of the average we introduce π_body(π≧1)prObability

function*)

P*(nrnr' ' ' l I*) dnrdnr' '  '  dn*

wi血

A useful relationship between the conditional probabilities is

Pn(ny"1n112.. ,n*f  nps.. 'nt)  :  Pu.r(n1*rf  np," 'nr)  P^(nurnt, ;"n*/n1nz" 'n*r)  .
(3.4)

Then, the average value of the quantity A:A(npr"nn) is written explicitly as

(A(n'u"'n"))-(A)

: 
JJ 

". Ianran...,d.nnPn(nrnr"'n,) 
A(npr'" nv) .

α″ MD Gο ′α

to express Eq.(2013)in terms Of elective

crects of the higher order correlations

purpose,we irst take the た
_representation

(305)

Similarly,a condLional average〈 五〉.1.r"ππ Of 4 with one or more atomic posLions

held ixed is deined by

く4〉π=π3“°""

Conditional probability distributions may be converted

density distributions or correlations by multiplying by the

*r The probability function Pn(nfiz '..2) here is connected with the a'body distribution

functioae Fn(trn "'zn) defined in Ref. L4Dbv therelation P^(n1n2"'n):Q1yn) Fn(nrza"'n)'

See also Ref. 25) for a more detailed discussion 6n the averaging procedure.
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М (πl)=lVPI(πl)=N/y=ρ 00mogeneOus system),

IV8(π3/πl)=CV-1)Pa(″ 8/πl)2」ⅥR(π8/πl),

795

(306a)

( 3 0 6 b )

(307) .

(3011)

(3012)

y2P2(nm)=72Pl(m)P2(プ m)

(ε→0+)When Calcdating var‐

Nr(nt/nfit) : (N-2) Pr(a/n,n)-NP'(nJntnz), etc. (3'6c)

We give, in passing, a relationship between the pair correlation function gr(nm)

: V'h(nrn) and the " second-order conditional number density function" N(n/m),*>
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gTz(nm): lV'  (o/*)  -

Using Eqs. (3.2)- (3.7), r\, 'e can rewrite Eq. (3'1) as

I (k) : o ! 
angr(on) D (on) {f (on, k) -f (no, E) exp (ih'n)\f , (3'8)

where

(309)

is given by

(3・10)

fOrm

where

ga*(οπ)=g2(οπ)ノ*(π,た).

Here, the quantity.ガ*(π,た)iS deined by the equation

f (on, h) -f (no, k) exp(ik' n) :f * (n, &) {1 - erp (ik'n)). (3 ' 13)

Equation (3.11) with g'* (on) rcplaced by gr(on) has exactly the same form as

Ilq. (2. 16). The quantity gt* (on) thus defned can be thought of as an effective

pair camelation function in which effects of three-body and higher order cor-

relation functions have been taken into account. It is seen from Eqs. (3'9) and

(3.10) that approximating N6(l/tnn) and (9(nl))-or by Nr(l/") and (8(nl))1s1 respec-

tively, is equivalent to setting gt* (on) : gr(on). Due to the presence of the

factor g-Q(a),the effective pair correlation function g* or each element of the

effective dynamical matrix I generaLly becornes complex, thus giving finite life-

time to excitation modes.**)

*)Equation (307) ヽ  readily obtained by using the rdatiOns

=(7/zV)zVB(n/m).
申*)The imginary part ofり app(譲rs thrOugh the factOr』 (ωtta

10us quantities of physical interest.
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We give a brief comment on the result obtained above. Ouce the pair-cor-

relation function and the pair potential (from which the force constants are

derived) are kuown, Eq. (2.16) can be used to calculate the eigenfrequencies of

phonon-like excitation modes in disordered systems with no adjustable Paraneter.

