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Abstract. Let ,S be a smooth hypersurface in the projective three space and

consider a projection of S from P e S to a plane f/. This projection induces an

extension of fields k(S)/k(H). The point P is called a Galois point if the extension

is Galois. We study structures of quartic surfaces focusing on Galois points. We will

show that the number of the Galois points is zero, one, two, four or eight and the

existence of some rule of distribution of the Galois points.

l. Introduction.

Let k be an algebraically closed field of characteristic zero. 
'We 

fix it as

the ground field of our discussion. Let S be a smooth hypersurface of degree
d in the projective three space P3 : Pt (k), where we assume that d > 4. Let

K - k(^g) be the rational function field of S. A subfield K^ is said to be a

maximal rational subfield if it is rational, i.€., a purely transcendental extension
of k, and is not contained in any other rational subfield. It seems interesting
to study the structure of the extension Kf K^. If we know it, we will be able to

classify of all the subfields of K. Because, by Zariski-Castelnuovo's theorem any

subfield (which is not k) of K. is rational. So that it is sufficient to study what

fields exist between K and K^. Let L be the Galois closure of K f K*, then we

need to study the structure of the Galois group Gal(L I K^).
For that reason, the study we have to do first is to find when the extension is

Galois (cf. t6]). Here the meaning "when" is a little ambiguous, it will become
clear if we consider the model of 4 as follows. For each point P e ,S, let

ftp: 5... -> H be a proje:tion of S from P to a plane H. This rational map

induces the extension of fields K lk(H). We know that the degree of irrationality

of Sis d-1 or d-2(cf. [1], [0]), hence k(H) is a maximal rational subfield.

Clearly the structure of this extension does not depend on I/, but on 4, so that

we writ e Kp instead of k(H). Therefore, the above question is equivalent to say

for which point P e S the extension K lKp becomes Galois. The study following
the above method has been done for curves of degrees 4 and 5 (cf. [6], t7l).
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However we have to note here that not all maximal rational subfields are

obtained as the projection above, i.e., there are many maximal rational subfields
which cannot be obtained from the projections.

AcrorowLEDcEMENT. The author expresses his gratitude to Mr. Takeshi
Takahashi for calculating the number of lines on 53 in Remark 2.8 and finding

an example in Example 2.9.

2. Statement of results.

We use the same notation as is used

DnrnuuoN l. A point P e ,S is called
is Galois.

in Section 1.

a Galois point if the extension K lKp

Let E be the set of lines on ,S passing through P. Then ,S': S\(IUP)

becomes a covering of U of degre e d - I by nb : n"ls,, where U - P2\{a finitely
many points). Hence P is a Galois point if and only 1f n'r,is a Galois covering.
First, we want to know the set of Galois points.

TneoREr"r l. Suppose that d > 4. Then the number of Galois points ls

finite. If S is general in the class of surfaces with degree d, then the number is
zero.

Let d : d(S) denote the number of the Galois points. Note that 6 is
invariant under projective transformations of S.

Here we mention a note, which will be often used later.

Norn 2.1. lf I/r is a general plane among the ones passing through P, then
^S fl f/r is a smooth curve.

Hereafter we restrict ourselves to the case where d - 4 and we assume that k
is the field of complex numbers. We want to know the exact value d and the
place where the Galois points exist. First we fuid necessary conditions that a
point to be a Galois one.
' Let (X , Y : Z : W) be homogeneous coordinates on P3. Then we

have the following standard form for the equation of S if S has a Galois
point.

Trnonnu 2. If there exists a Galois point P on S, then ,S is projectiuely
equiualent to the surface giuen by the equation ZW3 + G(X , Y , Z) - 0, where G is
a  quar t i c  fo rm and  P  -  (0 :0 :0 :  1 ) .

Let Tp denote the tangent plane of ,S at P.
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COROLLARY 2.2.1/Pお α 働 あお ′θ加ち 滋`“ 2レ ∩ S θθ肥 おお a//a“ rご iS′li4`′

′J“̀s.

Let F be the homogeneous denning equation of S and″ (F)be the Hessian

of」R  Then we have another necessary condition.

PROPOSITION 2.3.//Pお α Gα あお ′θ滋ち 滋 "″ (F)(P)=0.

