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Rattling-Induced Heavy Fermion State in the Anharmonic Holstein Model
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We investigate the heavy fermion states in the half-filled anharmonic Holstein model by
using the dynamical mean-field theory combined with the exact diagonalization method at low
temperatures down to 1/104 of the conduction bandwidth. For the weak anharmonic cases with
single-well or shallow double-well potentials, the bipolaronic first order phase transition takes
place at a critical value of the electron-phonon coupling below a critical temperature as recently
observed in the harmonic Holstein model. On the other hand, for the strong anharmonic case
with deep double-well potential, the bipolaronic transition is suppressed and changes to a
crossover where the heavy fermion state with a large effective mass is realized due to the effect
of largely anharmonic local oscillations called rattling.
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Recently, an interesting phenomenon is found in the
filled skutterudite compound SmOs4Sb12 where the
heavy fermion behavior is robust against external mag-
netic fields.1) Since a heavy fermion state is gener-
ally formed by a spin-dependent mechanism, this phe-
nomenon implies an unconventional mechanism for the
heavy fermion system, and has attracted much attention.
To explain the phenomenon, several theoretical studies
have been done previously.2–4) One of the ideas is sug-
gested that the multipole made from the local f-electrons
of Sm plays an important role.5) Since higher-rank mul-
tipoles do not directly couple with the magnetic field
generally, the multipole Kondo effect is not easily sup-
pressed by the magnetic field. Then, considering the
multipole Kondo effect, the magnetically robust heavy
fermion state can be explained compatibly.
Here, we want to point out another way to understand

the phenomenon that the rattling, large amplitude an-
harmonic local vibrations of an ion in a cage structure,
leads to the heavy fermion state. The electron-phonon
interaction and the anharmonicity of a potential are im-
portant effects for the discussion about rattling, and
these effects have been studied as a possible mechanism
of heavy fermion state for a long time. The theory of
electron-phonon interaction has been developed through
the standard model suggested by Anderson,6,7) which
becomes equivalent to the two level system (TLS) prob-
lem in a strong electron-phonon coupling region,8) since
the effective potential of phonons becomes double-well
anharmonic type. Furthermore, especially at low tem-
perature, it is known that the TLS can be treated the
same as the Kondo model with spin S = 1/2, in which
heavy fermion states are suggested.9)

The TLS and the TLS like problems are extensively
studied, and many results of the possibilities of heavy
fermion state are shown in there.3,10) However, a few
discussions have been given for the heavy fermion state
in the periodic model in which we can treat the electron-
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phonon coupling and the anharmonicity of a potential,
such as the Holstein model. In the present work, in order
to discuss the possibility of a heavy fermion state in-
duced by the rattling, we study the anharmonic Holstein
model, which contains the effects of both the electron-
phonon coupling and the anharmonicity of a potential,
at low temperatures down to 1/104 of the conduction
bandwidth.
The anharmonic Holstein model is given by the follow-

ing Hamiltonian
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where c†kσ (c†iσ) is a creation operator for a conduction
electron with wave vector k (site i) and spin σ, and

niσ = c†iσciσ. b
†
i is a creation operator for a phonon at

site i, where the lattice displacement operator is given
by Qi = (b†i + bi)/

√
2Mω0. ϵk, M , ω0, g, α and β are the

energy for a conduction electron, the mass of oscillating
ions, the frequency of the local bare Einstein phonons,
the electron-phonon coupling strength, the coefficients
of the second and fourth order terms for the potential of
oscillating ions, respectively. The 4th term of the Hamil-
tonian describes anharmonic potential of bare phonon,
in which we can treat several types of potential charac-
terized by parameters α and β.
To solve the model eq.(1), we use the dynami-

cal mean field theory (DMFT)11) in which the model
is mapped onto an effective impurity anharmonic
Anderson-Holstein model.12) The semielliptic density of
state for the bare conduction band with the bandwidth
W = 1 is given as ρ(ϵ) = 4

√
1− 4ϵ2/π. Then, the lo-

cal electron Green’s function G(iωn) satisfies the follow-
ing self-consistency condition, G0(iωn)

