Mott Transition in the Multi-Band Hubbard Model in Infinite Dimensions

Yoshiaki Ōno ${ }^{\text {a, } 1}$, Ralf Bulla ${ }^{\text {b }}$, Michael Potthoff ${ }^{\text {c }}$
${ }^{a}$ Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
${ }^{\mathrm{b}}$ Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
${ }^{\mathrm{c}}$ Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany

Abstract

The Mott metal-insulator transition in the multi-band Hubbard model in infinite dimensions is studied by using the linearized dynamical mean-field theory. The critical interaction U_{c} is obtained analytically. For the symmetric case and for orbital degeneracy M we find $U_{c}=(4 M+2) \sqrt{L_{2}}$ where L_{2} is the second moment of the non-interacting density of states. We also derive an analytical expression for the discontinuity of the chemical potential $\mu=\mu(n)$ at the filling $n=M$ for $U>U_{c}$. The findings are in good agreement with numerical results obtained from the exact diagonalization method.

Key words: Mott transition; Metal-insulator transition; multi-band Hubbard model; orbital degrees of freedom

The Mott metal-insulator transition (MIT) driven by electron correlations has received intensive experimental and theoretical attention. It is observed in various transition-metal oxides [1] as well as in fullerenes [2]. The minimal model to describe the Mott MIT is the single-band Hubbard model. However, a consistent description of the above mentioned systems certainly requires more realistic models including orbital degrees of freedom.

Theoretical advances in the past decade - mainly due to the development of the dynamical mean-field theory (DMFT) [3,4] - have led to an increased understanding of multi-orbital Hubbard models [5-13]. Nevertheless, a number of questions still need to be clarified. Even within the DMFT reliable results for the $T=0$ Mott MIT in multi-band models are still missing. Furthermore, results for the M-dependence of the critical U seem controversial, i.e. both a $\propto \sqrt{M}$ [11] and a $\propto M[5,8,12]$ dependence have been reported in the literature. To clarify these issues, a simple but reli-
able method is needed - such as the linearized DMFT for which we present an extension to the multi-orbital case in this paper.

The linearized DMFT (L-DMFT) [14] maps the lattice problem onto an Anderson impurity model with a single bath site only by considering a simplified selfconsistency condition just at the critical point. This allows for extremely fast numerical calculations or even analytical results to estimate the critical parameters. The L-DMFT has been tested extensively by comparing with numerical results from the full DMFT. For the standard Hubbard model $[14,15]$ but also for different thin-film and semi-infinite surface geometries [16] as well as for the $d-p$ model $[17,18]$ a remarkable agreement has been found. For quantitative estimates, errors of the order of a few per cent have to be tolerated. We can thus expect the L-DMFT to be a fast but reliable tool for multi-band systems as well.

Here we consider a multi-band Hubbard model without exchange Coulomb interaction [19]:

[^0]$H=\sum_{i j \alpha \sigma} t_{i j} c_{i \alpha \sigma}^{\dagger} c_{j \alpha \sigma}+\frac{U}{2} \sum_{i(\alpha \sigma) \neq\left(\alpha^{\prime} \sigma^{\prime}\right)} \hat{n}_{i \alpha \sigma} \hat{n}_{i \alpha^{\prime} \sigma^{\prime}}$,
where i is a site index and $\sigma=\uparrow, \downarrow$. The different orbitals labeled by $\alpha=1, \ldots, M$ are considered to be equivalent, M is the orbital degeneracy.

In the limit of infinite dimensions, the self-energy becomes local, and the local Green's function is given by the impurity Green's function of an effective Anderson impurity model,

$$
\begin{align*}
H & =\sum_{\alpha \sigma, k=2}^{n_{\mathrm{s}}} \epsilon_{k} a_{k \alpha \sigma}^{\dagger} a_{k \alpha \sigma}+\sum_{\alpha \sigma, k=2}^{n_{\mathrm{s}}} V_{k}\left(f_{\alpha \sigma}^{\dagger} a_{k \alpha \sigma}+\text { h.c. }\right) \\
& +\sum_{\alpha \sigma} \epsilon_{f} f_{\alpha \sigma}^{\dagger} f_{\alpha \sigma}+\frac{U}{2} \sum_{\alpha \alpha^{\prime} \sigma \sigma^{\prime}} f_{\alpha \sigma}^{\dagger} f_{\alpha^{\prime} \sigma^{\prime}}^{\dagger} f_{\alpha^{\prime} \sigma^{\prime}} f_{\alpha \sigma} . \tag{2}
\end{align*}
$$

In the model eq.(2), the hybridization function $\Delta(\omega)=$ $\sum_{k} V_{k}^{2} /\left(\omega-\epsilon_{k}\right)$ includes the effects of the interaction at all the sites except for the impurity site and is determined self-consistently so as to satisfy the DMFT self-consistency equation [4].

