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Using the numerical diagonalization method, we examine the one-dimensional t1-t2-
J1-J2 model (zigzag chain t-J model) which represents an effective model for metallic
CuO double chain in the superconductor Pr2Ba4Cu7O15−δ. Based on the Tomonaga-
Luttinger liquid theory, we calculate the Luttinger-liquid parameter Kρ as a function
of electron density n. It is found that superconductivity is realized in parameter region
corresponding to the experimental result. We show phase diagram of spin gap on the
t2/|t1|-n plane by analyzing the expectation value of twist-operator Zσ in the spin
sector. The spin gap appears in the region with large t2/|t1|, where the phase boundary
at half-filling is consistent with that of the known frustrated quantum spin system. The
analysis also suggests that the estimated value of the spin gap reaches ∼ 100K in the
realistic parameter region of Pr2Ba4Cu7O15−δ.
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Recently, Matsukawa et al. have discovered a new superconductor Pr2Ba4Cu7O15−δ(Pr247)

in which CuO double chains are considered to derive the superconductivity at Tc ∼ 20K.1,2 Since

electronic conduction in CuO2 plane of Pr247 is suppressed due to the so-called Fehrenbacher-Rice

state,3 the double chains are expected to play a crucial role for metallic state of the material. In

fact, anisotropy in the resistivity of a single crystal shows the one-dimensional(1D) conductivity

based on the CuO double chains and the NQR experiment also indicates that the superconductivity

is realized in the CuO double chains.4–7 These experiments stimulate our interest in the theoretical

aspect for the electronic state and the superconductivity of the double chain system.

Many theoretical works have been performed on the electronic state of double chain systems

such as Ladder models and zigzag chain models.8–23 Generally speaking, the electronic state of

these two-band models is characterized by existence of four Fermi points, namely, ±kF1 and ±kF2

on the Fermi surface. In the weak coupling regime, bosonaization method reveals that the low-

energy excitations of the double chain are given by a single gapless charge mode with a gapped

spin mode (labeled as c1s0), when the ratio of the two Fermi velocities |vF1/vF2 | is smaller than

a critical value ∼ 8.6.8–10,24 The correlation functions of the superconductivity(SC) and that of

the charge density wave (CDW) decay as ∼ r
− 1

2Kρ and ∼ cos[2(kF2 − kF1)r]r
−2Kρ , respectively,

while that of the spin density wave (SDW) decays exponentially. Here, Kρ is the Luttinger liquid
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parameter and determines the critical exponents of various types of correlation functions in the

model which is isotropic in spin space.11–13 In the c1s0 region, the SC correlation is dominant for

Kρ > 1/2, while, the CDW correlation is dominant for Kρ < 1/2.

In the strong coupling regime, the double chain systems have been studied by using numerical

methods.14–21 At half-filling, the system can be described by a Heisenberg model whose ground

state is a spin liquid insulator with a finite spin gap.15,17,21 Away from half-filling, the system

becomes a metallic state which maintains a spin gap.16,21 This behavior is explained by the

existence of electron pairs produced by the dominant fluctuations of the 4kF charge density wave

or the interchain paring fluctuations.

Among them, there are few works which consider the model just corresponding to the Pr247

except our previous work22 and the very recent work using the fluctuation exchange (FLEX) ap-

proximation.23 In our previous paper, we have investigated the superconductivity in the d-p double

chain model, simulating a CuO double chain of Pr247 where the tight-binding parameters are de-

termined so as to fit the band structure of the local density approximation(LDA). On the basis of

the Tomonaga-Luttinger liquid theory, we have obtained Kρ as a function of the electron density n.

The doping dependence of Kρ is in good agreement with that of Tc in Pr2472 when we assume that

Tc is a monotonically increasing function of Kρ at Kρ > 1/2. However the Hartree-Fock(HF) ap-

proximation has been used in this work and the analysis is limited in the case of the weak coupling

region as well as the FLEX approximation.

Since the strong correlation effect may play an important role in the electronic state and the

superconductivity of Pr247, a nonperturbative and reliable approach is required. In this work, we

employ the numerical diagonalization method for the double chain t-J model whose parameters are

selected to cover the realistic band structure of the CuO double chains. We calculate the Luttinger

liquid parameters Kρ and address the behavior of the spin gap in the strong coupling regime beyond

the previous works.