−1 = iωn − µ −
(W/4)2G(iωn), where µ is the chemical potential and
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G0(iωn) is the bare local electron Green’s function for the
effective impurity Anderson model with g = 0 in an effec-
tive medium which will be determined self-consistently.
The effective impurity Anderson model with finite g is
solved by using the exact diagonalization method for a
finite-size cluster to obtain G(iωn) at finite temperature
T > 0. In the present paper, we use the 5-site clus-
ter and the cutoff of phonon number is set to be 12.
We note that the numerical results for the 6-site clus-
ter are almost the same as those for the 5-site cluster,
and that the 15 phonons lead to almost the same re-
sults as the 12 phonons. We concentrate our attention
on the particle-hole symmetric case at half-filling with
⟨ni⟩ = ⟨

∑
σ niσ⟩ = 1, and we set ω0 = 0.1. Likewise

we restrict ourselves to the case with the normal state
without any symmetry breaking.
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Fig. 1. The bare phonon potential V (Q/Q0) for α = 0,−2,−5
and β = 1 fixed. The dotted lines in the potential well indicate
the bare phonon energy levels.

In this paper, we show the results for three bare
phonon potentials α = 0, −2, −5 with a fixed β = 1.
In the case of α = 0,−2 and −5, the bare phonon poten-
tial V (Q/Q0) given in the last term of the r.h.s. in eq.(1)
is a flat-well type, a shallow double-well type, and a deep
double-well type, respectively, as shown in Fig.1, where
Q0

2 = ⟨Q2⟩0 = 1/2ω0 is the value for the zero-point
oscillation with α = 1 and β = g = 0. Thus, we can
consider α as an anharmonicity parameter. Here, for the
following discussion, we want to emphasize that a quasi-
degenerate ground state is formed due to the double-well
type potential for α = −5.
In Fig.2 (a), we show the g dependence of the

square root of the normalized local lattice fluctuation√
⟨Q2⟩/⟨Q2⟩0 for several α and T = 0.0025. For α = 0

and −2, when g increases, ⟨Q2⟩ increases gradually for
small g, while it does steeply at g = gcr ∼ 0.425 for α = 0
and at gcr ∼ 0.275 for α = 2. In these cases ⟨Q2⟩ finally
shows a linear increase for large g. At g ∼ gcr, the solu-
tions for the small and large lattice fluctuation coexist.
In this coexistence region, the system shows a first order
bipolaronic phase transition as recently observed in the
harmonic case with α = 1, β = 0.13) On the other hand,
for α = −5, we can see that the bipolaronic transition is
suppressed and changes to a crossover. It is also found

1

1.5

2

0.3

0.4

0.5

0 0.2 0.4
0

0.5

(a)

(b)

d

Q2

Q2
0

g

bipolaronic
transition

crossover

heavy fermion

bipolaronic
transition

α=0, β=1
α=−2, β=1
α=−5, β=1Z

(c)

1

crossover

bipolaronic
transition

Fig. 2. The square root of the normalized local lattice fluctuation√
⟨Q2⟩/⟨Q2⟩0 (a), the double occupancy d (b), and the renormal-

ization factor Z (c) as functions of the electron-phonon coupling
g for α = 0,−2 and −5, β = 1, T = 0.0025.

that the first order bipolaronic phase transition point gcr
(or the crossover point) decreases as α gets more negative
value, namely as the anharmonicity is enhanced.
In Fig.2 (b), we plot another typical physical quan-

tity, the double occupancy d = ⟨n↑n↓⟩ as a function of
g for several α and T = 0.0025. Here, we can see the
behaviors similar to those shown in Fig.2 (a), such as
the first order bipolaronic phase transition for the weak
anharmonicity cases α = 0,−2 and the crossover for the
strong anharominicity case α = −5.
In Fig.2 (c), the renormalization factor Z = (1 −