This has been done previously for liquid argon, with the result in fair agreement

with experiment. We can also use Eq. (3'11) for the same purpose' but with gt+

taken as an adjustable parameter to get better agreement with experiment. The

pair-correlation function gr* thus determined then is generally difrerent from the

pair correlation function 91 obtainable from the X-ray or the the neutron diffrac-

tion. In this sense, for example, the notion of the effective pair-correlation

function may be used. It may be interesting to examine the difference between

9z* and 9z for various types of disordered systems.

S 4. Moment method, eum rules arrd elementary exeitotions in liquids

We have shown in the previous paper') that Eq. (2'1,6) can also be applied

to collective motion in simple liquids, provided we look at short-time behavior

of atomic motion. Underlying fact in using such a physical reasoning is that as

far as the response to a high-frequency external disturbance is concerned, atoms

in liquids look something like those in solids.tq Here, Eq. (2'16) is simplv

related to the instantaneous elastic properties of liquids. It is worthy of note

in this connection that for simple liquids Eq. (2'16) or its variant has been

derived by several workers using various methods, which do not ahvays appear

to be akin to one another.t?)'2)'8)'rs)-18) In this meaning such a result can be con-

sidered as a fairly general expression for the dispersion of elementary excitations

in liquids as well as in non-crystalline solids. We do not intend here to dwell

upon the interrelationship of these methods. We shall merely give a brief

remark that Eq. (2.L6) can also be derived from moments or sum rules for the

dynamical structure factor of liquids. Several points to be touched upon herein

is not intended to be original, but they are to be considered rather subsidiary

to the results obtained in our previous work.')

We begin the discussion of this section by defining the dynamical structure

factor S(8, al) of a liquid b)' the equation

S(&, ar) : (L/zn)

where P (k, t) : exp (iHt) P (k) ex'

p (k ) : 4  exp ( -  i k ' n )

is the Fourier trausform of the density of atoms in the

bracket with subscript T denotes a canonical average

t ) ) * , ( 4 .1 )

(4 -2 )

slrstem, and the angular

at temperature T. De

't() We use units with ft:\.
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Gennes computed the moments of S(&,,0) io the classical approxim4liel.re)-so) It

is to be noticed that the classical limit of S(8, co) yields a function that is sym-

rnetrical in cD, so all of its odd moments vanish. l 'he results obtained by him

can be written in the form

f 6

I doa'S(k, a):h'kuT/M , G'3)
J - o

I daa^S(h o) : (k'kaT/M)
t '

J - w

to be of the formrr)

S(4, ar) :Z(k, ro) {d(ro -a* (k)) +d(0,+ar*(fr))} -Ls'(1) (k, o), (4'5)

where a*(k) is the enetgy of this quasi-particle mode and S(')(&,ar) is the

contribution from all the other modes including trvo and more quasi-particles.

Insert ing Eq.(4.5) into Eqs. (4.3) and (4.4) and neglect ing terrns involving

.S(t) (fr, rD), we obtain*)

ω*(た)2=(3た
2ちT/」7)+(ρ /」7) (406)

The first terrn of this equation represents the mean tbermal energy. Equation

(4.6) without this term has a form similar to Eq. (2.L0). The force constants

appearing in Eq. (2.16) are generally derived by the second derivatives of an

interatomic potential. It is shown that if both of the pair correlation function

and the pair-potential are spherically symmetric, the dynamical matrix @ becomes

diagonal.t) Then, it is seen that one of diagonal elements yielding the squared-

eigenfrequencies of longitudinal phonons is equivalent to the second term on the

right-hand side of Eq. (4'6).

Following Miller, Pines and NoziBres,sr) we further remark that the BijI-

Feynman formulaD)'84)

€ (e) - k'/zMs(k) (4・7)

for the energy e(k) oI elementary excitations in liquid helium can also be obtained

from the /-sum rulest) for the dynamic structure factor defined by

5/(ko) : (t/p),F*,1(alo(ft) lo)l 'd'(o -a(ot)). (ar(a))0) (4'8)

Here, (alp(k)1O) is the matrix element of the density fuctuation p(&) of the

t) The result thus obtained using the moment method generally describes the short'time be'

havior of liquids or high-frequeucy collective modes.

