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1. Department of Physics, Niigata University, Ikarashi, Niigata 950-2181, Japan
2. Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan

The five-orbital Hubbard model for iron-based superconductors is investigated by using the dynamical mean-field
theory combined with the Eliashberg equation to clarify the local correlation effects on the electronic states and the
superconductivity. In the specific case where the antiferromagnetic (AMF) and the antiferro-orbital (AFO) fluctuations
are comparably enhanced, the orbital dependence of the vertex function becomes significantly large while that of the
self-energy is small, in contrast to the AFM fluctuation-dominated case where the vertex function (the self-energy) shows
small (large) orbital dependence. The orbital-dependent vertex function together with the nesting between the inner and
outer hole Fermi surfaces results in the enhancement of the inter-orbital ferromagnetic (FM) fluctuation in addition to the
AFM and AFO fluctuations. In this case, the hole-s±-wave pairing with the sign change of the two hole Fermi surfaces
is mediated by the coexisting three fluctuations as expected to be observed in a specific compound LiFeAs.

KEYWORDS: dynamical mean-field theory, iron-based superconductor, magnetic fluctuation, orbital fluctua-
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1. Introduction

Since the discovery of superconductivity with high tran-
sition temperature in LaFeAsO1−xFx,1) numerous investiga-
tions have been carried out for the iron-based superconduc-
tors categorized into four families: the 1111 system such as
LaFeAsO, the 122 system such as BaFe2As2, the 111 sys-
tem such as LiFeAs and the 11 system such as FeSe.2,3) Most
of the 1111 and the 122 systems show the stripe-type an-
tiferromagnetic (AFM) transition atTN and the tetragonal-
orthorhombic structural transition atTs just aboveTN . Cor-
respondingly, the AFM fluctuation diverges towardsTN and
the ferro-orbital (FO) fluctuation responsible for the softening
of the elastic constantC66

4–6) diverges towardsTs. Therefore,
the AFM and the FO fluctuations have been discussed as key
ingredients for the pairing mechanisms.

Theoretically, the AFM fluctuation forq ∼ (π, 0) corre-
sponding to the nesting wave vector between electron and
hole Fermi surfaces (FSs) was found to be enhanced by the
onsite Coulomb interaction between Fed electrons and medi-
ates thes±-wave pairing where the gap function changes its
sign between the electron and the hole FSs.7,8) On the other
hand, the FO fluctuation was found to be enhanced by the
electron-phonon interaction9) and/or the mode-coupling,10,11)

where the antiferro-orbital (AFO) fluctuation forq ∼ (π, 0)
was also enhanced due to the nesting as similar to the AFM
fluctuation.9–13) When the AFO fluctuation overcomes the
AFM fluctuation, thes++-wave pairing without the sign
change of the gap function was found to be realized with the
help of the FO fluctuation.9–13) At the moment it is not clear
which fluctuation is dominant, since the AFO fluctuation has
not been explicitly observed in experiments so far.14) In ei-
ther case, the AFM and the AFO fluctuations for the sameq
compete with each other resulting in suppression of the super-
conducting transition temperatureTc as compared to the case
with either fluctuation alone.

Recently, we have proposed another mechanism of the FO
fluctuation enhancement without enhancing the AFO fluctu-

ation15) by taking into account of the orbital polarization in-
teraction which is derived from the significant orbital depen-
dence of the intersited-p Coulomb integrals and is considered
to be crucial in explaining the recent observation of strong
coupling of Fe and As orbital polarizations observed in the
electron diffraction experiment.16) In this mechanism, the FO
fluctuation mediates thes-wave pairing within each of the
electron and the hole FSs almost independently of each other,
while the AFM fluctuation causes the pair scattering between
the electron and hole FSs resulting in thes±-wave pairing.
Then, the AFM and FO fluctuations cooperatively enhance
Tc without any competition by virtue of theq-space segrega-
tion of the two fluctuations. By considering the suitable inter-
sited-p Coulomb integrals which are large for the 11 system
FeSe relative to for the 1111 and the 122 systems,17) we can
reproduce the phase diagram of FeSe under the pressureP
whereTs monotonically decreases with increasingP while
TN which is absent for the ambient pressure becomes finite
and increases with increasingP ,18) together with the phase
diagrams of the 1111 and the 122 systems where the bothTs

andTN (< Ts) decrease with increasing the carrier doping.
In contrast to the systems mentioned above, the 111 system