Let P be a point on S with P=(0:0:0:1)and put χ=χ/″,ノ=y/″ ,
Z=Z/″ and/(χ,y,Z)=F(χ,y,z,〃)/″

4=Σ
色1勇,whereメ is a hOm。_

geneous part of/with degree f(J=1,2,3,4).Using these expressione
the following c五te五〇n that a point to be a Galois point。

PROPOSITION 2.4.助 ル r油 `“ θ′αガθ“ αbθυg,α ′θ加′Pお α Gα raぉ ′θ加′√ α″ノ

θ″ヶ√ガ=3■/3・

In the paper i61, we haVe studied Galois points on quartic curves.

The folliowing proposition is also useful for checking whether a point is Galois or

not.

PROPOSIT10N 2.5。Sttθsθ ttα′IPお α gθ″θ″′′ル″θ′αssttg ttra"gλ P α“ご

ルrC=S∩ 二年 bθ α夕“αr′J`C“rυθ.劉 Lθ″α′θ滋′Pお α GαFaお′θ加′θノS√
α“ノθ″クノ′′おα働あお′θ滋′げ C

For a Galois point P,take three lines{み}frOm s∩ 等 and cOnsider a di宙sor

D=′ 1+J2+J30 The rational map associated with the complete linear system

lDl g市es s a stmcture of a nber space,i.e。 ,wc have the following.

LEMMA 2.6.f/励 θrθ θχおrs α Gα わぉ′θ滋′θ“ 鳥 滋θ“ S ttαs α J′″ε′露ra cプα“

θ物 ガ̀S“r/aca

E》IFDttTIoN 2。  We call the surface with the strllcture deined in Lemma 2.6

an、elliptic surface associated with the Galois point.

Note that there are four pOssibilities for the choice of the lines S∩= ;́hence

there are four elllptic surfaces associated with the Galois point.  Observing the

singular flbers of the elliptic surface, we obtain the following。      

THEOREM 3.1/Sお α gttαr′Jθ s“r/a`ら油θ“δ(S)=0,1,2,4 θ r 8.Eψ θεねJry,

δ(S)=8√ α″′θ″ケ √Sお ′raJigαJυθJy θg“′υαた″ ′θ ttθ∫″r/aCg S8 gjὺ認by清 `

θgttα力“χy3+Z″
パ+χ
4+z4=0.

動rθrθθὺち′力θ″jJrriib“′ゎ″a/励 `GαあliS′0加ぉα″̀″′“∫′認′θ′αsル JFaWら″力̀ rθ

滋`αθお滋Jiicαた Gαわお′θ加札 滋θ′lings加訪`α′θ ttθ′′“ω θ“Sα認グ′力θ braたθ“′j“ω

加″`αた ノカθ′加`s li4 P3 b“′“θ′θ“S.
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(3)δ=8

By Lemma 2.2 there exist four lines on S passing through each Galois point,

but we omit to illustrate here some of them.

Note that the coordinates of the Galois points on Ss are (0 : 0 : 0 : 1),
(0 :0 :  ( :  1 ) ,  (0 :0 :  (3  :  1 ) ,  (0 :0 :  (5  :  1 ) ,  (0 :  I  :0 :0 ) ,  ( ( :  t  :0 :0 ) ,
( (3 ' l :0 :0 )  and ( (5 '1 :0 :0 ) ,  where  (  i s  a  p r im i t i ve  s ix th  roo t  o f  un i ty .
Furthermore there exist some rules between Galois points and lines on S, for the
details, see Lemma 3.10.

Conolumy 2.7. f d(S) :2 or 8, then S has a structure of an elliptic surface

whose singular fibers are all of type IV (in the sense of Kodaira's notation in l4l).

A quartic surface is a K3 surface, and it is known that the maximum number

of lines lying on a quartic surface is 64 (cf. [9]). The surface Sr in Theorem 3 is

the most special one among quartic surfaces as we see below.

Rnr'r^q,RK 2.8. The surface ,Ss has the following properties:
(") The number of lines on Ss is 64.
(b) The surface Se is a singular K3 surface ("f. t2l).

For each value of d in Theorem 3, there are many examples taking the value

as follows.