π及ｐＸｅ一
１πθυ

／７
″０ｇル

ｒ
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l iquid at T:O"K taken between the ground state l0) and the excited state la),

to which it is coupled, while o(a) is the corresponding ercitation frequency. Two

mornerrts of. 9(k, ra) are of interest. These arerl)'r{)'E!)

f o

I aa-71*, ar):S(,t), (4'9)
Jo

| r6

J, 
daog(k, al): k7/2M. (4'10)

Equation (4. 10) is a statement of the /-sum rule. As in the previous case, rse

put

,y(k, ut):Z'(k, cd)d(r,r- €*(&)) + 9?Q) (k, (n) ' ( 4 -11 )

Inserting this into Eqs. (4.9) and (4.10) and neglecting terms involving the factor

gzttt(k, ro), we obtain Eq. (a'7).

The interrelationship between the quantities S(fr, o) and' ,9(k, a) defined

above are seen by observing the fact that Eq. (a'1) for T:0oK, when expressed

in the form of the so-called Fermi's golden rule, reduces to Eq. (4'8) (apart from

unimportant factors). Thus, it is likely that Eqs. (2'16) or (4'6) and (4'7)

are of the same nature in the sense that they are derivable from the sum rule

for the dynamical structure factor and that dispersion curves of excitations

obtainable from these equations have similar forms.0)r2)r$)'r{)-r8)

S 5. Qualitative properties of the disperaion of exoitation rnodee

in Etructure disorder EyEtemE and in liquid helium

We are concernecl here with the qualitative properties of the eigenfrequencies

of excitation modes given by Eq. (2.76) or (3'11). We first study the inter-

relationship betrveen such phonon-like excitations and crystal phonons. Equation

(z.LG), whcn combined rvi th Eq. (2 '17),  reduces to

'  g (k ) : ( \ /M)"EX(oz) [1 -exp( i f t ' n ) f :Da(k ) '  (5 '1 )

This is the conventionai expression for the dynamical matrix for a crystal lattice.

In terrns of this quantity, we re-express 4 (&) as

g(k) :Dt (k )  +  /g (k ) ,  (5 '2 )

where

∠gKた)=0(た )一Dん(た).

As is weli knorvn, the eiguvalue of the dynamical matrix Do&) is a periodic

function of &. Therefore, it vanishes at reciprocal lattice points. The eigenvalues

of the matrix /g(k), however, generally remain finite at, or in the vicinity of,

a lattice point fr:fr0 in the reciprocal lattice space. Due to this fact, there arises

a frequency gap which decreases with increasing local ordering and eventually

( 5 .3 )
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vanishes in the limit of complete order corresponding to the crystal lattice. This

result is to be expected from the lack of a kind of selection rule since the

periodicity of the field is destrol'gd in our system. Thus, a dispersion curve for

frequency eigenvalues of, say, lougitudinal modes may have a form as depicted

in Fig. 1. Such a result is reminiscent of phonon-roton-like modes in liquid helium.ro)

It may be concluded that a dispersion curve as shovvn in Fig. 1 is rather common

to phonon-like elementary excitations in almost all types of non-crystalline solids

ancl classical liquids. In fact, such a behavior has been observed experimentally

for liquid lead.to) Several numerical calculations of Eq. (2'LG) or its variantt)'E)'1r)-ts)

and also the results of computer simulation of molecular dynamics in classical

liquidsrrl have given similar results. According to the result obtained above, more

than one minima in the dispersion curve can appear. Such a behavior may exist in

the case of amorphous solid. In the case of classical liquids, however, the

effect of single-particle excitations and the other eflects giving rise to phonon

dampilg become more and more important in the high-wave number region, so

only the first minimurn as shown in Fig. 1. may be well observable.

Final.ly, a brief remark is given on elementary excitations in liquid helium.

