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Abstract. In the first paper of the same title, we introduced the concept of singular
inner functions of L I-type and obtained results for singular inner functions which are
reminiscent of the results for weak infinite powers of Blaschke products. In this paper,
we investigate singular inner functions for discrete measures. We give equivalent
conditions on a measure for which it is a Blaschke type. And we prove that two
discrete measures are mutually singular if and only if the associated common zero sets of
singular inner functions of I': -type do not meet.

1. Introduction.

Let H OO be the Banach algebra of bounded analytic functions on the open
unit disc Ll. We denote by vIt = M(H oo ) the maximal ideal space of H oo , the
space of nonzero multiplicative linear functionals of H OO with the weak*­
topology. We view Ll as Ll c vIt, and Ll is an open subset of vIt. By Carleson's
corona theorem [2], Ll is dense in vIt. Identifying a function in H OO with its
Gelfand transform, we view H oo as the closed subalgebra of C(vIt), the space of
continuous functions on vIt. We also identify a function in H OO with its
boundary function and view H oo as an (essentially) supremum norm closed
subalgebra of L 00, the usual Lebesgue space on the unit circle aLl. Then we view
the maximal ideal space M (L(0) of L 00 as a subset of vIt and M (L(0) is the
Shilov boundary of H OO

• A function f in H OO is called inner if IfI = 1 on
M(Loo ). For a function f in H oo , we put

{IfI < I} = {x E vIt\Ll; If(x)1 < I} and Z(f) = {x E vIt\Ll;f(x) = O}.

We note that these sets are considered in vIt\Ll. For ei8 E aLl, let vlteif} =

{x E vIt; z(x) = e i8 }, where z is the identity function on Ll.· Then vIt\Ll =

U{vlteill;e i8 E aLl}. For a subset E of vIt, we denote by E the weak*-closure of E
in vIt. See [4], [9], [10] for studies of the structure of H OO and JIt.
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For a sequence {zn}n in A satisfying 2::1 (1 - IZnl) < 00, we have a Blaschke
product

We denote by £!J>(b) the set of sequences of positive integers P = (PI, P2' ) such
that 2::1 Pn(1-I Znl) < 00 and Pn ---+ 00 as n ---+ 00. For P = (Pl,P2' ) E£!J>(b)
we have an associated Blaschke product defined by

bP(z) = IT (-zn Z - ~n )pn, Z EA.
n=1 IZnl 1 - ZnZ

In [13], the author called Blaschke products bP,p E £!J>(b), weak infinite powers of
b and studied them.

In [14], we obtained results for singular inner functions which are reminiscent
of the results for Blaschke products in [13]. This paper is a continuation of these
papers and we use the same notations as in them. We denote by M(aA) the
Banach space of bounded Borel measures on aA with the total variation norm.
Since M(aA) is the dual space of C = C(aA), the space of continuous functions
on aA, we can consider the weak*-topology on M(aA). Let M; be the set of
positive (nonzero) singular measures in M(aA) with respect to the Lebesgue
measure on aA.

For each f.1 EM;, let

( J
eif) +Z if})

t/JtJ.(Z) = exp - -.-f}- df.1(e ) ,
aLl e l

- Z

Then t/Jj1. is inner and called a singular inner function.

Z E A.

We note that

Z E A,l1/Jp (z)1 = exp ( - fa" Pz(e'°) dP(e iO
),

where Pz is the Poisson kernel. Hence if 0 s v S f.1, v,f.1 EM;, then 1t/Jj1.1 s It/Jv I

on JIt. Let

L~(f.1) = {v E M;;O s v« f.1, v =1= O}.

Then we have a family of singular inner functions {t/Jv; v E L~(f.1)}. In [14], we
call these functions singular inner functions of L 1-type for the measure f.1. Let
f!It(f.1) = U{ {It/Jvl < I}; v E L~(f.1)} and f!lto(f.1) = U{Z(t/Jv); v E L~(f.1)}. In [14], we
study f!It(f.1) and f!lto(f.1), and obtain similar theorems as in [13].

In [13], the author proved that

(ex) {Ibl < I} = n{{lbPI < 1};pE£!J>(b)} = n{Z(bP);PE£!J>(b)}
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for every Blaschke product b. In this paper, we investigate similar type
of theorems for singular inner functions. It is not difficult to show that
n{ {Il/Jvl < I}; v E L~(,un = 0 for f.1 E M: with f.1 i= CbeiIJ, where beiIJ is the unit
point mass at e i8 and c is a positive number. So to have similar theorems like
(a), we need to consider subclasses of L~(f.1).

