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We examine anomalous flux quantization of the one-dimensional attractive Hubbard models with
imbalanced spin populations by using the exact diagonalization method. In the single chain Hubbard
model with sufficiently large attractive interaction and imbalanced spin populations, the period of
the flux quanta is determined by the difference between the system sizeNL and electron numberNe

ash/(NL − Ne)e, in contrast to the superconducting flux quanta ofh/2e based on usual Cooper
pairs and/or the periodh/4e derived by the mean-field theory. We find that similar anomalous flux
quantization appears in the zigzag and ladder Hubbard models with imbalanced spin populations,
when the band structure near the Fermi levels is regarded to be almost equivalent to that of the single
chain Hubbard model.
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1. Introduction

Recently, Yoshida and Yanase [1] showed that the so-called Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [2, 3] indicates an anomalous flux quantization of periodh/4e, which is a half of the
superconducting flux quantumh/2e. They analyzed the one-dimensional (1D) attractive Hubbard
chain with 200 sites by using the mean-field approximation based on the Bogoliubov-de Gennes
equation in the weak-coupling region [1]. Here the FFLO state is characterized by the formation of
Cooper pairs with finite center-of-mass momentum caused by the imbalance of the Fermi surfaces
of two-component fermions and exhibits inhomogeneous superconducting phases with a spatially
oscillating order parameter [4–13].

It is known that the strong quantum fluctuation effect is crucial for low-dimensional systems
such as the 1D mesoscopic chain [14–19] and the strong coupling theory is more suitable for the
experimental situation of the FFLO state realized in ultracold atomic gases [20–23]. However, most
of the theoretical works for the FFLO state have been performed within the mean-field approximation
whose application is limited in the weak-coupling region. To clarify the strong coupling effects, we
think that the nonperturbative and reliable approach beyond the mean-field approximation is required.

In the previous work [24], we investigated the 1D Hubbard chain with the attractive interaction
in the presence of the spin imbalance by using the exact diagonalization (ED) method for finite-
size systems. To analyze the anomalous flux quantization, we numerically calculated the periodicity
of the ground-state energyE(Φ) with respect to the magnetic fluxΦ without any approximation.
When the absolute value of the attractive interaction|U | is sufficiently larger than the hopping energy
of electrons, the period of the flux quanta was found to be determined by the difference between
the system sizeNL and electron numberNe ash/(NL − Ne)e [24]. The result is a contrast to the
superconducting flux quanta ofh/2e based on usual Cooper pairs and/or the periodh/4e claimed by
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the analysis of the mean-field theory for the FFLO state [1]. It is noted that this anomalous behavior
is different with the the anomalous flux quantization discussed in the repulsive (U > 0) Hubbard
chain in the strong correlation regime withU ≫ n|t|, whereE(Φ) shows oscillation with a period of
h/Ne [25,26].

In the present study, we investigate the anomalous flux quantization of the zigzag and ladder
Hubbard models with the attractive interaction, in addition to the single chain model by using ED
method. Although our calculation is restricted to small systems, we think that the essential features
of the anomalous flux quantization in the FFLO state can be well described even in finite-size systems
[7–12,14,15].

2. Model and Formulation
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Fig. 1. (Color online)Schematic diagrams of (a) the zigzag Hubbard model and (b) the ladder Hubbard model
under the magnetic fluxΦ.

We consider the zigzag 1D Hubbard chain given by the following Hamiltonian:

H = −t1
∑
i,σ

(ei2πΦ/NLc†i,σci+1,σ + h.c.)− t2
∑
i,σ

(ei4πΦ/NLc†i,σci+2,σ + h.c.)− |U |
∑
i

ni,↑ni,↓, (1)

wherec†i,σ stands for the creation operator for an electron with spinσ (=↑, ↓) at sitei andni,σ =

c†i,σci,σ. Here, t1 and t2 represent the hopping integral between nearest-neighbor sites and next-
nearest-neighbor (NNN) sites, respectively.Φ corresponds to the magnetic flux through the chain
measured in units ofh/e, andNL is the system size. The interaction parameter|U | stands for the
strength of the attractive interaction on the site.