LiFeAs shows the superconductivity without any structural
transitions and magnetic orders.19) The absence of the struc-
tural transition accompanied by the elastic softening seems to
be consistent with the above mentioned FO fluctuation mech-
anism since the As-p orbital weights on the FSs for LiFeAs
obtained from the first-principles band calculations are cer-
tainly smaller than those for the other systems exhibiting
the structural transitions. Although the magnetic order is ab-
sent, the incommensurate magnetic fluctuation nearly to the
AFM one was observed by the inelastic neutron scattering
experiments,20,21) which is well accounted for by the nest-
ing between the hole and the electron FSs observed by the
angle-resolved photoemission spectroscopy (ARPES) exper-
iment.22) In addition, the FM fluctuation was also observed
by theµSR measurement.23) The recent NMR experiment re-
vealed the FM fluctuation also for the 122 systems over a wide
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doping range.24) Therefore, the existence of the FM fluctua-
tion may be a common feature of the iron-based superconduc-
tors as predicted from the first-principles band calculation.25)

As a possible pairing symmetry of LiFeAs, the spin-triplet
p-wave state with the nodes of the gap function on the hole
FS mediated by the FM fluctuation was proposed on the basis
of the effective three-orbital Hubbard model, where the FM
fluctuation is largely enhanced relative to the AFM one be-
cause of the bad nesting between the hole and the electron FSs
together with the flatness of the hole band top which yields
the large density of states near the Fermi level responsible for
the Stoner enhancement of the magnetic susceptibility.26) A
more realistic five-orbital Hubbard model for LiFeAs was in-
vestigated by using the dynamical mean-field theory (DMFT)
which includes the local correlation effects sufficiently and
was found to show the orbital antiphases±-wave pairing me-
diated by the AFM fluctuation observed to be much larger
than the FM one, in which the gap function changes its sign
between the hole FSs and has nodes on the electron FSs due to
the strong repulsion between thedzx(yz) anddxy orbitals.27)

In addition, several authors have proposed the hole-s±-wave
pairing with the sign change between the hole FSs without any
nodes mediated by the AFM fluctuations withq ∼ (π, π) in
addition toq ∼ (π, 0)28) and by the AFO fluctuation which is
enhanced comparably to the AFM one by taking into account
of the electron-phonon interaction or the mode-coupling ef-
fect.29)

In our previous work,30) the five-orbital Hubbard model for
iron-based superconductors was studied by using the DMFT
combined with the Eliashberg equation in which the effec-
tive pairing interaction mediated by the spin, charge and or-
bital fluctuations are obtained from the corresponding DMFT
susceptibilities to discuss the superconductivity in the strong
correlation regime where the magnetic and/or the orbital or-
ders take place. It was found that thes±-wave pairing is re-
alized forU > U ′ where the magnetic fluctuation dominates
over the orbital one, while thes++-wave pairing is realized
for U < U ′ where the orbital fluctuation dominates over the
magnetic one. All of the critical interactions towards the mag-
netic, orbital and superconducting instabilities are suppressed
as compared with the results from the random phase approx-
imation (RPA), but thes++-wave phase is largely expanded
as compared with the RPA result in contrast to thes+−-wave
phase which is reduced due to the different renormalization
effects between the spin and the charge-orbital vertices.

In this paper, we investigate the five-orbital Hubbard model
for iron-based superconductors by using the DMFT, espe-
cially focusing on the specific case withU ∼ U ′ where the
AFM and the AFO fluctuations are comparably enhanced.
Then, we discuss the pairing symmetry in the case with the
cooperating AFM and AFO fluctuations as expected to be
realized in LiFeAs.29) Although the case withU ∼ U ′ is
not realistic, the AFO fluctuation is known to be largely en-
hanced by the electron-phonon interaction and possibly dom-
inates over the AFM one even for the realistic case with
U > U ′.31,32) In fact, a kink structure of the single-particle
dispersion around theΓ point is observed experimentally in
LiFeAs and is considered due to the effect of the strong
electron-phonon coupling.33) Thus, we expect that the present
results withU ∼ U ′ are realized also for the realistic pa-
rameter withU > U ′ by taking into account of the suitable
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Fig. 1. (Color online) (a) The FSs of the five-orbital model (b) The disper-
sion of the band structure. (c)-(f) The weights ofd orbitals on the FSs, where
the horizontal axis isθ = tan−1(ky/kx). We set the Fe-3d orbitals as fol-
lows: (1)d3Z2−R2 (red), (2)dZX (green), (3)dY Z (cyan), (4)dX2−Y 2

(blue) and (5)dXY (pink).

electron-phonon interaction.