In this paper, we concentrate on discrete measures. We denote by M;d the
set of positive discrete measures in M:. We call l/Jj,l'f.1 E M:d , discrete si~gular
functions. When f.1 E M:d is a sum of finitely many point measures, it is easy to
study properties of l/Jw So in this paper, we assume that f.1 is a sum of infinitely
many point measures, and we can write

00

f.1 = L anbeiIJn,
n=1

Then

00

Lan < 00, an > 0 for every n, and e i8n i= e i8k for n i= k.
n=1

00

Il/Jj,l(z) I = II ll/JeiIJn (z)lan, Z E .1.
n=1

As an analogy of rJ/(b) , where b is a Blaschke product, we define rJ/(f.1) as the
set of sequences of positive numbers P = (PI' P2' ...) such that 2::1 Pnan <
00, Pn :2: 1, and Pn ---+ 00 as n ---+ 00. For P E rJ/(f.1), we put

00

f.1P = L PnanbeiIJn .
n=1

Measures l/Jj,lP'P E rJ/(f.1), are called weak infinite powers of l/Jw Then f.1P E L~(f.1)

and it is expected that the set {t/Jj,lP; P E rJ/(f.1n acts as {bP;P E rJ/(bn.
In Section 2, we prove

n{{lJ/Jp,1 < I}; p E &'(Il)} = C9, {1J/Jo,,,J < I}) u (n{Z(J/Jp,); P E &'(Il)})

c {It/Jj,ll < I}.

In Section 3, we give equivalent conditions on f.1 E M:d for which

{Il/Jj,ll < I} = n{ {Il/Jj,lp I < I}; P E rJ/(f.1n·

For every Blaschke product b, (a) holds. Hence, when the above condition is
satisfied, we say that l/Jj,l is a discrete singular inner function of Blaschke type.

Since f.1 E M;d' we can consider another subclass of L~(f.1). Let I:;! be the
set of sequences ~f bounded and positive numbers. For f.1 = 2::1 anbeiIJn EM:d

and P = (Pl,P2"") EI:;!, we have 2::1 Pnan < 00, so that we can define f.1P in
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the same way as before. And we have

for every P E l~ and q E fJJ(I1). We call1/lp.p, P E l~, discrete singular functions of
l~-type.

In Section 4, we study the sets n{Z(I/Ip.p); P E l~} and n{ {11/I/ipl < I};
P E l~}. We prove that the both sets can be described only using {eif)n}n and are
strictly smaller than n{Z(I/Ip.p);PEfJJ(l1)} and n{{II/Ip.pl < l};pEfJJ(I1)}, re­
spectively. And we prove that if 111.)",11, A E M:d then

(n{{II/Ip.p I < I}; P E l~} ) n (n{{II/IAq I < I}; q E l~}) = 0·

2. Weak infinite powers of discrete singular functions.

Let 11 = l.::1 an<5eion E M:d such that an > 0 for every nand eiOn =1= eiOk for
n =1= k. Put

co

I1n = L ak<5eiok for every n.
k=n

Then 111 = 11,l1n :? I1n+l, and Ill1nll ---+ 0 as n ---+ 00. Recall that fJJ(l1) is the set of
sequences of positive numbers P = (PI, P2, ...) such that l.::1 Pnan < 00,

Pn ~ 1, and Pn ---+ 00 as n ---+ 00. Then 11 ~ I1P for every P E fJJ(I1). We note
that {11/I<5eiO I < I} c JlteiO, and use this fact without mentioning it. In this section,
we prove the following two theorems.

THEOREM 2.1. Let 11 = l.::1 an<5eion E M:d such that an > 0 for every nand
eiOn =1= eiOk for n =1= k. Put I1n = l.:;:n ak<5eiok for every n. Then

THEOREM 2.2. Let 11 = l.::1 an<5eiOn E M:d such that an > 0 for every nand
eiOn =1= eiOk for n =1= k. Put I1n = l.:;:n ak<5eiok for every n. Then

(i) nmp",1< I}; p d'(,u)} = (.91 {!"'O,;9, 1< I}) u (n{Z(",.,); p E i1'(,u)})

= (g{I "'0,;9. 1< I}) Un01 {I "'•.1 < I} c {I"'.I <1}.

(ii) n{{II/Ip.pl < l};p E fJJ(l1)} = n{{II/Ip.pl < l};p E fJJ(l1)} = {11/Ip.1 < I}.

To prove our theorem, we need some lemmas.
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LEMMA 2.1. Let fl = 2::1 anbeion E M;d such that an > 0 for every nand
eiBn :# ei8k for n :# k. Put fln = 2:~n akbeiok'. Then

(i) Z(",.) = (g Z("'Ii,,,")) UCOl Z("'.J).

(ii) {I"'.I < I} = C91 {1"'Ii,,,", < I}) UCO/I"'.J < I}).
PROOF. We have

n-l
fl = L akbeiok + flw

k=1

Then

Hence l/Jp(x) = 0 if and only if either x E Z(l/Jc5eiOn ) for some n or x E Z(l/JpJ for
every n. Also Il/Jp(x) I < 1 if and only if either 1l/Jc5eion(x)1 < 1 for some n or
Il/JPn (x) I < 1 for every n.

LEMMA 2.2. Let fl = 2::1 anbeion E M;d such that an > 0 for every nand
ei8n :# ei8k for n :# k. Put fln = 2:~n a~eiok" Then

(i) ll/JplI l ~ Il/JPn+l l on At for every n.
(ii) Il/Jppi ~ ll/Jpl ~ Il/Jp,.l ~ 1l/Jc5eiOn I on At for every P E f!}J(fl) and n.