Exnuprn 2.9. (1) If S is (i) a general quartic surface, or (ii) the Fermat
quartic given by the equation X4 + Y4 + 24 + W4 :0, or (iii) the surface given

by  the  equa t ion  X3Y+Y3Z+Z3W+W3X -0 ,  then  d (S) -0 .
(2) If ,S is the surface given by the equation (i) ZWi + G(X, Y, Z) - 0,

where G is a, general quartic form, or (ii) ZWi + X4 + Y4 + YZ3 - 0, then
d(s) - l.
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(3)SuppOSe that S is gi▼en by the equation χy3+z″
3+〃
(χ,Z)=0,

where〃 (χ,Z)=Σ 色。Qχ
:Z4-J,θ
OQ≠ 0・ Then,

(a)if at least one of θJ(J=1,2,3)is■ot ZerO,then δ(S)=2,

(b)if θl=σ2=ε 3=0,then δ(S)=8.

(4)If S iS the surface given by the equation(1)Z″
3+z4+″

(χ,y)=0,
where ris a general quartic f011.1,Or(ii)Z″月+X4+y4+Z4=0,then δ (S)=4.

REMARK 2.10.  Although there are rnany lines on the Fe.1..at quartic,indeed

there are 48 pieces lines on it, there exists no Galois point.

3。  Proofs and some lther results.

First we prove TheOreIIl lo Let P be a Galois point and σ be an element 
Gal(K/Jり).Then σ induces a birational transfollllation of S over(″)笙
た(P2),whiCh tums out an isomorphism,since S is the minimal model of the neld
κ We claim that σ  is a restHction of a prdect市e transfollllation of P3.This

assertion is a well known fact in the case whereご:≧5,so that we prove it when

グ=4.

Lct HP be a plane passing through P.  If it is general, then C=

S∩ カレ iS a smOoth quartic cu】Ⅳe by Note 2.1.Let rP be a line in IP passing

through P.If JF is general, then C∩ JP consists of four dstinct points

{P,Pl,P2,P3}・ By dennition σ induces a pe■1■■utaiton of the set{Pl,P2,P3}・

Hence we infer that σ (C)=C,especially wc have that σ (P)=P.ThiS i]mplies
that σホ(/)∈″

0(S,θs(IP))if/∈〃0(S,θsはわ)).ThuS σ induces an element of
Aut(″0(S,θs(助 )))。Since″

0(S,θ
s(助 ))宴″

0(P3,θ
lIPl),σ iS a rest五ction

of a prdecdve transfo..1lation of P3.we denote it by ν(σ)∈PG二(4,た).

D E F I N I T I O N  3 . W e  c a l l  σ  a n  a u t o m o r p h i s m  b e l o n g i n g  t o  t h e  G a l o i s  p o i n t  P

and iグ(σ)the representadon of σ.

Let〃 (S)denOte the set of automorphisms of S induced by the prdect市 e

transfolll.ations which leave S inva五 ant.  Suppose that σ  and σ ′ are auto‐

morphisms belonging to Galois points」 P and P′ respectively.  Then,it is eaSy to

see that σ≠σ
′
if P and P′ are distinct points,hence Лど(σ)≠ ■イ(σ

′
)。 Thus we

infer readily Theorem l from the following lemma(ci 151).

LEMMA 3.1.動 θ grθψ 〃 (S)力 αS αノ“Jた θrルr√ ′≧3.1/Sお J"`rJら

油θ“〃 (S)θθ“Sおお a/“ 夕 α“ Jル″′Jヶθ′θttθ“′.

Next we investigate the strllcture of the cove五 ng πl:S′ → υ・

Let yグbe the discrinlinant deterlmned by the prttectiOn πP. Let us express y
explicitly using a suitable amne coordinates as follows.  First we take homo―

geneous coordinates(χ :y:z:″ )。n P3 sadSfying the following conditions:
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(1)  P- (0 :0 :0 : l )  
(2) The plane given by Z : 0 is the tangent plane of ^S at P.
(3) The plane given by X - 0 is not a tangent plane at any point of ,S.
(a) The number of lines passing through P and touching ,S at ^S n { W - 0} is

finite.
(5) The line given by the equations X - Y : 0 does not touch S.
We use the notation in the previous sections and consider the projec-

tion ftp restricted to the affine part W + 0. Let p be the blowing up of A3 :
P3\{W - 0} with center P. Then in an affine patr, p can be expressed as
F(x,r'/) - (x,sx,rx). Since the structure of the extension KlKp does not depend
on the choice of planes H, we may assume that nr(x,sx,tx) - (s, /). Thus rtp :
np.lt maps (",r,4 to (s, t). Tht extension of fields is not changed if we take fr,p
instead of np. The defining equation (of the affine part) of the proper transform
of ,S is