2. Model and Formulation

The five-orbital Hubbard model for iron-pnictides is given
by the following Hamiltonian,

H = H0 +Hint, (1)

where the kinetic part̂H0 is determined so as to reproduce
the first-principles band structure and its FSs for LaFeAsO34)

as shown in Fig. 1, where the weights of orbitals on the FSs
are also plotted. In eq. (1), the Coulomb interaction partHint

includes the multi-orbital interaction on Fe sites: the intra- and
inter-orbital direct termsU andU ′, the Hund’s rule coupling
J and the pair transferJ ′, and is explicitly given by

Hint =
1

2
U
∑
i

∑
ℓ

∑
σ ̸=σ̄

d†iℓσd
†
iℓσ̄diℓσ̄diℓσ

+
1

2
U ′

∑
i

∑
ℓ ̸=ℓ̄

∑
σ,σ′

d†iℓσd
†
iℓ̄σ′diℓ̄σ′diℓσ

+
1

2
J
∑
i

∑
ℓ ̸=ℓ̄

∑
σ,σ′

d†iℓσd
†
iℓ̄σ′diℓσ′diℓ̄σ
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+
1

2
J ′

∑
i

∑
ℓ ̸=ℓ̄

∑
σ ̸=σ̄

d†iℓσd
†
iℓσ̄diℓ̄σ̄diℓ̄σ, (2)

wherediℓσ is the annihilation operator for Fe-3d electrons
with spin σ in the orbitalℓ at the sitei. In the present pa-
per, we setd3Z2−R2 , dZX , dY Z , dX2−Y 2 , anddXY orbitals
as 1,2,3,4 and 5, wherex, y axes (X,Y axes) are along the
nearest Fe-Fe (Fe-As) directions.

To solve the model eq. (1), we use the DMFT35) in which
the lattice model is mapped onto impurity Anderson model
embedded in an effective medium that may be described by
the frequency dependent effective action. In the actual cal-
culations with the DMFT, we solve the effective five-orbital
impurity Anderson model, where the Coulomb interaction at
the impurity site is given by the same form aŝHint with a
site i, and the kinetic energy responsible for the bare impu-
rity Green’s functionĜ in the 5 × 5 matrix representation
is determined so as to satisfy the self-consistency condition
as possible. We use the exact diagonalization (ED) method
for a finite-size cluster as an impurity solver to obtain the lo-
cal quantities such as the self-energyΣ̂. To avoid CPU-time
consuming calculation, we employ the clusters with the site
numberNs = 4 within a restricted Hilbert space, as used in
our previous paper;30) where we approximate the clusters with
those ofd3Z2−R2 anddXY orbital byNs = 2 since the two
orbitals are far from the Fermi energy in contrast to the an-
other three orbitals. We have confirmed that the results with
Ns = 4 are qualitatively consistent with those withNs = 236)

and quantitatively improved especially for the intermediate
interaction regime. Moreover, the studies by the slave-spin
mean field,37–39) the slave-boson mean field (Gutzwiller)40)

approximations, and also the DMFT with the continuous-time
quantum Monte Carlo method (CT-QMC)41) give a similar re-
sults over our approach. Then, we expect that the present cal-
culation is sufficiently accurate at least up to the intermediate
regime.

Within the DMFT, the spin (charge-orbital) susceptibility
is given in the25× 25 matrix representation as

χ̂s(c)(q) =
[
1− (+)χ̂0(q)Γ̂s(c)(iωn)

]−1

χ̂0(q), (3)

with χ̂0(q) = −(T/N)
∑

k Ĝ(k + q)Ĝ(k), whereĜ(k) =

[(iεm + µ)− Ĥ0(k)− Σ̂(iεm)]−1 is the lattice Green’s func-
tion, Ĥ0(k) is the kinetic part of the Hamiltonian with the
wave vectork, Σ̂(iεm) is the lattice self-energy, which co-
incides with the impurity self-energy obtained in impurity
Anderson model, andk = (k, iεm), q = (q, iωn). Here,
εm = (2m+1)πT andωn = 2nπT are fermionic and bosonic
Matsubara frequencies. In eq. (3),Γ̂s(c)(iωn) is the local irre-
ducible spin (charge-orbital) vertex function in which only the
external frequency (ωn) dependence is considered as a simpli-
fied approximation30,42) and is explicitly given by

Γ̂s(c)(iωn) = −(+)
[
χ̂−1
s(c)(iωn)− χ̂−1

0 (iωn)
]
, (4)

with χ̂0(iωn) = −T
∑

εm
Ĝ(iεm + iωn)Ĝ(iεm), where

χ̂s(c)(iωn) is the local part of spin (charge-orbital) sus-
ceptibility. When the largest eigenvalueαs(q) [αc(q)] of
(−)χ̂0(q)Γ̂s(c)(iωn) in eq. (3) for a wave vectorq with
iωn = 0 reaches unity, the instability towards the magnetic
(charge-orbital) order with the correspondingq takes place,

and thenαs(q) [αc(q)] is called spin (charge-orbital) Stoner
factor. After convergence of the DMFT self-consistent loop,
the quantityχ̂s(c)(iωn) in eq. (4) is obtained by means of con-
tinued fraction algorithm.35)