(iii) n:l{ll/Jp,.l < I} c n{Z(l/Jpp;P E f!}J(fl)}·

PROOF. (i) and (ii) follow from beiOn ~ fln ~ fln-l ~ fl ~ flP for every P E

f!}J(fl) and n.
(iii) Let x E At\,d satisfying

(2.1 ) Il/Jp,.(x) I < 1 for every n,

and P = (Pl,P2"") E f!}J(fl). Put P~ = inf{Pk;k ~ n}. Then p' = (p~,p~, ... ) E

f!}J(fl) and

00 00

P~fln ~ L p~akbeiok ~ L Pkakbeiok ~ flP.
k=n k=n

Hence

(2.2)
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Let no be the smallest positive integer such that x f U:no {I t/Jt5eill
n
I < I}. Then we

have It/J.un (x) I = It/J.uno (x) I for n z no. Since P~ ---+ 00 as n ---+ 00, by (2.1) and (2.2)

we have t/J.up(x) = O.

For f E H oo , we put {f # O} = {x E JIt\A;f(x) # O}.

LEMMA 2.3. Let f.1 = 2::1 anOeilin EM;d such that an > 0 for every nand
eiOn # eiOk for n # k. Then we have the following.

(i) For each q E &(f.1), there exists P E &(f.1) such that It/J.upI = 1 on

{t/J.uq # O} \ U:dlt/Jt5eiOJ < I}.
(ii) Let xEJIt\A. If Xf U:l{It/Jt5eioJ < I} and f.1.u q(x) #0 for some qE

&(f.1), then there exists pE&(f.1) such that xf{It/J.upl < I}.

PROOF. (i) Let x E JIt\A such that t/J.uq(x) # 0 and x f U:l {1t/Jt5eiOJ < I}.

Since q E &(f.1), there exists a sequence of increasing positive numbers {tn}n such
that pE&(f.1) and tn---+oo, where P=(Pl,P2, ... )=(qI!tl,q2/t2, ... ).
Then

n-l 00

tnf.1P = tnL PkakoeiOk +L tnPka~eilik
k=1 k=n

n-l 00

~ tnL Pkakoeiok +L qkak()eillk
k=1 k=n

n-l
~ tnL Pkak()e iok + f.1 q

.

k=1

Since 1t/Jt5eilln(x)1 = 1 for every n, by the above we have 1t/J.uq(x)1 ~ 1t/J.up(x)ltn. Since
t/J.uq(x) # 0 and tn ---+ 00, we have It/J.up(x) I = 1.

(ii) By our assumption, there exists an open subset V of JIt\A such that

00

X E V and V n U{I t/Jt5eill
n
I < I} = 0·

n=1

Let U = {y E V; 1t/J.uq(y)1 > 1t/J.uq(x)I/2}. Then U is an open subset of JIt\L1 and
x E U. By (i), there exists P E &(f.1) such that It/J.upI = 1 on U. This implies our
assertion.

N ow we give the proofs of Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1. By Lemma 2.2(ii) and (iii), we have
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To prove

let x E JIt\L1 such that

291

(2.5)

We shall prove the existence of

(2.6) v = pl, p E f!/J(f.1), such that t/Jv(x) =1= O.

By (2.5) and Lemma 2.1 (i),

(2.7)

and by the corona theorem [2] there exists an open subset U of L1 such that

(2.8)

and

(2.9)

Here we show that

X E tJ

CIJ

tJ n n{I t/JJlJ < I} = 0·
n=l

(2.10) It/JJlJ --+ 1 uniformly on U as n --+ 00.

(2.12)

To prove this, suppose not. Then there exist 0 < b < 1 and a sequence {zn}n in
U such that

(2.11) It/JJln (zn) I < b for every n.

Since IIf.1n II --+ 0, It/JJlJ --+ 1 uniformly on compact subsets of L1 as n --+ 00. Hence
by (2.11), IZn I --+ 1. By Lemma 2.2(i), It/JJln (Zk) I < b for every positive integer k
and n with k -c. n. Let y E {Zkh \ {Zkh· Then It/JJln (y) I ~ b for every n. Since
y E tJ, this contradicts (2.9). Thus we get (2.10).

Let {ckh be a sequence of positive numbers such that
CIJ

IT Ck > 0 and 0 < Ck < 1.
k=l

For each k, by (2.10) there exists a positive integer nk such that

(2.13)
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Since II,unll ---+ 0 as n ---+ 00, taking a sufficiently large nk we may assume moreover
that

00

L II,unk II < 00.
k=l

Put

(2.14)
00

a = L,unk and v =,u + a.
k=l

Then v =,uP for some p E f!J(,u). We have I/Jv(x) = 1/J/l(x)l/Ja(x). Hence to prove
(2.6), by (2.7) it is sufficient to prove

(2.15)

By (2.13) and (2.14), we have

00 00

II/Ja I = IT II/J/l
nk
I~ IT Gk on U.

k=l k=l

Hence by (2.12),

00

II/Ja(z) I ~ IT Gk > 0 for every Z E U.
k=l

Thus by (2.8) we have (2.15), so that (2.6) holds. Therefore (2.4) holds.
By (2.3) and (2.4),

n{Z(l{!p'); p E.9'(Il)} = (.91 Z(l{!o,,,)) UnOI {1l{!pJ < I}

By Lemma 2.1 (ii), we have

This completes the proof.