We observe that Eq. (2.16) has been used previously as a phonons-in-amorphous'

solids approach to eollective motion in classical liquids.2r'o In analogy with this

case, a phonon-in-amorphous-quantum-solids approach may be used for elementary

excitations in quantum liquids. Here, this.is to replace the force constant K in

lEq. (2.16) bv the second derivatives of an effective potentialre)'rzr in which both

of the anharrnonicity of atomic vibrations and the short-range correlation effect

resulting from large zero-point motion and strong repulsive part of the interatomic

potential,ts),e0) respectively, have been incorporated. Thus, the rnain result obtained

above may be considered to hold in the case of amorphous quantum solids or

quantum liquid. Without detailed numerical calculation, we may conclude that

the eigenvalues of the dynamical matrix thus obtained, corresponding to longitudinal

phouons, as a function of. k also have a form as shown in Fig. 1. 
'We 

now rnake

an attempt to examine the dependence of the frequency gap or the roton energy

minimum y' on the local order, taking the case of liquid helium as an example.

Several erperiments have shown that in this case the quantity / decreases as au

external pressure increasesr0)-tt) and also that it decreases with increasing tem-

perature."),{!) It has also been shown experimentally that the first maximum of

the radial distribution firnction in liquid helium becomes sharper and higher as

ω ( )々

ko

phonon eigenfrequencies

k

o(k) in a structure disorder system.Fig. L schematic feature of
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temperature as well as external pressure increases.o)''7) These results are in
qualitative agreement with our result that the quantity y' decreases as the local

order increases.

S 6. An analytically traotable onedimeneional model system

To substantiate the results obtained in the previous two sections, an analytically
(rather than numerically) tractable model is required to get more physical insight

into the problem. Our particular intention here is to obtain an analytically closed
expression f.or a(k), with attentiou paid to its dependence on the local order in

structure disordered systems. F'or this purpose, we consider a one-dimensional
(1-D) system. Equation (2'16) then reduces to

』(た)=ω(た)2=(2ρ/ν) dレ巧L(″)(ご
8υ(″)/α力
8)(1_cOS(た“))。 (6・1)

We want to obtain an approximate simple analytical expression for the quantity

gt(z)d.rv(z)/dt which makes the above integral analytically tractable, yet it

contains an essential feature of the problem. We observe the fact that the product

gt@)zt(z) or 9z(t)d'a(r)/d.c'zis very sensitive to the value of gz(z) at small

9rQ)

values of r. In the limit z-0,

9r@) vanishes sufficiently stronglY

that the product vanishes. Thus,

the peak value of such a quantitY

is obtained for .r just above fr^,
x when rn is the smallest value of

n for which gr(t)^,Q. This be-

havior is il lustrated in Fig. 2. It

is seen that the range of the product

is roughly the range of a (z), and

the long-range behavior of gr(r)(b)

F (χ)

ゎ
2

Fig.2。 lHustratiOn of the

functiOns σ2(″),υ(→,

′ヮ(")ルレ, ど2υ(→/

aF,and σB(→ご2υ(ご→

/dメ・ These curvぃ

are Of qualitative sig‐

niicance only.

Fig.3。

o

Plot of curve (6,2).

S=4ん
3/3bゝ
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does not affect it: A dominant contribution to the product gt(z)d'v(r)/dt

tlrerefore comes from the region around &:o, where a is the average distance

of nearest neighbour atoms in our model system. lVith these situations in mind,

we put (see Fig. 3)

P9z(t)(d'o(c) /dc)-F(c): { ^ -r,- --
t 0 otherwise .

(6.2)

The area ,S occupied by F(.r) is

(603)

(601) giVes

(6。4)

d:h/b (6.5)

is the half-width of the curve of F(e). We will take the quantity d as an

adjustable parameter to specify tJre local order of the system.

We are solely interested in the case in which d is much smaller t)tan a,

namely d4a. As in the case for Eq. (5'2), we rewrite Eq. (6'4) as'

ω(ル)=[ω z(た)2+ノω(ル)']1/2 (606)

Here,

an(kl: (2KL/M) {1- cos(Ea)} (6'7)

is the squared-eigenfrequency of phonons when the system constitutes a crystal

lattice with lattice constant a. The quantity

S=4λ3/3み,

■hich is taken to be constanto lnsertion of Eq。(6・2)into Eq.