The effective pairing interaction mediated by the spin
and charge-orbital fluctuations is written by using the spin
(charge-orbital) susceptibility in eq. (3) and the spin (charge-
orbital) vertex in eq. (4), and is explicitly given for the spin-
singlet state as

V̂ (q) =
3

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(
Γ̂(0)
s + Γ̂(0)

c

)
(5)

with the bare spin (charge-orbital) vertex:[Γ̂
(0)
s(c)]ℓℓℓℓ = U(U),

[Γ̂
(0)
s(c)]ℓℓ′ℓℓ′ = U ′(−U ′ + 2J), [Γ̂(0)

s(c)]ℓℓℓ′ℓ′ = J(2U ′ − J)

and[Γ̂(0)
s(c)]ℓℓ′ℓ′ℓ = J ′(J ′), whereℓ′ ̸= ℓ and the other matrix

elements are 0. Substituting the effective pairing interaction
in eq. (5) into the linearized Eliashberg equation:

λ∆ll′(k) = − T

N

∑
k′

∑
l1l2l3l4

Vll1,l2l′(k − k′)

×Gl3l1(−k′)∆l3l4(k
′)Gl4l2(k

′), (6)

we obtain the gap function∆ll′(k) with the eigenvalueλ
which becomes unity at the superconducting transition tem-
peratureT = Tc. To solve eq. (6), we neglect the frequency
dependence of the vertex̂Γs(c)(iωn) ≈ Γ̂s(c)(iωn = 0) for
simplicity of the numerical calculations but the effect of the
frequency dependence will be discussed later. We note that,
eq. (6) yields the RPA result of∆ll′(k) when we replacêΓs(c)

with Γ̂
(0)
s and neglect̂Σ, and then, is a straightforward ex-

tension of the RPA to include the vertex and the self-energy
corrections within the DMFT.30)

All calculations are performed for the electron number
n = 6.0 corresponding to the non-doped case atT = 0.02eV
except for the ED calculation in the impurity Anderson model
where we calculate the self-energy atT = 0 as the ex-
plicit T -dependence is expected to be small at low temper-
atureT = 0.02eV in the intermediate correlation regime with
Z >∼ 0.5. We use32×32 k-point meshes and 1024 Matsubara
frequencies in the numerical calculations with the fast Fourier
transformation. Here and hereafter, we measure the energy in
units of eV.

3. Numerical Results

In the previous paper,30) we investigated the model eq. (1)
by using the DMFT combined with the Eliashberg equation
as mentioned in Sec. 2, and found that thes±-wave pair-
ing is realized forU > U ′ where the magnetic fluctuation
dominates over the orbital one, while thes++-wave pairing
is realized forU < U ′ where the orbital fluctuation domi-
nates over the magnetic one. In the present paper, we focus
on the typical parameter withU ∼ U ′ and varyU with keep-
ingU = U ′ − 0.2 andJ = J ′ = 0.15 to simulate the specific
case where the magnetic and the orbital fluctuations are com-
parably enhanced in the intermediate region ofU > U ′ and
U < U ′.
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Fig. 2. (Color online) The renormalization factorZℓ with ℓ =
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3.1 Renormalization factor
First, we discuss the self-energy correction. Figure 2 shows

the renormalization factorZℓ =
[
1− dΣℓ(ε)

d(ε)

∣∣
ε→0

]−1

for or-

bital ℓ as functions ofU . Zℓ is almost independent ofℓ and
gradually decreases with increasingU . As previously dis-
cussed by several authors,39,43,44) the orbital dependence of
Zℓ becomes large in the case with largeJ and/orU/U ′, where
the magnetic fluctuation is dominated over the orbital one and
the orbital selective Mott transition in whichZℓ with a spe-
cific ℓ exclusively becomes zero may occur. More generally,
the imbalance between the magnetic and the orbital fluctu-
ations is considered to be critical for enhancing the orbital
dependence ofZℓ. Actually, the exclusively smallZℓ with
ℓ = X2 − Y 2 was found for the both sides of the mag-
netic fluctuation-dominated case withU > U ′ and the orbital
fluctuation-dominated case withU < U ′.30) This is a striking
contrast to the present case withU ∼ U ′ where the magnetic
and the orbital fluctuations compete with each other resulting
in the almost orbital-independentZℓ as shown in Fig. 2.