PROOF OF THEOREM 2.2. (i) By Lemma 2.2(ii),

(2.16)

We shall prove that

(2.17) (n{ {11/J/lpl < I};p E f!J(,u)} )\{II/J/ll < I} c n{Z(I/J/lp);p E f!J(,u)}.
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X E (n{{I t/J/iP I < I}; P E 9 (,u)}) \ {It/J/i I < I}.

Then It/JbeiOJX) I = 1 for every nand 1t/J/iP(x)1 < 1 for every P E 9(,u). By Lemma
2.3(i), we have x E n{Z(t/J/ip);p E 9(,u)}. Thus we get (2.17).

Now we have

n{{It/J/ipl < 1};pE9(,u)} c {It/J/il < l}U (n{Z(t/J/ip);PE9(,u)}) by (2.17)

c n{ {It/J/ip I < I}; P E 9(,u)} by (2.16).

Hence by Lemma 2.1 (ii) and Theorem 2.1, we have

n{{It/J/ipl < 1};pE9(.u)} = {It/J/il < l}U (n{Z(t/J/ip);PE9(,u)})

= (g {II/Jo"", I < I}) UnO, {11/J•.1 < I}

(ii) We have

{II/J.I < I} = (91 {II/Jo"," I < I}) U (01 {11/J•.1 < I}) by Lemma 2.1 (ii)

= n{ {It/J/ip I < 1}; P E 9(,u)} by (i)

c n{ {It/J/ip I < I}; P E 9(,u)}.

To prove

(2.18)

let x ¢ {It/J/il < I}. Then by Theorem 2.1, x ¢ n {Z(t/J/ip);p E 9(,u)}. Hence

there exists q E 9(,u) such that t/J/iq(x) #- O. Since x ¢ U:l{lt/JbeiO
n
I < I}, by

Lemma 2.3(ii), there exists P E 9(,u) such that x ¢ {it/J/ipi < I}. Therefore
x ¢ n{{I t/J/iP I < I}; P E 9(,u)} , so that (2.18) holds. Thus (ii) holds. This
completes the proof.

3. Discrete singular functions of Blaschke type.

Recall that for a Blaschke product b,

{Ihl < I} = n{ {lbPI < I}; P E 9(b)} = n{Z(bP); P E 9(b)}.
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A measure fl E M:d satisfying {1t/J1l1 < I} = n{ {1t/JIlPI < I}; p E 9(fl)} is called a
Blaschke type. In this section, we study discrete singular measures of Blaschke
type. The following is our theorem.

THEOREM 3.1. Let fl = l::l an~eion E M:d such that an > 0 for every nand
ei()n =f. ei()k for n =f. k. Put fln = l:~n ak~eiOk 'for every n. Then the following
conditions are equivalent.

(a)

(b)

(c)

(d)

(e)

( f)

(g)

(h)

{1t/J1l1 < I} = n{ {1t/JIlP I < I}; p E 9(fl)}·

{1t/J1l1 < I} = n{Z(t/JIlP);p E 9(fl)}.

00

{1t/J1l1 < I} = n{1t/JIlJ < I}.
n=l

00n{ {1t/JIlPI < I}; p E 9(fl)} = n{1t/JIlJ < I}.
n=l

00

n{Z(t/JIlP);p E 9(fl)} = n{1t/JIlJ < I}.
n=l

00 00

U{1t/JoeiOJ < I} c n{1t/JIlJ < I}.
n=l n=l

n{ {1t/JIlP I < I}; p E 9(fl)} is closed.

Hence if fl E M:d is of Blaschke type then each subset appeared in conditions
(a)-(f) coincides' with the others.

To prove Theorem 3.1, we need some lemmas.

LEMMA 3.1. Let fl = l::l an~eion E M:d such that an > 0 and ei()n =f. ei()k for
n =f. k. Put fln = l:~n ak~eiok' Then we h~ve the following.

(i) (a) holds if and only if

(ii) (c) holds if and only if

00 00

U{1t/JoeiOn I < I} c n{1t/JIlJ < I}.
n=l n=l
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(iii) (d) holds if and only if

U({II/Joeion I < 1}\Z(I/Joeion)) c n{1I/JJlJ < I}.
n=l n=l

(iv) (e) holds if and only if

00 00

U{1I/JoeiOJ < I} c n{'I/JJlJ < I}.
n=l n=l

(v) (f) holds if and only if

00 00

UZ(JeiOn) c n{'I/JJlJ < I}.
n=l n=l

295

PROOF. (i) follows Lemma 2.1 (ii) and Theorem 2.2(i). (ii) follows Lemma
2.1(ii). (iii) follows Theorems 2.1 and 2.2. (iv) follows Theorem 2.2(i). (v)
follows Theorem 2.1.

Let QC = (H oo + C) n (Hoo + C), where C is the space of continuous
functions on aLl and Hoo + C = {f;f E H OO + C}. For' E M(Loo ), let Q=
{~E M(Loo);f(~) = f(C) for every f E QC}. This set Q is called a QC-Ievel
set. For x E.-It, there is a unique probability measure f.ix on M(L oo ) such that
fM(LOO)f df.ix = f(x) for every f E H OO

• We denote by supp f.ix the closed support
set of f.ix. It is known that for x E .-It\Ll and a QC-Ievel set Q, supp f.ix c Q or
supp f.ix n Q = 0. And there exists a unique QC-Ievel set Qx such that
supp f.ix c Qx. See [11], [12], [15] for the study of QC-Ievel sets.