f* (*,s, /) : ry e kfx,s, rl.
Let {t : t(s,4 be the discriminant 

"f f*(x,s,/) with respect to x. Then Y
is obtained by homogenizing rlr and we have that degY - deg t by the choice of
coordinates (l) ^, (5). Let Ip(X, I) denote the intersection nlrmber of X and Y
at R and let (X, f) : Dn IR(X , Y). We will consider the intersection numbers
on P2, P3 or S, and use the same notation.

LnMM.q. 3.2. degP : dz - d - 2.

h.oor. Let J- be the divisor of
number of f and a line / on P2.
H - nprU), then C - SnI/ is a smooth curve of degree dit I is general by Note
2.1. Using Hurwitz's theorem, we infer that the degree of the discriminant for
the smooth curve C is 4z - d - 2 (cf. t6l). n

Hereafter we assume that d - 4.
Let P be a Galois point. Then Gal(K lKp) is the cyclic group of order three

and let a be a generator of it.

Lnuna,r 3.3. The subuariety g(o): {Q€ Sl o(q: Q} contains a c-urue.

Pnoor. Let E be the set of four lines ,S n fp. Then we have that o(E) - E
and n' : S' -> U is a triple Galois covering. By Lemma 3.2 we have that
deg/- - 10. Therefore n' is ramified along n-t(U n f), thus g(o) contains a

trcurve.

When A - (oil is a diagonal matrix of size four and a,1 - ai (i: 1,2,3,4),
we denote it by (or + az * az * a+). Let M(") e PGL(4,k) be the represen-

ｏｎ

ｈｅｎ

ｙ

Ｔ

P2 and V ,l) be the intersection
we have that dee f - (f , D. If
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tation of σo Since σ3=ガ ,the mat五xル頃σ)iS Similar to(ωキω
Jキωノキ1),

where ω is a p五mitive cubic root of l and O≦j≦ブ≦2.By taking a suitable

prdeCt市e change of coordinates,we may assume that iF(σ)is eXpressed as
above.Frorn Lc― a3.3 we infer that σ must ix a hypelplane.This implies
that threc eigen values ofル《σ)COinCide,hence we have that f=ノ=00r
J=ノ=1.COnsequently we may asslllne that J=ノ=1・ We express F as

Σ204″4-li where島∈たIχ,y,Zl iS a hOmOgeneous poly五omial of degree
J(0≦′≦4).SinCe σ∈″(S), we have that Fσ=″  for some λ∈たヽ{0}.
Whence we can conClude casily that F has an expression as Fl″3 十̈F4・  SinCe
Fl≠ 0, thiS fO.11l can be transfo...led tO the standard one by a prtteCt市e
transfo.11lation.  Thus we complete the proof of Theorem 2.

Suppose that P=(0:0:0:1)is a Galois point.Then the equation of S

can be g市 en by Z″ 3+G(χ ,y,Z)=0.The equation of the tangent plane lЪ

is Z=0.Since S is smooth,the fo■ 1■■G(χ ,y,0)haS nO muluple factor,this

proves COrollary 2.2.

The proof of Proposition 2.3 is easy from the following lemma.

LEMMA 3.4(§ 7,181)。 二θ′/~bθ 滋`rω rrJθrゎ″q//′ θ滋`ψ “′確認gθ“′′″″θ

a/Sα ′2 Z浸 駕 滋θ雲り晨7`η フα“Sわ46ノ /α ′PS′α″お ″Jtt α″θ“ルgθ“θ認′θ

g夕αグrα′J`/a側 √α“ノθ“ケ √″(F)(P)≠0。

Next we prove Proposition 2.4.  If」P is a Galois point,then making use of
Theorem 2,we casily obtain″=3五/3・COnVersely we assllme thi tion.
AS WC have demed above,/★Can be expressed asノ(χ,S,r)=/4(1,S,′)χ

3+

/3(1,S,r)χ
2+/2(1,S,′

)χ+′.Then we have that K=た(χ,S,′),Whereノ
★
(χ,S,′)

