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It is shown that an extra phonon density of states associated with the roton.like part of
the dispersion of phonon excitations, which is likely to exist in almost all types of noncrystal-
line solids, gives rise to an excess low-temperature specific heat. This could account for the
anomaly in the low-temperature thermal properties observed in a large number of noncrystal-
line solids and glassy polymers. It is shown that under certain conditions the excess low-
temperature specific heat is nearly proportional to absolute temperature.

The thermal conductivity of noncrystalline dielectric solids has long been
known to be markedly different from that of crystalline solids.”® It has also
been increasingly apparent that the low-temperature specific heat of solids in the
glassy phase is larger than in the crystalline phase: »~® This difference has of-
ten been referred to as an excess specific heat. The characteristic feature here
is that such a behavior is insensitive to structural details of a particular noncrystal-
line sample and therefore that it seems to be rather common in almost all types
of noncrystalline solids. This result seems to preclude possible mechanisms aris-
ing from structure-sensitive phonon scatterings or quasi-localized phonon modes due
to impurities or defects.” Fulde and Wagner® have proposed a semi-phenomenolo
gical model for elementary phonon excitations in noncrystalline solids which can
account for the low-temperature anomalies in the specific heat and the thermal
conductivity of amorphous solids. Recently Anderson, Halperin and Varma® have
proposed an alternative possible model, starting from the basic assumption that
in any glass system there should be a certain number of atoms which can sit
more or less equally well in two equilibrium positions.

In a previous paper, to be referred to as L' the present authors have shown
that the structural disorder inherent in noncrystalline solids is likely to give rise
to roton-like phonon excitations in the close vicinity of the first peak in the struc-
ture factor (see Figs. 1 and 4 in I). In this paper we wish to show that such
a behavior of phonon modes does yield an extra phonon density of states in the
low-frequency region, thus giving rise to anomalies in the low-temperature thermal
properties of noncrystalline solids. For the sake of simplicity, we confine our-
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Frequency Spectrum and Low-Temperature Specific Heat 1469

selves in this paper to the problem of the low-temperature specific heat.

According to the results obtained in L' the dynamical matrix 9 giving the
phonon eigenfrequencies as a function of wave vector k in a noncrystalline solid
composed of atoms of a single species is given by*

D= (o/M) [aRe:(RIP7o(R) [1-exp(ik-B)]. ®

Here, M and p are the atomic mass and the number density of the atoms, re-
spectively, v(R) is the “bare potential” describing the interaction of a pair of
atoms, and ¢,(R) is a pair correlation function for the distribution of atoms in
the solid. Equation (1) may be called a quasi-crystalline approximation. It has
been shown that of three branches of phonon modes, one is longitudinal and the
other two are transverse, at least the dispersion of the longitudinal phonons has
the form of phonon.roton-like excitations' as observed in liquid helium.”» Let
(k) be the eigenfrequency of such phonon modes with imaginary part I' ACYR
Within the framework of the harmonic approximation, the factor I'; arises if we
take into account higher order correlations other than pairs.**) Then, its contribu-
tion to the frequency spectrum p,(w) can be expressed in the form

oi(@) = (Zw/n)lm[ fﬁff—’g%]

with
@D=p'—ilM(e%, (2

where fi(k)dk is the number of modes between k and k+ dk and Im[A] denotes
the imaginary part of A. In the case of a crystal lattice, the quantity fi(k) is
nonzero and becomes V,/(2r) only in the first Brillouine zone, where V, is the
volume of the unit cell. In our present case, however, such a relation can no
longer be used since the conventional reduced-zone scheme does not hold. With-
out any approximation, we cannot proceed from Eq. (2). For the sake of sim-
plicity, we assume in the following that both of w;(k) and fi(k) are spherically
symmetric.¥** Equation (2) then reduces to

p:(0) =80 Im[ :g-:%]- 3)

As in the case of liquid helium, we take o,;(k) in the vicinity of k=k, at
which the roton-like minimum takes place, to be of the form!®

* For a detailed discussion of Eq. (1), see Ref. 10), §3.
*¥) For a discussion on this point, see Ref. 11), the Appendix.
*+4) This approximation is equivalent to assuming the pair correlation function gy to be spheri-
cally symmetric. Thus, we are taking into account only those correlations which exist in the case
of simple liquids. This may be used as a zero-order approximation. There have been experimental
indications that the structure factor of several substances in noncrystalline phase is not very different
from that in liquid phase.
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i (k) = 4,+ £ R, @
2m
where!®
4= (ko)
and
=20, (ky) / [d’w: (R)/, dk’],-,,- . (%)

It is shown that the quantities 4, 2, and u4; depend on a parameter charac.
terizing the degree of local ordering.® As shown in our previous paper’® and
also as in the case of phonon:roton excitations in liquid helium,'™ the quantity
ky is, in general, slightly smaller than the position of the first peak in the struc-
ture factor. The contribution of the roton spectrum, similar to Eq. (4), to the
specific heat of liquid helium has been studied by Landau.® ~The present method
differs from that employed by him in that the imaginary part I'; of the frequency
and the wave-number distribution function f;(k) have been introduced. Insertion
of Eq. (4) into Eq. (38) gives

Jilkp+ R (x)) (ke + R (2)) +fi(kn— k' (x)) (k — K (x))’]
(@ — )k (z)

0.7 (@) = 80> Im[ fdx

with
¥ (z) = [2u(z—d) 1", (6)

where the superscript » denotes the roton-like part of the frequency spectrum.
In view of the fact that in the case of a crystal lattice f;(&) is step-function-like®
with a cutoff wave vector corresponding to the first reciprocal lattice vector kg,
we take f;(k£) to be of the form as shown in Fig. 1. The underlying fact here
is that the uncertainty 4k in wave number % inherent in disordered systems generally
increases as k increases and that the integrated value of f;(k) over.the whole
wave-number space must be equal to the total number of atoms in the system.

f, (k)

kk K
Fig. 1. Schematic behavior of the wave-number distribution function
fi(®). The dotted line corresponds to the case of a crystal lattice.