LEMMA 3.2. Let rp be an inner function and x a point in .-It\Ll such that
Irp(x) I < 1. Then we have the following.

(i) There exists y E.-It such that supp f.iy c supp f.ix and 0 < Irp(y) I < 1.

(ii) There exists 'E.-It such that supp f.ic c supp f.ix and 'E {Irpl < I} \
{Irpl < I}.

SKETCH OF PROOF. See [3] in detail. Let HI~PPJlx be the restriction alge­
bra on supp f.ix. Then H(~lPPJlx is a closed subalgebra of C(supp f.ix). Let
M (HI~pp Jlx) be the maximal ideal space of HI~ppJlx . Then we view M (HI~pp Jlx)
as

M(HI~PPJlx) = {'I E.-It; SUPPf.i" c SUPPf.ix}·

Since Irp(x) I < 1 and x E M(HI~PPJl)' rp is not invertible in HI~PPJlx· Since Irpl =

1 on supp f.ix' we have
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By this fact, (i) is clear. By Shilov's idempotent theorem, {17 E M(HI~PPJi);

Icp(17) I < 1} is not closed in M (HI~ppJi)' Hence we get (ii).

For an inner funcition cp, let

(3.1) N(rp) = U{supp,ux; Icp(x)1 < 1}.

The properties of N(rp) are studied in [11], [12]. The following two lemmas are
keys to prove Theorem 3.1.

LEMMA 3.3. Let cp be an inner function. Then

(i) N(rp) = U{Qx;XEZ(Cp)} = U{Qx;XE {Icpl < 1}}.

(ii) N(rp) = U{Qx;XE {jcpl < 1}}.

(iii) N(rp) = U{Qx;x E {Icpl < 1}\Z(cp)}.

(iv) N(rp) = U{Qx;XE {Icpl < 1}\{lcpl < 1}}.

PROOF. (i) is proved in [11].
(ii) Let x E {Icpl < I}. Then there is a net {xcxL in {Icpl < I} such that

X cx --7 x. Then ,ux
a

--7,ux in the weak*-topology of the space of bounded Borel
measures on M(L oo

), see [4, p. 375]. By (3.1), supp,ux
a

c N(rp) and N(rp) is a
closed subset of M(L00), so that we have supp,ux c N(rp). By (i), N(rp) is a
union set of QC-Ievel sets, so that we have Qx c N(rp). Thus we get (ii).

(iii) Let x E Z(cp). Then by Lemma 3.2(i), there is y E.A such that
supp,uy c supp,ux and 0 < Icp(y)1 < 1. Then Qy = Qx, so that by (i) we get (iii).

(iv) Let x E {Icpl < 1}. Then by Lemma 3.2(ii), there is y E.A such that
supp,uy c supp,ux and y E {Icpl < l}\{lcpl < I}. Then Qy = Qx, so that by (ii) we
get (iv).

The following lemma follows from [11, Corollary 4].

LEMMA 3.4. Let cp and l/J be inner functions. Then {Il/JI < 1} c {Icpl < 1} if
and only if N(Ifi) c N(rp).

Applying Lemmas 3.3 and 3.4, we have the following.

LEMMA 3.5. Let cp and l/J be inner functions. Then the following conditions
are equivalent.

(i) {1l/J1<1}c{lcpl<1}.

(ii) {Il/J I < 1} c {I cp I < I}.

(iii) Z (l/J) c {I cpI < I}.
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(iv) {It/JI < I}\Z(t/J) c {I<pl < I}.

(v) {It/JI < I}\{It/J1 < I} c {!<pl < I}.
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PROOF. (i):::} (ii) :::} (iii), (ii):::} (iv), and (ii):::} (v) are trivial.
(iii) :::} (i) By condition (iii) and Lemma 3.3(i), we have N(iJi) c N(ip).

Hence by Lemma 3.4, we get (i).
(iv) :::} (i) By condition (iv) and Lemma 3.3(ii) and (iii), we have N( iJi) c

N(ip). Hence by Lemma 3.4, we get (i).
(v) :::} (i) By condition (v) and Lemma 3.3(ii) and (iv), N(iJi) c N(ifJ). Also

by Lemma 3.4, we get (i).

LEMMA 3.6. Let fl = 2::1 anl5eion be a measure on oj such that an > 0 for

every nand e iBn #- e iBk for n #- k. Put fln = 2:~n akl5eiok' Then for each positive
integer k) the following conditions are equivalent.

(i) {1t/J0e iOk I < I} c n:l{!t/Jf.lJ < I}.

(ii) {1t/J0eiOk I < I} c n:l{It/Jf.lJ < I}.

(iii) Z(t/J(je iO) C n:l {1t/Jf.lJ < I}.
-:-=-----

(iv) {1t/J(jeiOk I < I} \Z(t/J(je iO) C n:l {1t/Jf.lJ < 1}.