dΣ(ω)/dω|ω=0) is plotted as a function of g for several α
and T = 0.0025, where Σ(ω) is the self-energy calculated
from the Green’s function. For the weak anharmonicity
cases α = 0 and −2, Z decreases gradually with increas-
ing g, and then becomes to zero at gcr, at which the
bipolaronic transition occurs. On the other hand, for the
strong anharmonicity case α = −5, a steep decrement
of Z is shown with increasing g, while it changes to a
gradually decrement showing a tail like behavior in the
area around the crossover.
Here, we focus on the behavior of Z as an aspect of a

heavy fermion state. Z means a renormalization effect of
a conduction electron in general. It corresponds to the ef-
fective mass as m∗/m = Z−1 at zero temperature, that
is, small Z indicates the heavy electron mass. For the
weak anharmonicity cases, small Z leading to a heavy
fermion state is seen only near the transition point in
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the weak coupling side g < gcr, while Z = 0 resulting
in the disappearance of the quasi-particles is observed in
the strong coupling side g > gcr. A similar behavior of Z
has also been observed in the Hubbard model,11) where
small Z is observed in a narrow parameter region in the
vicinity of the Mott metal-insulator transition as similar
to the cases with the harmonic13) and weak-anharmonic
Holstein models where small Z is observed in a narrow
parameter region in the vicinity of the bipolaronic tran-
sition. In contrast, the Holstein model with the strong
anharmonic phonons shows small Z in a wide parameter
region around the crossover as shown in Fig.2 (c), where
the heavy fermion state is remarkably stabilized.
Previously, a similar heavy fermion behavior due to

the electron-phonon interaction was reported in the pe-
riodic Anderson-Holstein model,14) in which the local f
electrons couple to the (harmonic) local phonons and hy-
bridize with the conduction electrons. In this model, the
large entropy due to the local charge (valence) degrees of
freedom of f electrons is responsible for the large effective
mass in the heavy fermions state realized in a wide pa-
rameter region for the strong electron-phonon coupling.
This is a striking contrast to the case with the usual peri-
odic Anderson model where the large entropy due to the
local spin degrees of freedom of f electrons is responsible
for the large effective mass in the heavy fermion state
realized for the strong Coulomb interaction between f
electrons.
When the bare phonon potential is double-well type

as shown in Fig.1 with α = −5, the bare phonon energy
levels show quasi-degenerate groundstates which corre-
spond to the left-well and the right-well states. Then,
the large entropy due to the local phonon degrees of free-
dom with the double-well potential is responsible for the
large effective mass in the heavy fermions state realized
in a wide parameter region for the intermediate electron-
phonon coupling regime in the strong-anharmonic Hol-
stein model as shown in Fig.2 (c). As for the the cases
with the harmonic13) and weak-anharmonic Holstein
models, the effective phonon potential which is renormal-
ized due to the effect of the electron-phonon coupling be-
comes double-well type in the strong coupling regime. In
these cases, the system shows the bipolaronic transition
in stead of the heavy fermion state as the conduction

electrons are strongly coupled to the effective double-
well potential resulting in the infinite quasi-particle mass
m∗/m = Z−1 = ∞ with Z = 0. On the contrary, in the
strong-anharmonic Holstein model, the double-well po-
tential is preformed for the non-interacting case and the
intermediate electron-phonon coupling yields the heavy-
fermion state where Z is small but finite. Therefore,
the anharmonicity is crucial to obtain the heavy-fermion
state in a wide parameter region in the Holstein model.
In summary, we investigate the half-filled anharmonic

Holstein model by using the dynamical mean field the-
ory combined with the exact diagonalization method. We
found that, for the weak anharmonic cases, the bipola-
ronic first order phase transition takes place at a critical
value of the electron-phonon coupling g where the phys-
ical quantities show discontinuities. While for the strong
anharmonic case, the bipolaronic transition is suppressed

and changes to a crossover where the heavy fermion state
with a large effective mass m∗/m = 1/Z is realized due
to the effect of the rattling. A more detailed discussion
will be given in a subsequent paper. The calculation for
the ordered states, such as a charge density wave state,
is now under the way.
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