We consider the following Hamiltonian for the one-dimensional t1-t2-J1-J2 model(zigzag chain

t-J model);

H = t1
∑
i,σ

(c†i,σci+1,σ + h.c.) + t2
∑
i,σ

(c†i,σci+2,σ + h.c.)

+ J1
∑
i,σ

(Si · Si+1 −
1

4
nini+1)

+ J2
∑
i,σ

(Si · Si+2 −
1

4
nini+2),

where c†i,σ stands for the creation operator of an electron with spin σ at site i and ni,σ = c†i,σci,σ.

Here, t1 is the hopping energy between the nearest-neighbor sites and t2 is that between the next

nearest-neighbor sites as shown in Fig.1(a). The interaction parameters J1 and J2 stand for the
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Fig. 1. (a) Schematic diagram of t1 − t2 − J1 − J2 model on the zigzag chain. (b) Energy dispersion relation for the
noninteracting t1 − t2 model on the zigzag chain. Solid lines are the tight-binding result with t1 = −0.1eV and
t2 = −0.45eV. Closed circles are the LDA result for the d-band of the CuO double chain.

exchange coupling between the nearest-neighbor sites and between the next nearest-neighbor sites,

respectively. We take account of the infinite on-site repulsion by removing states with doubly

occupied sites from the Hilbert space.

To determine the hopping energies t1 and t2, we compare the noninteracting t1-t2 band with the

d-band of the CuO double chain obtained by the LDA band structure in YaBa2Cu4O8(YBCO).25

Here YBCO includes the CuO double chains with the same lattice structure as those in Pr247. As

shown in Fig.1(b), both bands are in good agreement with each other, when we select t1 = −0.1eV

and t2 = −0.45eV.26

As for the exchange coupling energies, J1 is considered to originate in the exchange interaction

between electrons in the nearest neighbor d-sites. The value of J1 is given by the 2nd order

perturbation with respect to the hopping tdd, i.e. J1 = 4t2dd/Ud, where Ud is the on-site Coulomb

interaction between d electrons. When we assume tdd = 0.12eV26 and Ud = 6eV, J1 is estimated as

0.01eV. On the other hand, J2 is considered to the superexchange interaction acting between the

next nearest neighbor Cu-sites connecting through O-site. Our previous study for d-p single chain

and Ladder models27 indicates that the exchange interaction J/tpd is ∼ 0.14 for d-p single chain,

and about 0.09 for d-p Ladder at ∆/tpd ∼ 2.6 and Ud/tpd = 8. Here, we note that the 4th order

perturbation28 with respect to tpd overestimates the value of J/tpd in the case of ∆/tpd <∼ 4.27 By

reference from the above, we regard the adequate value of J2 as ∼ 0.15eV. These values are close

to that of corresponding parameters obtained in CuO2 plain system.29

We numerically diagonalize the Hamiltonian up to 24 sites using the standard Lanczos al-

gorithm and calculate the ground state energy E0. We use the periodic boundary condition for

Ne = 4m+ 2 and the antiperiodic boundary condition for Ne = 4m, where Ne is the total number

of electrons and m is an integer. The filling n is defined by n = Ne/N , where N is the total number
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Fig. 2. Kρ as a function of n for t1 = −0.1eV, t2 = −0.45eV, J1 = 0.01eV and J2 = 0.15eV. The dashed line is a
guide for eyes. Inset shows the chemical potential µ as a function of n. The solid line represents a fitting line using
a second order polynomial by the least square method.
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Fig. 3. (a) Kρ as a function of J2 for n = 2/3(12electrons/18sites). (b) The energy difference E0(ϕ) − E0(0) as
a function of an external flux ϕ for n = 2/3(12electrons/18sites) at J2=0, 0.15 and 0.30eV with t1 = −0.1eV,
t2 = −0.45eV and J1 = 0.01eV.

of sites. The critical exponent Kρ is related to the charge susceptibility χc and the Drude weight

D by Kρ = 1
2(πχcD)1/2, with D = π

N
∂2E0(ϕ)

∂ϕ2 , where E0(ϕ) is the total energy of the ground state

as a function of magnetic flux Nϕ.13 Here, the flux is imposed by introducing the following gauge

transformation: cmσ† → eimϕc†mσ for an arbitrary site m. When the charge gap vanishes in the

thermodynamic limit, the uniform charge susceptibility χc is obtained from χc = ∂n
∂µ , where the

chemical potential µ(Ne, N) is defined by µ(Ne, N) = E0(Ne+1,N)−E0(Ne−1,N)
2 . Using the above χc

and D, we calculate the Kρ from the ground state energy E0 of the finite size system.