(v) {!t/J(je iOk 1< I}\{It/J(je iok I < I} c n:l{!t/Jf.lJ < I}.

PROOF. Put (= e iBk • Then we have I~J I = I~J I on vUr for n ~ k + 1.
ron rok+1 .,

Hence

(3.2)
OC!

n {1t/Jf.lJ < l} n vU( = {It/Jf.lk+l l < l} nvU(.
n=1

By Frostman's theorem, see [9], there exists a Blaschke product b such that

(3.3)

Then for p E r!J>(b) we have

(3.4) {Ibl < I} c Z(bP),

see [9], [13]. Since IbPI = 1 on U {M~; ~ #- (, ~ E aLl}, by (3.3) and (3.4),

(3.5)

We have
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{1l/Jllk+l l < I} = ({Il/Jllk+tl < l}nult,) u ({Il/Jllk+l l < I}n (U{uIt~;~ =I (})).

Hence by (3.2) and (3.5),

00

{1l/Jc5, I < I} c n {1l/JIlJ < I} if and only if {1l/Jc5, I < I} c {1l/Jllk+tl < I}.
n=l

We also have

and

{ 1l/Jllk+tI < I} = {1l/Jllk+I I < l} null, u ( {1l/Jllk+I I < l} n (U{uIt~; ~ =I (})) .

Let E be a subset of {1l/Jc5, I < I}. Then by (3.2) and (3.5), we have

00

E c n {1l/JIlJ < I} if and only if E c {1l/Jllk+ll < I}.
n=l

Thus we may replace n:l {1l/JIlJ < I} with {1l/Jlln+l l < I} in conditions (i) through
(v) above and apply Lemma 3.5 to obtain the result.

PROOF OF THEOREM 3.1. By Theorems 2.1 and 2.2,

00

n{Il/JIlJ < I} c n{Z(l/JIlP);PE&'CU)} c n{{Il/JIlPI < 1};PE&'(p)} c {I l/Jil I < I}.
n=l

Hence we have (c) =? (b) =? (a). By Lemmas 3.1 and 3.6, we have that con­
ditions (c), (d), (e), (f), and (g) are equivalent.

(a) {:} (h) By Theorem 2.2(i), (h) holds if and only if

Hence by Lemma 3.1 (i), we have (a) {:} (h).
(a) =? (c) Suppose that (a) holds. By Lemma 3.I(i), we have

00

{1l/Jc5eiok 1< 1}\{Il/Jc5eiok I < I} c nOl{Il/JIlJ < I} for every k.

Then by Lemma 3.6,
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00 00

U{II/IOeillk I < I} c n{ll/IjiJ < I}.
k=1 n=1
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Hence by Lemma 3. 1(ii), (c) holds. Thus we get our theorem.

In [14, Theorem 5.1], we gave equivalent conditions on f.1 E M;d for which
the following condition is satisfied. '

(~I) There exists v E L~(f.1) such that {II/Ijil < I} c Z(I/Iv)'

We note that if f.1 E M;d satisfies (~I), then A also satisfies (~I) for every
A E M;d with ,1« f.1 and f.1 <~ A. In Theorem 3.1, we give equivalent conditions
on f.1 E' M;d for which the following condition is satisfied.,

Since f.1p E L~(f.1), we have (~2) =? (~I). In [14, Example 5.2], we show the
existence of a measure f.1 satisfying condition (g) in Theorem 3.1, so that this f.1
satisfies (~2)'

Here we have the following.

PROPOSITION 3.1. Let A E M;d satisfying condition (~I). Then there exists
f.1 EL~ (A) such that f.1 satisfies (~1) but does not satisfy (~2)'

PROOF. Since A satisfies (~1), by [14, Corollary 4.1 and Theorem 5.1], the
closed support set of A, denoted 8(,1), does not have an isolated point. Hence A
is not a finite sum of point measures, so that we can write A as A = 2::1 anf5e illn,
where an > 0 for every nand eiBn =1= ei(h for n =1= k. It is not difficult to find a
measure r = 2::2 Cnf5e illn EL~(A) such that Cn > 0 for every n ~ 2 and

(3.6)

Let Cl = 1 and f.1 = 2::1 (cn /n)f5e illn. Since ,1« f.1, f.1« A, and A satisfies (~1), f.1
satisfies (~1). We let Po = (1,2, ...). Then Po E&(f.1) and f.1Po = f5e ill] + r. Then
Z(f.1Po) = Z(I/Ioeilll) UZ(I/Ir)' Hence by (3.6), {II/IOeilll I < I} ¢ Z(f.1Po). But we

have {II/IOeilll I < I} c {II/Ijil < I}. Therefore f.1 does not satisfy (~2)'

4. Discrete singular functions of lr: -type.

Let f.1 = 2::1 anf5e illn EM;d such that an > 0 for every nand eiBn =1= ei(h for
n =1= k. Let l~ be the· set of bounded sequences P = (PI' P2' ...) such that Pn > 0
for every n. Then {ll/Ijipl < I} c {II/Ijil < I} for every P E l~ and

n{ {ll/IjiP I < I}; P E l~} c n{ {ll/IjiP I < I}; P E &(f.1)}.
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In this section, we study the sets n{{It/JjlPI < l};p E l~} and n{Z(t/JjlP);p E l~}.