3.2 Vertex function
Next, we discuss the spin and charge-orbital irreducible

vertex functions with the lowest Matsubara frequencyiωn =

0, Γs(c)
ℓ1ℓ2ℓ3ℓ4

≡ Γ̂s(c)(iωn = 0)]ℓ1ℓ2ℓ3ℓ4 , where the orbital-
diagonal componentsΓs

ℓℓℓℓ and the orbital-off-diagonal com-
ponentsΓs

ℓℓ′ℓℓ′ (ℓ ̸= ℓ′) are compared with the correspond-

ing non-zero components of the bare vertices[Γ̂
(0)
s(c)]ℓℓℓℓ and

[Γ̂
(0)
s(c)]ℓℓ′ℓℓ′ defined in the text below eq.(5).
Figures 3 (a) and (b) show the spin vertex functionsΓs

ℓℓℓℓ

andΓs
ℓℓ′ℓℓ′ for variousℓ andℓ′( ̸= ℓ) together with the corre-

sponding bare vertices[Γ̂(0)
s ]ℓℓℓℓ = U and[Γ̂(0)

s ]ℓℓ′ℓℓ′ = U ′,
respectively. We find that̂Γs is strongly renormalized asU
increases due to the correlation effect and shows the signifi-
cant orbital dependence. As shown in Fig. 3 (a), the orbital-
diagonal componentsΓs

ℓℓℓℓ for ℓ = X2 − Y 2, ZX/Y Z are
largely reduced while those forℓ = XY, 3Z2 − R2 are
less reduced. This is considered due to the difference in the
weights of eachd orbital at the FSs: those are large for
ℓ = X2−Y 2, ZX/Y Z while small forℓ = XY, 3Z2−R2, as
shown in Figs. 1 (c)-(f). The strong reduction of the spin ver-
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functions ofU . The bare vertices are also plotted by thin-dot lines.

tex for ℓ = X2 − Y 2, ZX/Y Z with the large orbital weights
at the FSs may result in the suppression of the magnetic or-
der due to the correlation effect which will be discussed in the
next subsection.

In contrast to the spin vertex, the orbital-diagonal compo-
nents of the charge vertexΓc

ℓℓℓℓ becomes larger than the cor-

responding bare vertex[Γ̂(0)
c ]ℓℓℓℓ = U as shown in Fig. 4 (a),

resulting in the suppression of the charge susceptibility due
to the correlation effect. On the other hands, the orbital-off-
diagonal components of the charge vertexΓc

ℓℓ′ℓℓ′ are reduced
as shown in Fig. 4 (b), resulting in the suppression of the or-
bital order due to the correlation effect which is similar to that
of the magnetic order but is relatively smaller than the latter
as explicitly shown in the next subsection.

The opposite renormalization effects between the spin and
the charge vertices were previously discussed in the single-
orbital Hubbard model on the basis of the DMFT45) and the
self-consistent fluctuation theory46) with including the corre-
lation effects beyond the RPA, where ones found thatΓs <
Γ(0) < Γc resulting in the suppression of both the spin and
the charge susceptibilities as consistent with the present re-
sults for the orbital-diagonal components of the spin and the
charge-orbital vertices. The orbital-off-diagonal components
as well as the orbital dependence of the vertices, however,
could not considered in the single-orbital model and are firstly
discussed in the present paper. We note that the large orbital
dependence of the vertex [see Figs. 3 and 4] together with the
small orbital dependence of the renormalization factor [see
Fig. 2] is a specific feature of the present case withU ∼ U ′

where the AFM and the AFO fluctuations are comparably en-
hanced. This is a striking contrast to the case withU > U ′

(U < U ′) where the AFM (AFO) fluctuation dominates over
the AFO (AFM) one and the small orbital dependence of the
vertex together with the large orbital dependence of the renor-
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malization factor responsible for the orbital selective Mott
transition in the strong correlation regime is observed.30)

3.3 Spin and charge-orbital Stoner factors
Figures. 5 (a) and (b) show theU -dependence of the spin

and the charge-orbital Stoner factorsαs(q) andαc(q), re-
spectively, for the wave vectorsq = (π, 0), (0, 0) and(π, π).
The critical value towards the magnetic instability is found to
beUc ∼ 4.9 and is largely suppressed as compared with the
RPA resultURPA

c ∼ 0.8 due to the self-energy and the ver-
tex corrections within the DMFT. For smallU , the stripe-type
AFM and AFO fluctuations withq = (π, 0) are dominant
over the other fluctuations. However, whenU increases, the
FM fluctuation withq = (0, 0) becomes competitive with the
AFM and AFO fluctuations, and finally overcomes just below
Uc where the FM instability takes place. The FM fluctuation
originates from theq ∼ (0, 0) nesting between the inner-hole
FS1 with the largeZX/Y Z orbital weights [see Fig.1 (c)]
and the outer-hole FS2 with the largeXY orbital weight [see
Fig.1 (d)], and is enhanced by the inter-orbital Coulomb in-
teraction betweenZX/Y Z andXY orbitals. This enhance-
ment becomes significant for largeU as the renormalization
of thedZX/Y Z-dXY orbital-off-diagonal spin vertex is rela-
tively smaller than that of thedX2−Y 2 anddZX/Y Z orbital-
diagonal spin (charge-orbital) vertices [see Figs. 3 and 4]
which enhance the AFM (AFO) fluctuation as shown in the
next subsection.