We then expand the function f,(k,;t_k') in Taylor’s series:

-*} The properties .of the wave-number distribution function f;(#) in noncrystalline solids have
also heen briefly touched .upon in a paper by Morgan [G. J. Morgan, J. Phys. C1 (1968), 347]. See
also, G. J. Morgan and J. M. Ziman, Proc. Phys. Soc. 91 (1967), 689.
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filko £ &) =f (k) £f (k)R +---. @
Combining Eq. (7) with Eq. (6), we get
(3 — 3 ______1
0 (@) =16skstf, () | [z o s |

+16ﬂa>{f;(k;)+2kL(6fz/3k)...,}Im[ ¥ (z) dx]

=p{? (0) + 0 (). ®

Without detailed calculations, we can obtain the qualitative property of p,'”(w).
We observe that by setting I';(w*) equal to zero Eq. (6) reduces to

G — 16pwks f1(01)
0 @) = o dyT

+ 164w { Fi(ks) + 2k, (%‘-;ﬁ) } [2u(w— 4)1"?

k=kz!

=of(0) + 02 (@), 9

having the singularity of the form (w—4;)"**. Introduction of the imaginary part
would generally modifies the spectrum as shown in Fig. 2. It also modifies the
second term, but this modification is not so pronounced as compared with that
due to the first term. Such a result could be obtained by analogy of the energy
spectra of electrons or phonons in disordered systems. As is seen from Fig. 2,
thus the over-all behavior of p,”(w) is almost constant in the vicinity of w=4.
The above result, when combined with the formula for the specific heat,

"n_ r ho/keT)

") 4Cy M =Pk jda)o( Y(w) exp( )
e e R (kBT) [exp (ho/ksT) — 1T

1]

i keT e’

i = (kg! (ry( £BL .

wh § (ks'/MT [z (22 )(e s
: %" B) (10)
: gives an excess specific heat 4C,”. Here, kg is

4 @ the Boltzmann constant and % is the Planck con-
Fig. 2. Schematic behavior of stant divided by 2. .
o (w). The solid and the The result obtained here depends on the fre-
dotted lines correspond to the ~ quency gap 4; in the phonon dispersion curve which,
cases with ‘““; ?;?0(':“ the 33 we have shown in L' characterizes the local
imaginary part I'; . Curves q . .
(A), (B), (a) and (b) represent ordering in dlsord?re:d systems. It ap.pears t:atlany
o.‘? (@), 6% (@), B and model or theory aiming at und'erstandmg of the low-
o (@), reepecuvely temperature thermal properties of noncrystalline
solids and glassy polymers as well must be very simple and at the same time
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sufficiently general to be equally applicable to-a large number, if not even all,
of such disordered systems. The result obtained here may be one of possible
candidates for such a theory.

A remarkable result obtained by Zeller and Pohl® is that the specific heat
of noncrystalline solids at very low temperatures is proportional to 7. This
could be accounted for by the present result. It is seen from Fig. 2 that the
excess frequency spectrum 0, () is almost independent of w above and in the
vicinity of 4;. To arrive at a result more concrete than Eq. (10), we make an
attempt at approximating p,"’(w) by

»
=32 TS Gy ay
Awy", 0>y,
where A is a constant.® The quantities » and o, are a positive number greater
than unity and a constant close to but smaller than 4, which characterize the
behavior of p,”(w) in the close vicinity of w=0 and w=4, respectively. Putt-
ing Eq. (11) into Eq. (10), we get

/T .z"e’
4Cy = (ks'/h) Awy™T £ et (ka'/B) AT
e —

)
WIT (b T\ " . R et
ST o e, a2
where
6,= hah/ ka (13)

and 0 is a temperature corresponding to a cutoff frequency of 0, (®) in the region
0> At very low temperatures the quantity §/7 is taken to be infinity. Thus,
the first term of Eq. (12) gives an excess specific heat proportional to 7". The
second term depends sensitively on 6§, and . We have not yet obtained informa-
tion on 4, from experimental data. For liquid helium, the roton minimum in
unit of degree Kelvin is about 8°K. In view of possible ordering in noncrystal-
line solids higher than in the case of liquid helium, the quantity §; may be smaller
than, say, 5°K. For a sufficiently small value of 6, the second term in Eq. (12)
can be neglected in comparison with the first term. This may hold for noncrystal-
line solids, in which the linear dependence of the low-temperature specific heat
with respect to absolute temperature has been observed.® It is, however, to be
reminded that more important is probably the existence of excess low-temperature
specific heat itself, which may reflect a very general feature of noncrystalline
solids and glassy polymers resulting from structural disorder.**®

* The discontinuity of the derivative of p,(") () at w=w, is an artifact of our approximation,
which does not affect the essential feature of the excess specific heat discussed here.

** It has recently been shown that an excess low-temperature specific heat of vitreous selenium
is not proportional to the absolute temperature [see, J. C. Lasjaunias, R, Maynard and D. Thoulouz,
Solid State Comm. 10 (1972), 215].
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