We prove the following.

THEOREM 4.1. Let fl = 2.=::1 anJeion EM;d such that an > 0 for every nand
eiOn =1= eiOk for n =1= k. Then we have the foll~wing.

00

(i) n{Z(t/JjlP);p E l~} = UZ(t/JOe iO)'
n=1

00

(iii) n{{It/JjlP! < l};pEI-f} = n{{It/JjlP! < l};pEI~} = U{!t/J0eionl < 1}.
n=1

To prove this theorem, we need a lemma. In the same way as the proof of
Lemma 2.3, we have the following.

LEMMA 4.1. Let fl = 2.=::1 anJeiOn EM;d such that an > 0 for every nand
eiOn =1= eiOk for n =1= k. Then we have the fo'l/owing.

(i) For each q E l~, there exists P E l~ such that It/JjlP I = 1 on {t/Jjlq =1= O} \

U:1{I t/J°iOJ < 1}.
(ii) eLet x E uH\L1. If x tt U:dlt/JoeiOn I < 1} and fljlq(X) =1= 0 for some q E l~,

th.en there exists P E l~ such that x tt {I t/JjlP I < 1}.

PROOF OF THEOREM 4.1. (i) Let E be a closed subset of L1 such that

00

(4.1) En UZ(t/JoeiOJ = 0·
n=1

Let {en}n be a sequence of positive numbers such that

(4.2)
00

II en > 0 and 0 < en < 1 for every n.
n=1

By (4.1), for each n we have

inf{I t/JoeiOJz) I; z E E} > O.

Then we can take a small positive number Pn such that

inf{lt/Jo
eion

(z)lanPn;z E E} ::2: en,

We may assume that P = (P1'PZ"") E l~. Hence by (4.2) we have

00

inf{lt/JjlP(z)l;z E E} ::2: IT en> O.
n=1



Singular inner functions of L I-type II

This implies that En Z (t/lj.ip) = 0. Therefore we have

00

n{Z(,up); P E l~} c UZ(t/lbeilJn )'
n=l

The reverse inclusion is obvious. Thus we get Theorem 4.1 (i).
(ii) It is clear that

To prove the reverse inclusion, let x E uN\L1 such that
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Then by Theorem 4.I(i) there exists q E l~ such that t/lj.iq(x) =1= O. By Lemma
4.1 (i), there exists pEI~ such that 1t/lj.ip(x)1 = 1. Thus we get Theorem 4.1 (ii).

(iii) By Theorem 4.1 (ii),

00

U{I t/IbeilJn I < I} = n{{I t/lj.iP I < I}; pElf} c n{{I t/lj.iP I < I}; P E l~}.
n=l

To prove the reverse inclusion, let

00

x ~ U{1t/lbeilJn I < I}.
n=l

Then

00

x ~ UZ(t/lbeiIJJ,
n=l

so that by (i) there exists q E l~ such that t/lj.iq(x) =1= O. Hence by Lemma 4.1(ii),
x ~ {It/lj.ip I < I} for some P E l~. Therefore x ~ n{ {It/lj.ip I < I}; P E l~}. Thus
we get Theorem 4.1(iii).

In Section 3, we show that for some ,u E M:d , n{ {It/lj.ip I < I}; P E 9(,u)} is a
closed subset of uN. But we have the following.

PROPOSITION 4.1. Let,u = 2:.::1 anJeilJn E M:d such that an > 0 for every n
and ei()n =1= ei()k for n =1= k. Then we have the following.

(i) n{{It/lj.ipl < l};pEI~} is not a closed subset of uN.
(ii) n{{It/lj.ipl < l};p E l~} =1= n{Z(t/lj.ip);p E l~}.
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PROOF. By Theorem 4.1 (ii), we have

n{ {I"'., I< I}; p E in = C91 {I"',,;," I < 1}) U.91 2("',,;0.)'

By (3.5), we have

00

{1t/J0eiOk I < I} n UZ(t/JoeiOJ = Z(t/J0e iO)·
n=1

Hence

{1t/Jo iO I < I} ¢ n{ {it/Jppi < 1};p E l~},
e k

so that n{ {it/Jppi < 1};p E l~} is not closed.

THEOREM 4.2. Let f.1 = 2::1 an6eion EM:d such that an > 0 for every nand
e iOn i= e iOk for n i= k. Then '

(i) n{Z(t/Jpp);p E l~} ~ n{Z(t/Jpp);p E &(f.1)}.

(ii) n{{It/Jppl < 1};pEl~} ~ n{{It/Jppl < 1};pE&(f.1)}.

(iii) n{{It/Jppl < 1};pEl.f} ~ n{{It/Jppl < 1};pE&(f.1)}.

Let {zn}n be a sequence in LI such that

1· IT IZn - Zk I 11m = .
k-+oo n#-k 1 - ZkZn

Such a sequence and an associated Blaschke product are called sparse (or
thin). By [5], for every sequence {wn}n in LI with Iwnl ---+ 1 there exists a sparse
subsequence of {wn}n. See, [7], [8] for the study of sparse Blaschke products.