The L-DMFT assumes that the MIT is characterized by a vanishing weight of a low-energy quasi-particle resonance. Close to the MIT, the quasi-particle peak is approximated by a single pole at the Fermi energy. Correspondingly, the hybridization function is a onepole function $\Delta(\omega)=\frac{V^{2}}{\omega}$. This effectively represents an approximate mapping of the model (1) onto an Anderson model (2) with $n_{\mathrm{s}}=2, V \equiv V_{k=2}, \epsilon_{c} \equiv \epsilon_{k=2}=0$ and $\epsilon_{f}=-\mu$. The DMFT self-consistency equation is simply written by $V^{2}=z L_{2}[14]$. Here L_{2} is the second moment of the non-interacting density of states $L_{2}=$ $\int \mathrm{d} \omega \omega^{2} \rho^{(0)}(\omega)=\sum_{j} t_{i j}^{2}$. The quasi-particle weight z can be calculated from the impurity spectral function of the two-site Anderson model and is given by $z=$ $z\left(V, \epsilon_{c}, \epsilon_{f}, U, M\right)=V^{2} F(\mu, U, M)+O\left(V^{4}\right)$. Using the standard (Brillouin-Wigner) degenerate perturbation theory we find $F(\mu, U, M)=\frac{1}{2}\left(\frac{M+1}{M U-\mu}+\frac{M}{\mu-(M-1) U}\right)^{2}+$ $\frac{1}{2}\left(\frac{M}{M U-\mu}+\frac{M+1}{\mu-(M-1) U}\right)^{2}$. Hence, we obtain
$L_{2} F(\mu, U, M)=1$
as a condition for the MIT. This depends on the filling $n=1, \ldots, 2 M-1$ through the chemical potential μ.

For $U<U_{c}$ and half-filling $n=M$ [19] in the symmetric model, the chemical potential is fixed to $\mu=$ ($M-\frac{1}{2}$) U due to particle-hole symmetry. Substituting this into eq.(3), we obtain for the critical interaction
$U_{c}(M)=(4 M+2) \sqrt{L_{2}}$.
For $U>U_{c}$, the system is a Mott insulator at $n=M$. As a function of the filling the chemical potential shows a jump $\Delta \mu=\mu_{+}-\mu_{-}$, where $\mu_{ \pm}$is obtained by solving eq.(3) for $U>U_{c}$ [15]. $\Delta \mu$ thus obtained is
$\Delta \mu(U, M)=U\left(B-\sqrt{B^{2}-1+1 / u^{2}}\right)^{\frac{1}{2}}$,
where $B \equiv 1+1 /\left(2(2 M+1)^{2} u^{2}\right)$ and $u=U / U_{c}$.
We have also calculated $\Delta \mu$ numerically by using the NRG method for $M=1$ and the ED method for $M=$ 1,2 . The analytical results of the L-DMFT eqs.(4) and (5) agree very well with the numerical results both for $M=1$ [15] and $M=2$ [20].

Remarkably, our findings show that $U_{c}(M)$ depends linearly on M. This is in agreement with previous results from the Gutzwiller method [5] and slave boson calculations [8]. There have been reports on a \sqrt{M} dependence as well [11], a result which has not been reproduced by other methods. The quantum MonteCarlo calculations of Han et al. [10], for instance, are not conclusive, in particular due to the fairly large T used in the calculations.

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture (Y \bar{O}), and the Deutsche Forschungsgemeinschaft, through the Sonderforschungsbereiche 484 (RB) and 290 (MP).

References

[1] M. Imada, A. Fujimori, Y. Tokura: Rev. Mod. Phys. 70 (1998) 1039.
[2] O. Gunnarson, Rev. Mod. Phys. 69 (1997) 575.
[3] W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62 (1989) 324.
[4] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, Rev. Mod. Phys. 68 (1996) 13.
[5] J.P. Lu, Phys. Rev. B 49 (1994) 5687.
[6] G. Kotliar, H. Kajueter, Phys. Rev. B 54 (1996) 14221.
[7] J. Bünemann, W. Weber, Phys. Rev. B 55 (1997) 4011.
[8] R. Frésard, G. Kotliar, Phys. Rev. B 56 (1997) 12909.
[9] M. J. Rozenberg, Phys. Rev. B 55 (1997) R4855.
[10] J.E. Han, M. Jarrell, D.L. Cox, Phys. Rev. B 58 (1998) 4199.
[11] E. Koch, O. Gunnarsson, R. M. Martin, Phys. Rev. B 60 (1999) 15714.
[12] S. Florens, A. Georges, G. Kotliar, O. Parcollet, condmat/0205263 (2002).
[13] K. Held, G. Keller, V. Eyert, D. Vollhardt, V.I. Anisimov, Phys. Rev. Lett. 86 (2001) 5345.
[14] R. Bulla, M. Potthoff, Eur. Phys. J. B 13 (2000) 257.
[15] Y. Ōno, R. Bulla, A. C. Hewson, M. Potthoff, Eur. Phys. J. B 22 (2001) 283.
[16] M. Potthoff, W. Nolting, Eur. Phys. J. B 8 (1999) 555; Phys. Rev. B60 (1999) 7834.
[17] Y. Ōno, R. Bulla, A. C. Hewson, Eur. Phys. J. B 19 (2001) 375.
[18] Y. Ohashi, Y. Ōno, J. Phys. Soc. Jpn. 70 (2001) 2989; ibid. 71 (2002) Suppl. 217.
[19] The general case with finite exchange Coulomb interaction J and integer fillings $n \neq M$ is discussed in [20].
[20] Y. Ōno, M. Potthoff, R. Bulla, preprint.

[^0]: ${ }^{1}$ E-mail: c42545a@nucc.cc.nagoya-u.ac.jp