We also treat the Hubbard ladder model as follows:

H = −tl
∑
i,m,σ

(ei2πΦ/Nuc†i,m,σci+1,m,σ + h.c.)− tr
∑
i,σ

(c†i,1,σci,2,σ + h.c.)− |U |
∑
i,m

ni,m,↑ni,m,↓ (2)

wherec†i,m,σ stands for the creation operator for an electron with spinσ at site(i,m). Here,m(= 1, 2)
denotes the index of legs andi is the position on rungs. Here,tl andtr represent the hopping integral
between nearest-neighbor rungs and intra rung, respectively.Nu indicates the number of the rungs
and corresponds to half of the number of the total sites. Schematic diagrams of these models are given
Fig. 1.
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Fig. 2. (Color online) Dispersion relationϵ(k) of (a) the zigzag chain model with several values oft2 and
(b) the ladder model at a typical value oftr, where Fermi energyEF is set to correspond ton = 0.5.

We numerically diagonalize the zigzag-chain Hamiltonian [eq. (1)] of up to 8 sites, and the ladder
model Hamiltonian [eq. (2)] of up to 8 rungs, using the standard Lanczos algorithm. If flux quantiza-
tion appears, the lowest energy level is expected to alternate and oscillate with increasingΦ [14,15].
To carry out a systematic calculation, we use the periodic boundary condition whenN↑ andN↓ are
odd numbers and the antiperiodic boundary condition when they are even, whereN↑ andN↓ are the
total numbers of up- and down-spin electrons, respectively [16]. The fillingn of electrons is given by
n = Ne/NL for the zigzag chain, andn = Ne/Nr for the ladder chain, whereNe(= N↑+N↓) is the

total number of electrons, and the spin imbalance is defined byp =
N↑−N↓

Ne
.

In the noninteracting case (U = 0), these Hamiltonians are easily diagonalized and yield dis-
persion relations representing for the zigzag chain modelϵzig(k) = −2t1 cos(k) − 2t2 cos(2k), and
for the ladder modelϵlad(k) = −2tr cos(k) ± tl, wherek is the wavenumber and these dispersion
relations are depicted for several parameters in Fig. 2. Hereafter, we sett1 = 1 andtl = 1.
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Fig. 3. Difference in the ground-state energy∆E = E(Φ) − E(0) as a function of the magnetic fluxΦ
with p = 0 andn=0.5 (4 electrons/8 sites) for (a)|U | = 0, 10, 1000 at t2 = 0, and (b)t2 = −0.5, 0, 0.5, 10
at |U | = 1000, respectively. Here, the open circle denotes the result oft2 = −0.5 and the cross is that of
t2 = 0.5.
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3. Numerical Results

3.1 Zigzag model
At first, we examine the flux quantization of the zigzag Hubbard model as shown in fig. 1(a).

Figure 3(a) shows the difference in the ground-state energy∆E(Φ) = E(Φ) − E(0) as a function
of Φ at quarter fillingn=0.5 (4 electrons/8 sites) for|U | = 0, 10 and 1000 in the absence of spin
imbalance, i.e.,p = 0. Whent2 = 0, the model reduces the usual Hubbard chain and we expect
the usual flux quantization of Cooper pairs with zero momentum, i.e. the periodh/2e [14, 15]. We
can see that the energy levels cross atΦ ∼ 0.25 and 0.75 for all values of the attractive interaction
(|U | = 10, 1000), where the usual superconducting flux quantization of periodh/2e (= 0.5 in the
present unit ofh/e = 1) is observed. The energy scale of the flux quantization of periodh/2e seems
to be proportional to∼ 1/|U |, because the energy scale of the pair hopping is considered to be given
as∼ t21/|U |.

Figure 3(b) shows the result oft2 = −0.5, 0, 0.5 and 10 at|U | = 1000 for p = 0. We find
that the flux quantization is almost independent oft2. Especially, the difference between the result of
t2 = −0.5 and 0.5 is very small and it is hard to distinguish both cases in this figure. Whent2 = 10,
the system should be considered as a double chain connected by electron hoppingt1. It also clearly
indicates the flux quantization ofh/2e.
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Fig. 4. Difference in the ground-state energy∆E = E(Φ)−E(0) as a function of the magnetic fluxΦ with
p = 0.5 atn=0.5 (4 electrons/8 sites) for (a)t2=0, 0.1, 0.25, 0.5 and (b)t2=0, -0.1, -0.25, -0.5.