ω
'(た
) = 2≦

互

[1 -― : |        +        一

」

1号 ツ チ

ユ

|] C O S G協
) ,

where

∠の (た)8=1鶏
|[1--1)|        ―

卜≦

言帯】;;子

≧ 一

        |]COSα

協 )

∠ω¢ソ=t馬|:ぶ一⇒
卜1ザ
■夕争幸:∈げ∞く0・

(608)

thus defined is called here a frequency gap. It is expanded in powers of kd as

follows:

(6・9)

Thus, the quantity /a(k)'is shown to be directry conneted with t.he width d.

Here, an increase of the local order corresponds to a decrease of. d and tJrerefore

of r'a(k).'
We uow investigate the general behavior of phonon dispersion curves given

by Eq. (6.4) or (6.6) as a function of k. In the long wavelength region the

contribution of. y'a(k)'lto ro(rt)t can be neglected as compared with ot(&), and



802 S. Tα た̀zθ απノ M.Gθ グα

therefore al(ft) is little different from oz(k). Such a result is of course to be

erpected from the Debye theory. In this region, where the continuum model

holds, phonon dispersion curves are generally insensitive to the microscopic structure

of the system. Of particular interest here is the behavior of a(k) near &:At/a.

It is seen that the phonon eigenfrequencies remain finite in the vicinity of. k:hc/a

due to the presence of the factor /a(k)'. It is then shown that the function

al(A) has a minimum in this region with a gap which decteases as the local

order increases. As in the case in $ 5, let *o be the valuc ot k at which such

a minimum takes place. We then obtain 'faylor's series for ro(&):

ω(た)=ω(ん0)+(1/4ω(た。))[ご
nω(た)./グル
a]ル_.0(た一ため

a+・・・

=Z十 {(た一為)'/2μ),

where

is the frequency gap and

/=ω (為)

μ=2ω(た。)/[グ
'の(た)a/グた
']L=.0

is an erective mass of the elementary excitations. Equation(6012)is the same

as the iLandau formula for elelmentary excitations in liquid helium。
80)

We now obtain explicit expressions forた 。,ノ and μ defined above.  For this

pШ,pose,we approximate Eq.(6・ 9)by

ノω(た)'=(2日κ二/ルr)((1/5)(たノ)2_(3/280)(たノ)4+…
0)COS(たα)

21(2KL/ルr)(1/5)(た′)aCOS(たα)。               (6・ 13)

Inserting this into Eq。(6・4),we obtain an approximate value of λO and∠,correct

tO the irst order in(グ/α):

たOα=12π―(4π/5)γ
3/[1-{(4π2/5)十(2/5)}γ

8]

212π―(4π/5)γ
1/[1-(4π3/5)γ3]

( 6 0 1 0 )

( 6 0 1 1 )

( 6 0 1 2 )

(6014)

(6015)

(6。16)

and

where

∠=(2/5)1″ω二"γ,

T - d/ o and a'Lrn: Kr./ M

is the maximum eigeufrequeucy of phonons in the case of the crystal lattice. A

similar proceclure yields an approximate result (d'o(kl/dkt)r-r.=l - (4x'/5)r'.

From Eq. (6'L2) we thus obtain

p:L6nf /lStnar^a'1]-- Gtt'|/6)fz)J . (6'17)

Eliminating the factor 41- from Eqs. (6.15) and (6'17), we also obtain a relation-

ship between lt and lz

μ=(8πγ
1/5)/[∠αa{1-(4π3/5)γ')]. (6・18)
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0 . 5

n/a 2r/o

Fig. 4, Phonon eigenfrequencies in a model 1-D

structure disorder system (Eq. (6'a1; for various

values of r:d/a; (A) I r:0.00 (crytical lattice) ,
(B): T:0.02, (C) z T:0.05, (D) z T:0.10, @):

T=0.20 and (F): r=0.30.

s7.
The main result obtained in

of excitations (See Fig- 1) in

inherent in structure disorder

803

It is seen that the value of It de-

creases as T decreases or the local

order increases.

lVe are now in a Position to

rnake a numerical analysis of the

results obtained above. The results

of nurnerical calculations of phonon

dispersion curves as given bY Eq.