=0.Since ttP=た (χ
′
,χ,S,′),Where χ

′is another root ofノ★(χ
′
,S,′)=0,we Can

write ttP=た(χ,s,′,"),Where

“2=(/3+/4)2+4/1/4=″~2■/2~助イ~4/1/3・

Thus,if″=3■/3,then露2 beCOmes a complete square inた(χ,s,r).HenCe
K/Jtt iS a Galois extёnsion.
The proof of Prop9SitiOn 2.5 may be clear if we consider the branching

divisor.  The point」P is a Galois point if and only if the divisor」「is two tilnes

of some divisor.  Sincc HP is a general plane passing through P iand the

discrimlnant of the prdeCtiOn of C from P to a line is obtained by rest五cting y,
the assertion may be clear.

When P is a Galois point,let Σ≧04 be the four lines s∩昨 and put

D=′ 1+ら 十ら。 The COmplete linear system lDl is Obtained as follows.

Consider the set〃 ={」=λl島 ⊃Jo,Il iS a plane}.Then s∩島 Can be

w五tten as a divisor JO+(助,where cA is a curve.Taking or the f破 ed part J0
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from the linear system {Sn HtlHte tr}, we obtain a base points free linear
system, which coincides with lDl. Thus we obtain the following lemma.

Lsr\,rMA 3.5. We haue that D2 - 0, (D,/o) :3, dimF/o(^t,0(D)) -2 and the
complete linear system lDl has no base point.

Consequently we obtain an elliptic surface f : rtot, S * Pt in Lemma 2.6.
Now we proceed with the proof of Theorem 3. The elliptic fibration

f t S * Pr has a singular fiber D, which is of type IV.

LnMna.l 3.6. The automorphism o preserues each fiber of f , i.e., o(Fo): Fo,
where Fo : f-t (") for a e Pr . Especially, a smooth fiber is an elliptic curue with
an automorphism of order three.

h.oor. Since o is determined from the projAction, we have that o(lo * Ci
- lo * Ct and o(lo) : 10, where S n Hr : Ct * lo as above. Hence we obtain

no(Ci - Cr

Note that lo I Q) is the base curye Pt of the elliptic fibration. Thus

flto : ls + Pr is a triple Galois covering with two branching points which are
fix;d points of ol5, i.e., /o is a triple section of f . Hence we infer the following.

LnMM.q. 3.7. The etliptic fibration f : S -* Pl has at most one singular fi.ber
D' besides D satisfying that Dt is of type IV and Dt n h consists of one point.
Especially, ,f I is a line on S, then the number of Galois points on I is at most two.

Lnmrrn 3.8. If P' is another Galois point and o' rs an automorphism
belonging to P' , then o(P') is also a Galois point and oo'o-r is an automorphism
belonging to o(P').

h.oor. Put d'l : ooto-l and o(P') : P" . Suppose that / is a line passing
through P" and /g(S,/) > 2 for some point 0 e,S. Then we have that 106,l)
: ro-\g1(S,/'), where I' : o-r(0. Since lt passes through the Galois point P',
we have that IO(5,/) > 3, this means that P" is a Galois point. Since a'is an
automorphism belonging to P' , we have that o'(l') : l' . Hence we have that
o't (l) -- l, this implies that o" is an automorphism belonging to P" . n

LrI{MA 3.9. Suppose that P and P' are two Galois points and. the line I
passing through these points does not lie on S. Then in Lemma 3.8 we haue that
o(P') * P', hence there exist two more Galois points o(P') an;d oZ(P').

koor. In case Ir(1,^S) > 2, the line / is contained in Tr(S), hence it
lies on ,S by Lemma 2.2. Therefore we have that Ip(l,S): t. Suppose that
o(P') : Pt. Then we have that Ir,(l,S) : 3. By the same reasoning as above
we have that / must lie on S, which is a contradiction. n
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Suppose that d : d(^S) > 2 and take another Galois point P'. Then one of
the following cases takes place.

(i) There exists a unique i satisfying l;= Pt (t :0, 1,2,3), or
(ii) There does not exist i satisfying li ) Pt .
In the case (i) we may assume that I : 0 and qonsider the elliptic fiber space

,f , S -, Pr associated with the Galois point P with the singular fiber h * lz * h.
By Lemma2.2,,S11 7p, can be expressed as lto(, where t! (t - 0, 1,2,3) is a line
on ,S. Since there exist just four lines on ,S passing through P', we may assume
that lo:1o. Thus D' : l i+4+/j is a singularfiber of f , especially DnD' - fr.