To clarify the effects of the vertex corrections on the mag-
netic and the orbital fluctuations more explicitly, we estimate
the spin and charge-orbital Stoner factors with the use of the
approximate vertex in stead of the full DMFT vertexΓ̂s(c) in
eq. (3) as follows (see Table I): (i) When we approximately
use the bare vertex̂Γs(c) ≈ Γ̂

(0)
s(c), the AFM fluctuation is ex-
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Fig. 5. (Color online)U -dependence of the spin and the charge-orbital
Stoner factorsαs(q) (a) andαc(q) (b) for severalq, which reach unity

towards the magnetic and the charge-orbital instabilities.UFM
c is the criti-

cal value towards the FM instability and is slightly smaller than the critical
values towards the AFM and AFO instabilities.

vertex αAFM
s αFM

s αAFO
c αFO

c

(i) bare 1.000 0.498 0.727 0.586
(ii) orbital-averaged 1.000 0.766 0.966 0.785
(iii) full DMFT 1.000 1.003 1.001 0.863

Table I. Spin and charge-orbital Stoner factorsαs(q) andαc(q) for q =

(π, 0) andq = (0, 0), in the cases with (i) the bare vertexΓ̂s(c) ≈ Γ̂
(0)
s(c)

,

(ii) the orbital-averaged vertex̂Γs(c) ≈ ⟨Γ̂s(c)⟩ and (iii) the full DMFT

vertexΓ̂s(c), where we set (i)U = 0.76, (ii) U = 2.66 and (iii) U = 5.05

so as to fixαAFM
s = 1 for all cases.

clusively enhanced similar to the case with the RPA. (ii) When
we average over the orbital asΓ̂s(c) ≈ ⟨Γ̂s(c)⟩, the AFO fluc-
tuation is enhanced comparably to the AFM one due to the
different renormalization between the spin and the charge-
orbital vertices, but the enhancement of the FM fluctuation
is relatively small as the orbital dependence of the spin vertex
which is crucial for the FM fluctuation enhancement as men-
tioned above is neglected. (iii) When we use the full DMFT
verticesΓ̂s(c), the AFM, FM and AFO fluctuations are com-
parably enhanced due to the orbital dependence of the vertices
together with the different renormalization between the spin
and the charge-orbital vertices.

3.4 Susceptibility and effective pairing interaction
Figures 6 (a) and (b) show the orbital-diagonal and the

orbital-off-diagonal components of the spin susceptibility
χs
ℓ,ℓ;m,m andχs

ℓ,m;ℓ,m as functions of the wave vectorq with
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the lowest Matsubara frequencyiωn = 0 for U = 4.5 where
the spin Stoner factor isαs = 0.958. The dX2−Y 2 intra-
orbital spin susceptibilityχs

4,4;4,4 is largely enhanced around
q ∼ (π, 0) [see Fig. 6 (a)] due to the effect of the intra-orbital
nesting between the hole FS3 and the electron FS, where the
weights of thedX2−Y 2 component are large in the both FSs
as shown in Fig. 1 (e) and (f). Then, thedX2−Y 2 orbital is
mainly responsible for the spin susceptibility

∑
ℓ,m χs

ℓ,ℓ;m,m

aroundq ∼ (π, 0). Note that the inter-orbital spin suscepti-
bility χs

2,4;2,4 is also enhanced forq ∼ (π, 0) [see Fig. 6 (b)]
due to the effect of the inter-orbital (dZX/Y Z-dX2−Y 2 ) nest-
ing between the hole FS2 and the electron FS.

In addition to the intra- and inter-orbital spin susceptibil-
ities with q ∼ (π, 0), the inter-orbital spin susceptibility
χs
2,5;2,5 aroundq ∼ (0, 0) is largely enhanced due to the inter-

orbital (dZX/Y Z-dXY ) nesting between the inner (FS1) and
the outer (FS2) hole FSs as shown in Fig.6 (b). As mentioned
before, the orbital-dependent spin vertex with relatively large
value of thedZX/Y Z-dXY orbital-off-diagonal component is
crucial for the FM fluctuation enhancement, that is a remark-
able correlation effect beyond the RPA.