(6. 4) are plotted in Fig. 4 for

T :0.00 (crystal latt ice), 0-02, 0.05,

0.10, 0.20 and 0.30. The cases of

T:0.30 and O.LA roughly corresPond

to tiquid helium4E)'re) and liquid

argon,oo) respectively. Figure 4

shows how phonon dispersion curves

are modif ied as the local order

changes. It is seen that an o)-versus-

k curve for T 
- 0.3 roughlY corres'

ponds to the results obtained bY

Henshaw and Woods for liquid

helium II using neutron diffraction

measurements.az) Next, we aPPIY

Eq. (6'  15) to the case of l iquid

argon by identifying 0)t m n'ith the

maximum value o-*-101tsec-t of phonon eigenfrequencies observed expe5imentally.

Taking T:O.L  in Eq- (6' f5),  we then obtain

/ -3  X  l0 t tsec- r ,  (6 '19)

which is also in fair agreement with the experimental result of SkOld and Larssontt)

and that of Rahman.l') Finally, an attempt is made to apply Eq. (6'18) again

to the case of l iquid hel ium. Putt ing a:3.6x10-Ecm, f :0.30 and y' :8"K rve

obtain

A/ M(He) - 0.3 , (6. 2A)

wlrere M(He) is the atomic mass of helium. In vierv of the crudeness of our

moclel and approximation, the above result may be considered to be fairly satis-

factorY.{l)'rtl

Conoluding remarks

this paper is that the phonon-roton-like behaviour

classical liquids stems from the local disorder

systems and therefore that i t  is l ikely to exist,
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within certain restrictions, in almost all non-crystalline solids and simple liquids,

including liquid helium itself. In advancing such an argument the importance

of the interrelationship between such excitation modes and phonon modes in

crystal lattices, classical or quantum is pointed out. We have arrived at the above

result by expressing the eigenfrequencies of phonon-like excitation modes in

terms of e{Iective pair correlation functions as well as of the second derivatives

of pair potentials. Throughout this paper, rve have neglected the damping or

finite lifetirne of such excitation modes. We have shown in $ 3 that for non-

crystalline solids this arises, within the framework of the harmonic approximation,

from the imaginally part of effective pair correlation functions. There is good

reason to believe that the damping effect is quite different for dif{erent types of

structure disorder systems. This may be particularly so if we consider two

contrasting cases, such as quantum liquids and classical liquids, non-ctystalline

solids and liquids, and so on.

In this paper rvc have entirely omitted the discussion on the frequency

spectrum of excitation modes and its effects on the thermodynamical properties

of structure disorder systems, particularly of non-crystalline solids. The next

step wc should make for this purpose is to obtain the wave-number distribution

function f(k), which is the number of modes per unit range of & and may be

called the density of states in the fr-space. These problems will be studied in

a separate paper.

We have also made an attempt to calculte the dispersion curve of elementary

excitatious in liquid helium. This has been done by merely inserting the value

of the half-width of the first peak of the pair correlation function, obtainable

from experimental data, to Eqs. (6.4), (6'1.5) and (6'18). Although fairly good

agreement with experiment has been obtained, further analysis of this problern

along the line with the method developed in this paper is required to see rvhether

the above-mentioned agreement with experiment is accidental or not. As mentioned

in $ S, one of possible approaches is to generalize the concept of phonons in

quantum crystals to the case of non-crystalline quantum solids and quanturn

liquids. The point here would be to investigate the connection between the

behavior of phonon-like excitation modes in the vicinity ol k:ko and the concept

of roton in liquid helium.36)'6r)
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