Fig. 2 shows the Luttinger parameterKρ as a function of the electron density n for t1 = −0.1eV,

t2 = −0.45eV, J1 = 0.01eV and J2 = 0.15eV. Inset shows the chemical potential µ as a function

of n, where data of µ is fitted to a second-order polynomial as a function of n by the least square

method and the value of χc is estimated from differential coefficient of the polynomial. Kρ increases
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with increasing n and then have a maximum at an optimal electron density at n ∼ 0.6. In the region

of 0.4 <∼ n <∼ 0.8, the value of Kρ exceeds 0.5 when the SC correlation becomes most dominant as

compared with the other correlations (SC phase). The overall behavior of Kρ is consistent with

our previous work obtained by the HF approximation22 except near the half-filling.

Figure 3(a) shows the value of Kρ as a function of J2 for the 12electrons/18sites system.

As J increases, Kρ increases and it becomes larger than 0.5 even if J2 = 0. To confirm the

superconductivity, we calculate the ground state energy E0(ϕ), as a function of an external flux ϕ.

As shown in Fig. 2(b), anomalous flux quantization clearly occurs at J >∼ 0.05. It suggests that the

SC phase appears at Kρ > 0.5.

Next, we consider the phase diagram of the spin gap ∆σ. Generally speaking, it is not easy for

numerical methods to estimate ∆σ preciously in the case of the energy scale being small. Especially,

it is very difficult to determine the phase boundary of the spin gap which is defined by ∆σ = 0. To

overcome this difficulty, we introduce twist-operator Zσ, given as

Zσ = exp[
2πi

N

N∑
j=1

j(nj↑ − nj↓)]. (1)

When the expectation value ⟨Zσ⟩ > 0(< 0), the system becomes spin gapfull(gapless) as has already

been well examined by Nakamura et al. in the study of 1D extended Hubbard model.30 We expect

that this method is applicable to our zigzag chain model as well.

In Fig.4, we show the size dependence of the critical point t2c/|t1| determined by ⟨Zσ⟩ = 0,

where we set the relation between the electron hopping and the exchange interaction as (t2/|t1|)2 =
J2/J1. For n = 1, our system reduces to the J1-J2 Heisenberg model and the critical point t2c/|t1|
is well scaled by 1/N2. The extrapolated value |t2c/t1| = 0.491 is very close to the known result

of the Heisenberg model, J2c/J1 = (t2c/t1)
2 = 0.241.31 For n < 1, we obtain the extrapolated

value by assuming the same size dependence, where we set J1/|t1| = 0.4, and J2/J1 = (t2/t1)
2 to

correspond to the zigzag chain Hubbard model(t1-t2-U model).

Fig.5 shows the phase diagram on the t2/|t1|-n plane together with the result of the weak

coupling theory. It shows that the phase boundary of the spin gap is close to that from the weak

coupling theory for the region with n >∼ 0.5 and t2/|t1| <∼ −1. It also suggests that the boundary

is almost independent of U in the t1-t2-U model, as has already reported for n = 1.32,33 We note

that the phase diagram suggests that the parameter region corresponding to Pr247 belongs to the

spin gapped phase with Zσ > 0.

In the region 0.5 <∼ t2/|t1| <∼ 1.9, we find that the ground state of finite systems is a spin

polarized ferromagnetic state in part as shown in Fig.5,14,16,34 where we use the systems for

n = 4/14, 8/14, 12/14, 4/16, 8/16, 12/16, 4/18, 8/18, 12/18 and 16/18. This ferromagnetic state is

disconnected in respect to t2/|t1|, but it might be caused by finite size effect. Although the phase

boundary of ⟨Zσ⟩ = 0 is masked by the ferromagnetic state in the region, we have confirmed that
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Fig. 4. Size dependence of the critical point t2c for n = 1/2, 3/5, 3/4, 4/5, and 1 determined by the condition ⟨Zσ⟩ = 0.
The open square stands the well known result of the J1-J2 Heisenberg model in the limit N → ∞.
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Fig. 5. Phase diagram on the t2/|t1|-n plane. The solid circles stand the extrapolated value of the critical point
t2c/|t1|. The open symbols, △, ♢, ⃝ and □ indicate spin polarized ground state of finite size systems with
Stotal/Smax = 1/4, Stotal/Smax = 1/3, Stotal/Smax = 1/2 and Stotal/Smax = 1, respectively, where Stotal is the
total spin of the ferromagnetic state and Smax is the maximum possible value of Stotal. The broken lines are
the phase boundary between c2s2 and c1s0 obtained by the weak coupling theory.8 The dashed lines present the
boundary between the region of four Fermi points and that of two Fermi points in the noninteracting model.

the sign of ⟨Zσ⟩ is positive for t2/|t1| >∼ 1 and negative for t2/|t1| <∼ 0 except the ferromagnetic

phase.