Figure 4(a) gives the∆E(Φ) for t2=0, 0.1, 0.25, 0.5 in the presence of spin-imbalance with
p = 0.5. Our previous work [24] has already pointed out that the period of the flux quantization
is given byh/(NL − Ne)e for t2 = 0 with sufficiently large negative interaction|U |. The result
is reconfirmed in Fig4(a), which indicates the period to beh/4e with NL − Ne = 4. It indicates
that the anomalous flux quantization of periodh/4e survives, although its shape is fairly deformed
for t2=0.25, in contrast with the usual flux quantization of periodh/2e. Whent2 = 0.5, the NNN
hopping prevents the appearance of the anomalous flux quantization and it is difficult to find the sign
of the anomalous flux quantization in theΦ dependence ofE(Φ).

Figure 4(b) shows∆E(Φ) in the case oft2=0, -0.1, -0.25, -0.5. In this case, deformation of
∆E(Φ) as a function ofΦ becomes significant fort2 >∼ 0.25 and the anomalous flux quantization
vanishes even fort2 = 0.25. It indicates that the influence of the NNN hopping upon the anomalous
flux quantization is larger than the caset2 being positive. It may be caused by the band structure that
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the change atEF for t2 < 0 is larger that fort2 > 0 as shown in Fig.2. The result also suggests that
the anomalous flux quantization is sensitive to the band structure.

3.2 Ladder model
Next, we address the case of Ladder model depicted in Fig.1(b), where each of the upper and

lower bands is completely equivalent to the band of the single chain as indicated in the dispersion
relation of ϵlad(k) in the noninteracting model. Here, we note that the number of unit cellsNu is
corresponding to theNL in the chain model.

Figure 5 gives the∆E(Φ) as a function ofΦ of the ladder model atp = 1/2 with the result of
the single chain model. It clearly indicates that the period of the anomalous flux quantization appears
ash/(Nu −Ne)e for tr/tl = 10 at |U | = 500, where this period agrees with that of the single chain
with the same parameters [24].

On the other hand, the anomalous periodicity completely disappears fortr/tl = 0.1 and 1. In the
case oftr/tl = 0.1, the band gap between the upper and lower bands of the ladder model, which is
yielded by2tr − 2tl, vanishes and both bands fairly close each other. Then, four Fermi points appear
at EF as a typical 1D two-band system and the electronic state is considered to be different from
that of the single band model. However, in the case oftr/tl = 1.0, the band structure atEF seems
to be almost equivalent to that of the single chain model with two Fermi points. It is strange and
interesting that the anomalous flux quantization vanishes attr/tl = 1.0. We have also confirmed that
the anomalous flux quantization is not clearly observed even iftr/tl = 5.0(not shown). The result
suggests that the large band gap is crucial to the periodicity of the anomalous flux quantization of
h/(Nu − Ne)e. Further, the anomalous flux quantization is not determined by only the electronic
state atEF , but relates to that of the whole band structure.
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Fig. 5. (Color online) Difference in the ground-state energy∆E = E(Φ) − E(0) as a function of the
magnetic fluxΦ with p = 1/2 atn=0.5 (4 electrons/8 units) and|U | = 500 for tr = 0.1, 1.0 and 10. Here, the
result of the single chain is also added to compare with the ladder model at the same parameters.

5



4. Summary

We sturdy the anomalous flux quantization of the zigzag Hubbard and the ladder Hubbard models
with large attractive interaction and imbalanced spin populations by using the exact diagonalization
method. We found that the period of the flux quanta are determined ash/(NL − Ne)e for zigzag
model, andh/(Nu − Ne)e for ladder model. These behavior are corresponding to the result of the
anomalous flux quantization obtained in the single chain Hubbard model. However, the condition of
the anomalous flux quantization is restricted to the case of the electronic state is regarded to be close
to that of the single chain model.

At this stage, we could not explain the mechanism of the anomalous flux quantization of the
zigzag model and/or the ladder model except the case of the single chain model [24]. Further, it is not
clear how our results relate to the result of the mean-field analysis [1], and whether the anomalous
flux quantization appears in the other models such as ladder model with three or more legs and the
two-dimensional model [13]. These problems may be very interesting and we will address them in
future.
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