On the contrary in the case (ii), put l: TpftTp,. Since the degree of S is
four, we infer that / does not lie on ^S, and P f I and P' $ l.

Let % be the set consisting of the Galois points and the lines on S passing
through at least one Galois point. Combining the results obtained above, we
conclude the following properties of distribution of the Galois points.

Lnuun 3.10. The set ff has the following properties.
(Pl) For each point of g, there exist four lines of % passing through it.
(P2) For any two points P and P' of 9[, the configuration of lines are

illustrated as follows, where a line indicates a line of tr and a broken line indicates
a line in P3 but not belonging to ff.
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(P3)Far θα“ riing r a/銑滋θ″`χぉ′θ“θ θr rwθ′θ滋ぉ0/″ケ滋gθ“′。

(P4)」助r θασ乃′θ加′Pグ 銑 滋grg θχおrs α“α“′θ″θリカお閣 σo/S bgわ ″gttθ ′θ

鳥 ″んたた力″ 漬θ力Jra″閉θ′raPθrrjω:

(a)σ(P)=P・

(b)σ 力αS α″ θrルr働 ″θa

(C)σ滋あ`″α′̀脇“″わ“グ `′θ″θ“お加″.

(d)J/Σ匙0島お滋̀ 肋θs Pα∬加θ ttra“g力鳥 iらゴ′おら∩鳥滋θ“σ(4)=み

(0≦j≦3)α“グσ14おα“α露′θ″θψ力お″ (プみ″′滋α″θrdθr滋″̀ α″′ノχω ′Wθ

′θ加な

(P5)r/滋̀rθぁω″θ′釧お′α riirg a/″′αSSttθ ttrθ“J力′wθ′θ加なPα“ノP′a/
″,力“滋θr`θχお′′wθ“θ″′θ滋おa/″.動 `∫θ/a“r′θttrs αrg εθ〃j″̀αらわ"′滋̀
ル留′α∬加g Йrο“gλ ttθ″お“ο′α“θ′θttθ“ra/″.

In the case where δ:≧2,there are two linOs on S not lneeting each other as

wc hNe seen above(P2)。 Refering to Proposition l in[101,We Obtain the

following.

COROLLARY 3.H.J/δ (S)≧ 2,滋 `″ 滋θ ル grθ′ a/″ ″ ′lia“α′jry a/sお ′Wθ .

Let us prove Theorem 3 by exaΠlining the following cases separatel

(1)For cach line′of″,there e対sts just one point of″on′.

(2)There e対sts a line′of″ on which there e対st two points P and P′of″.

Take one point P of 』 r and cOnsider the associated elliptic sur

/:S→ Pl.Here we assllme thatたis the neld of complex numbers.Then t

topological Euler characte五stic of S is 24.

In the casc(1),fOr each point c(≠P)Of″ ,if we choose a suitable a line′
from the irreducible components of S∩=0,then′meets 10 and does not meet D

by(P2).That iS,r is contai“d in a singular ibeF Ofノe Suppose thtt δ≧5。

Then four Galois points P=Pl,P2,P3=σ(P2)and P4=σ(P3)are C01linear and
suppose that o=ol iS anOther Galois point.Then We can hd two more

Galois points 22=σ(2)and 03=σ (22)・Next we consi“r the automorphism

σ2be10nging to P2・Then we can hd new Galois points σ2(21),罐(01),の(22),
弓(02),の(23)and J22(23)。Next we consider the automorphism belonging
to the Galois point P3・   Then we can ind new Galois points, ctc.  h this

way, continuing these processes, we will be able to ind more than 24 pieces of

Galois points.  This contradicts to the Euler characteHstic of S.  Thus in this

case δ==l or 4.