Finally, we consider the relationship between ⟨Zσ⟩ and the value of the spin gap ∆σ. It is known

that ⟨Zσ⟩ corresponds to the expectation value of the nonlinear term cos(
√
8ϕσ) in the sine-Gordon

model which is the effective Hamiltonian of 1D electron system.30 Because this term becomes a

source producing the gap, there is a close relation between ∆σ and ⟨Zσ⟩.37 We find that ∆σ of the

infinite system is almost proportional to the product of vσ and ⟨Zσ⟩ of the 18-sites system in wide

range of the parameter t2/|t1| at n = 1, where vσ is the spin velocity corresponding to the energy

scale of the spin part of the effective Hamiltonian.35 In Fig.6, we plot ⟨Zσ⟩ in the 18-sites system
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electrons), where we set t2 = −1 for t2/|t1| < −1, t1 = 1 for |t2/t1| ≤ 1, and t2 = 1 for t2/|t1| > 1, respectively.
For all values of t2/|t1|, we set J1 = 0.5t21, and J2 = 0.5t22 to correspond to the t1-t2-U model with U = 8. The
open squares stand the spin gap of ∆σ obtained from the DMRG method for n = 1.38

together with ∆σ obtained by DMRG method for n = 1.38

Remarkably, a phenomenological relation, ∆σ = 0.48vσ⟨Zσ⟩, is observed at n = 1 for all values

of t2/|t1|. Assuming the same relation is satisfied even for n < 1, we estimate the spin gap ∆σ

from the value of vσ⟨Zσ⟩ of the 18-sites system. To confirm this assumption, we compare our

result with ∆σ of the t1-t2-U model obtained by the recent DMRG method.21 As shown in Fig.6,

we obtain ⟨Zσ⟩ ∼ 0.25 and vs ∼ 1.5 resulting in ∆σ ∼ 0.18 for n = 16/18 (18-sites system with

16-electrons) with the parameters: |t1| = 1.0, t2 = −1.0, J1 = 0.5, and J2 = 0.5. The result is in

good agreement with the DMRG result, i.e., ∆σ ∼ 0.16 of the corresponding t1-t2-U model with

|t1| = 1.0, t2 = −1.0 and U = 8.21 Then, we expect that our analysis is useful to estimate the

spin gap, even for n < 1. When we apply the above method to the realistic parameter region of

Pr247, we obtain ∆ ≃ 0.0072eV for n = 16/18 with t1 = −0.1eV, t2 = −0.45eV, J1 = 0.01eV and

J2 = 0.15eV. In the case of n = 12/18, we find ∆σ ≃ 0.011eV. These results suggest that the order

of the spin gap amounts to ∆σ ∼ 100K in the realistic parameter region of Pr247 and is larger than

Tc ≃ 20K.

In summary, we investigate the one-dimensional t1-t2-J1-J2 model as an effective model for

metallic CuO double chain of Pr247 using the numerical diagonalization method. The hopping

parameters of electron are chosen so as to fit the d-band from the CuO double chain obtained from

LDA calculation and the exchange coupling energies J1 and J2 are estimated by the known results

of 1D d-p models. In a realistic parameter region, we show that the Luttinger liquid parameter Kρ

is greater than 0.5 and the anomalous flux quantization is found. It suggests that the CuO double

chain is responsible for the superconductivity of Pr 247 on the basis of the Tomonaga-Luttinger

liquid theory. We also calculate the expectation value of the twist-operator Zσ and obtain the

phase boundary of the spin gap including the region with large value of t2/|t1|. By comparing with
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the known result of the J1-J2 Heisenberg model, we estimate the value of the spin gap ∆σ through

⟨Zσ⟩ and spin velocity vσ, and find the spin gap becomes ∼ 100K in the realistic parameter region

of Pr247. This result is consistent with the recent NQR experiment, where (T1T )
−1 is suppressed

in the superconducting sample as compared with the non-superconducting sample even above Tc.
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