Figure 6 (c) shows the several components of the charge-
orbital susceptibility as functions ofq with the lowest Mat-
subara frequencyiωn = 0 for U = 4.5, where the charge-
orbital Stoner factor isαc = 0.958. Similar to the spin sus-
ceptibility, both the intra- and inter-orbital charge-orbital sus-
ceptibilities are largely enhanced aroundq ∼ (π, 0) due to
the intra- and inter-orbital nesting effects. In the present case,
one observesχc

4,4;4,4 ≈ χc
2,4;2,4 for q ∼ (π, 0).

In Fig. 6 (d), the several components of the effective pairing
interactionV̂ (q) are plotted as functions ofq with the lowest
Matsubara frequencyiωn = 0 for U = 4.5. The inter-orbital
componentV2,5;2,5 becomes very large aroundq ∼ (0, 0)
due to the inter-orbital FM fluctuation [see Fig.6 (b)]. Vari-
ous components of̂V (q) show peaks atq ∼ (π, 0), where
the AFM fluctuation-mediated repulsive pairing interaction is
partially canceled by the AFO fluctuation-mediated attractive
one as seen from the 1st. and 2nd. terms of r.h.s. in eq. (5),
resulting in the moderate peak ofV̂ (q) at q ∼ (π, 0) in con-
trast to the large peak atq ∼ (0, 0) where the FO fluctuation
is not so enhanced [see Fig. 6 (c)] and such cancellation effect
is small.

3.5 Superconducting gap function
Finally, we discuss the superconductivity when the FM,

AFM and AFO fluctuations are comparably enhanced. In Fig-
ures 7 (a)-(c), we show the gap functions∆s(k) in the band
representation for the bands = 2 − 4 with the lowest Mat-
subara frequencyiεm = iπT for U = 4.5. We observe a spe-
cific hole-s±-wave pairing, where the gap function changes
its sign between the inner-hole FS1 and the outer-hole FS2
due to the large repulsive pairing interactionV2,5;2,5 around
q ∼ (0, 0) mediated by the FM fluctuation, and also changes
between the inner-hole FS1 and the electron FS due to the
moderate repulsive pairing interaction aroundq ∼ (π, 0) me-
diated by the AFM fluctuation [see Fig. 6 (d)]. It is noted
that we also observe the sign change of the gap function in
the orbital representation between theZX/Y Z and theXY
orbitals (not shown). The obtained hole-s±-wave state has
the same sign between the hole FS2, FS3 and the electron
FS and the sign of the gap function of each FS is summa-
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Fig. 6. (Color online) The orbital-diagonal and the orbital-off-diagonal
components of the spin susceptibilityχs

ℓ,ℓ;m,m (a) andχs
ℓ,m;ℓ,m (b), the

several components of the charge-orbital susceptibilityχ̂c (c) and the several
components of the pairing interaction̂V (d) as functions ofq with the low-
est Matsubara frequencyiωn = 0 for U = 4.5, whereαs = 0.958 and
αc = 0.958.

rized as(∆h1,∆h2,∆h3,∆e) = (−,+,+,+) which is dif-
ferent from the pairing states previously proposed for LiFeAs
with (∆h1,∆h2,∆h3,∆e) = (+,+,−,+), (−,+,−,+),
(+,+,−,−),27–29) where the correlation induced FM fluctu-
ation which is crucial for the present result is not taken into
account.

In general, the FM fluctuation is considered to mediate
the spin-triplet pairing. As for the iron-pnictides, Brydonet
al. discussed the spin-tripletp-wave pairing mediated by the
nearly FM fluctuation within the RPA for the three-orbital
Hubbard model.26) Then, let us discuss the possibility of the
spin-triplet pairing in the present model eq (1) on the basis of
the DMFT combined with the Eliashberg equation, where the
effective pairing interaction for the spin-triplet state:

V̂ (q) =− 1

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(
Γ̂(0)
s + Γ̂(0)

c

)
, (7)

is substituted into eq. (6) instead of that for the spin-singlet
state given in eq, (5). Here, we consider only thepx-wave
state, because the present model is symmetric under rotation
in spin space and then allp-wave states are degenerate in prin-
ciple. The largest eigenvalues of the Eliashberg equationλ for
the singlet and the triplet states are plotted in Fig. 8. WhenU
increases,λ for the triplet state increases with increasing the
FM fluctuation as expected, but is always smaller thanλ for
the singlet state, that is a specific feature of the present multi-
orbital model in the case with competing FM, AFM and AFO
fluctuations. Thus, we conclude that the expected pairing state
is the spin-singlet hole-s±-wave.
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Fig. 7. (Color online) The band representation of the superconducting gap
functions∆s(k) on thek-plane for the bands = 2 − 4 with the lowest
Matsubara frequencyiεm = iπT for U = 4.5, where the largest eigenvalue
of the Eliashberg equation isλ = 1.07, together with the FSs (solid lines):
hole FS1 in (a), hole FS2 and FS3 in (b) and electron FS in (c).
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Fig. 8. (Color online) The largest eigenvalues of the Eliashberg equationλ
for the spin-singlet and the spin-triplet states as functions ofU .