PROOF OF THEOREM 4.2. We note that by our assumption, f.1 is an infinite
sum of point measures. Let e iOo be a cluster point of {e iOn } n in aLI. Put

_ ({ jOO})5:.7: - f.1 - f.1 e Ue,Oo·

Then we have It/JpJ = It/Jrl on Jlteioo for sufficiently large n. Hence

and
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Therefore by Theorems 2.1, 2.2, and 4.1, to show our assertions it is sufficient to
prove that

(4.3)
OCJ

({Il/JrI< I} n uHeiOo )\ U {Il/JJeiOJ < I} :f= 0·
n=O

Since ei(}o is a cluster point of {ei(}n}n' there exists a point x E uHeiOo such that

(4.4) 'l/JJ (x)1 = 1 and l/JAx) = o.e'OO

For, take X n E uHeiOn such that l/JJeioJxn) = 0, then take x E {xn}n n uHeiOo. This x
satisfies (4.4). Then by the corona theorem, there exists a sequence {zn}n in L1
such that Il/JJ 0 (zn)1 -+ 1, l/Jr(zn) -+ 0, and Zn -+ ei(}o as n -+ 00. Moreover we
may assume \hat {zn}n is sparse. Let b be the associated Blaschke product.
Then by [9, p. 205], Z(b) = {zn}n\{zn}n, and 'l/JJ 0 1 = 1 and l/Jr = 0 on Z(b).

e' 0

Since b is sparse, we have

(4.5) Il/JJeiOO 1= 1 and l/Jr = 0 on {Ibl < I},

see [1], [6], [8]. Then {Ibl < I} n.{Il/JJeiOO 1 < I} = 0. Hence by [11], {Ibl < I} n
{Il/JJ. 1 < I} = 0. Since Zn -+ el()o as n -+ 00, also by (4.5) we have

e'OO
OCJ

{Ibl < l}n U{Il/JJeioJ < I} = 0 and {Ibl < I} c {Il/Jrl < l}nuHeiOo'
n=O

Hence we obtain (4.3), completing the proof.

The following is the last theorem in this paper.

THEOREM 4.3. Let f..l, AE M:d be sums of infinitely many point measures.
Then f..l..lA if and only if

(n{{Il/J/Lp 1 < I}; P E l~} ) n (n{{Il/JAq 1 < I}; q E l~}) = 0·

This theorem follows from Theorem 4.1 and the following proposition.

PROPOSITION 4.2. Let {e iSk hand {e itn }n be sequences in aL1 such that
{eiSkhn{eitn}n = 0. Then

OCJ OCJ

UZ(l/JJeiS) n UZ(l/JJeitJ = 0·
k=l n=l

PROOF. We may assume that eisn :f= eiSk and eitn :f= eitk for n:f= k. For each
positive integer n, let

(4.6)
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Then aAnnaA = {e itn }. Let {en}n be a sequence of positive numbers such that

(4.7)
CI)

II en > 0 and 0 < en < 1 for every n.
n=l

(4.9)

(4.10)

(4.11 )

Since {e iSk h n {e itn }n = 0, for positive integers k and j we have

(4.8) 1t/J6eiSk(z) I ----+ 1 as Izi ----+ 1 and zE Aj .

Hence there exists ak > 0 such that

k

1t/J6eiSk lak ~ Gk on UAj .
j=l

Taking sufficiently small ak, we may assume that L:~l ak < 00. Put
CI)

/1 = L ak<5e iSk '
k=l

Then for each positive integer n, by (4.9) we have

Iiff"I= (gliffo,., la,) (n liffJ,,,, la,) ~ (gliffJ,., la,)nek

By (4.6), Z(<5ei1n) cAn, so that by (4.8) and (4.11) we have

CI)

1t/J1l1 ~ II ek on Z(<5e itn ).
k=n

Hence by (4.7),
CI) CI)

1t/J1l1 ~ II Gk > 0 on U Z(<5e i1n ).
k=l n=l

By (4.10),

CI)

It/J1lI = 0 on U Z(<5eiSk)'
k=l

Therefore we obtain

CI) CI)

UZ(t/J6eiS) n UZ(t/J6eiIJ = 0·
k=l n=l

This completes the proof.

We remark that there exist /1, J.. E M:d such that /1..l J.. and

(4.12) (n{Z(t/JIlP ); P E &>(/1)}) n (n{Z(t/JJeq); q E &>(J..)}) # 0·
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For, let v = 1:::1 an~eiOn EM;d satisfying conditions of Theorem 3.1 and put
f.1 = 1:::2 an~eiOn. Then it is n'ot difficult to see that f.1 also satisfies conditions of
Theorem 3.1 and we have

(4.13) Z(!/Jbei0
1

) ~ {I!/Jvl < l} = {I!/Jjll < l} = n{Z(!/JjlP);p E .?J(f.1)}.

Let A = ~eiOl + 1:::1 bn~eiln EM;d such that {eitn}n n {eiBn}n = 0. Since ~eiOl.l.-f.1,

f.1.l.-A. Since ~eiOl «A, Z(!/JbeiO) c n{Z(!/J..lq);qE.?J(A)}. Hence by (4.13), we
have (4.12).
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