4. Summary and discussion

In summary, we have investigated the electronic states and
the superconductivity in the five-orbital Hubbard model for
iron-based superconductors by using the DMFT combined
with the Eliashberg equation to clarify the strong correlation
effects, especially focusing on the specific case withU being
a little smaller thanU ′ where the AFM and the AFO fluctua-
tions are comparably enhanced. WhenU increases, the renor-
malization factorZl obtained from the self-energy mono-
tonically decreases almost independent of the orbitall even
for largeU in contrast to the previously discussed case with

U > U ′ (U < U ′) where the AFM (AFO) fluctuation dom-
inates over the AFO (AFM) one and the largel-dependence
of Zl responsible for the orbital selective Mott transition for
largeU is observed.30) On the other hand, thel-dependence
of the spin and charge-orbital vertices is large in contrast to
the previous case where that is small.30) The renormalization
of thedZX/Y Z-dXY orbital-off-diagonal spin vertex respon-
sible for the FM fluctuation enhancement is relatively smaller
than that of thedX2−Y 2 anddZX/Y Z orbital-diagonal spin
(charge-orbital) vertices responsible for the AFM (AFO) fluc-
tuation enhancement. Therefore, the FM fluctuation is en-
hanced larger than the AFM and AFO ones and finally over-
comes those for largeU , where the FM instability takes place
atUc just below the AFM and AFO instabilities. In this case,
the effective pairing interaction̂V (q) shows a large peak at
q ∼ (0, 0) while a small one atq ∼ (π, 0) where the ef-
fects of the AFM and AFO fluctuations are compete with each
other, resulting in the remarkable hole-s±-wave pairing with
the sign change of the gap function between the inner and
outer hole FSs.

Previously, several authors27–29) proposed the orbital an-
tiphase s±-wave and the hole-s±-wave symmetries as
promising pairing states for LiFeAs, but the relative signs of
the gap function on the FSs are different from the present re-
sult. The most significant difference between the previous and
the present hole-s±-wave states is the pairing mechanism: the
most dominant pairing interaction in the present theory is be-
tween the inner and outer hole FSs atq ∼ (0, 0) mediated by
the largely enhanced FM fluctuation which was not taken into
account in the previous theories but was observed by theµSR
experiment.23) The nodeless gap structure in LiFeAs observed
by the ARPES experiment33) seems to be consistent with the
hole-s±-wave states as well as the others-wave states such
as thes±- and thes++-wave states, but it is difficult to dis-
tinguish between the variouss-wave states at the moment be-
cause of the difficulty to determine the relative sign of the gap
function on the different FSs.47–49)

The enhanced FM fluctuation was previously obtained in
the three-orbital Hubbard model for LiFeAs, where the flat-
ness of the hole band top yields the large density of states near
the Fermi level responsible for the Stoner enhancement of the
magnetic susceptibility within the RPA, and was considered to
mediate the spin-tripletp-wave pairing with nodes of the gap
function on the hole band.26) This is a striking contrast to the
present theory where the strong correlation effect is crucial for
enhancing the orbital-off-diagonal FM fluctuation which me-
diates the spin-singlet hole-s±-wave pairing without nodes as
consistent with the ARPES experiment33) mentioned above.
In addition, the NMR measurements for LiFeAs,50–52) where
the Knight shift decreases with decreasingT belowTc, also
seems to be consistent with the spin-singlet pairing.

Finally, we make a brief discussion on the frequency depen-
dence of the vertex functions including the retardation effect
of the pairing interaction which is known to enhance the su-
perconducting transition temperature.53,54) Although the fre-
quency dependence of the vertex functions was neglected to
solve the linearized Eliashberg equation in this paper, we have
also made some preliminary calculations with the frequency
dependent vertex functions which are largely renormalized as
Γ̂s(c)(iωn) ∼ Γ̂s(c)(0) for smallωm while are approximately

7
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given by the bare vertices asΓ̂s(c)(iωn) ∼ Γ̂
(0)
s(c) for largeωm,

and have found that the obtainedλ is actually enhanced as
compared with the results without the frequency dependence.
To be more conclusive, we need to obtain the precise vertex
functions depending on not only the external frequency but
also the internal ones which were not taken into account in
the present paper but is considered to play important roles es-
pecially in the strong correlation regime and will be explicitly
discussed in a subsequent paper.
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