In the casc(2),缶 st We prOve the followinge

LEMMA 3.12.Sttθ ∫θ ttα′滋`rθ θχおrs α′加θ′θ“Sw′ 句夕加g ttα′励grg

θχiis′′wO Gα blis Pθ加`sθ"l 劉 りθ認油`dttli4θ θg“α′jθ″a/S cα“bθ gJυθ“|ノルθ

θg“α′わ″ χy3+Z″
月+″ (χ,Z)=0,Wみ θrθ″(χ,Z)お α g“αrrた/a閉 .動 ′
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θθθrttαrgsげ働あお′θ加おαrθ(0:0:0:1)α″ご(0:1:0:0)α″ノ滋θ θg“αあ″sa/

滋θ ttθ αrθ gJυ“ ″ χ=Z=0.五 ンθεたJry θαtt sttθ露ねr」ル ra/滋 ``〃″′J`

S“r/aθθ α∬θθ滋′θご〃J肋滋θ Gαraお′θ加ぉぉa/Fyp`fZ

PR∞F.By Theorem 2 we have the standard fol.1l Z″3+G(χ ,y,Z).
Since C(χ ,y,0)faCtOrs into four distinct linear fo■ 1..s, We Can transfo....

G(χ,y,0)tO χ・G3(χ,y),Where G3 iS a Cubic fomo We may assllme that two

Galois points P and P′lie on the line given by the equations JO:χ=Z=0.

Since the automorphism σ belonging to P■xes the point at ininity ″==0, we

sce that P=(0:0:0:1)and P′=(0:1:0:0)by Lc― a3:7.The curve C=

S∩{″=0}iS a Sm。。th quartic cuⅣe given by the equation C(χ,y,Z)=00n
the plane ″

′==0。

Sincc P′lies on the plane given by,7=0,the point P′ is also a Galois

point of the quartic curve C.  This assertion can be proved by silnilar argument
of the proof of Proposition 2.5.

θは,,世1三i夕』射
be w五サen as ΣたlGに,a y4■ルnCe αχ,La/y

It is casy to see that gl(χ,0)≠ 0,he五ce we can transfo■11l g to the expression

whose linear part is χ .  SO that we may asslme that Jl==χ ・ The simllar

assertion to Proposition 2.4 holds truc br qua■ic cuⅣes,i.e。,we have that g:=

3x/3・ThiS implies that g2 and g3 are d市isible by χ,from which we infer that,
by taking prdectiVe transfoll■■a10ns,G can be expressed as χy3+〃(χ,Z).
Since cach iber of/is obtained by cutting S by αχ+βZ=0,We infer easily the
last assertion.

CLAIM l.コ を̀r`お力θ GαFaお′θii4r“θ′ryttg θ“(乃∪7レ′)∩S.

Pnoor. Suppose the contrary. Then, let a be such a point. By the
property (P5) there exist three points Q - Qr,Qz - o(Qt) and Qs: o(Qz), which
are collinear. Corresponding to each point Qi (r: 1,2,3), there exists a line
mi ffioeting ls and does not meet D by (PZ). By Lemma 3.12 these three lines
make a singular fiber of tyne fV. Moreover, take an automorphism o' belonging
to P/. Considering o'(Qr) and o'2(Q) U:1,2,3) and using the property (P3)
and Lemma 3.12, we obtain a singular fiber containing mr * mz * rirB, which
cannot appear as a fiber of any elliptic fiber space (cf. t4l). TlUs is a
contradiction.

Therefore we conclude that d < 8

Crnnu 2. In the case (2) we haue

Pnoor. In case d > 3, we use (P5) and Claim 1. As we see from the
illustration below, we conclude that d - 5 or 8.

741

in view of(P3)。

′乃α′δ==2, 5 θr 8.
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We now prove that the surface with δ =5 cannot e対 st.Let″ (χ,Z)be

expressed as Ё缶角χ
4-izf in Lemlna 3.12,where α。

′
≠0.Suppose that δ≧5.

Then R=(ζ:1:0:0),Where αOξ
3+1=0,is also a Galois point by Cldm l

and R is on the plane given by〃=0.Putting“=χ/y,υ=Z/y,″=″ /y
and乃 =F/y4,wc have that力 (“,υ,W)=“ 十υ″

3+力
4(“,υ), MOreover,putting

“′=“ ―ξ,WC haVe that λ
′
(“
′
,υ,W)=λ (“

′
+ξ,υ,″).Here we make use of

Proposition 2.4.Then we obtain that α l=α 2=α 3=0・ This implies that

δ=8.Colmbining the assertions obtained abOve,we see that δ (S)=8 if and
only if S=S8・ThuS wc complete the proof of Theorem 3.

REMARK 3.13.Suppose that σ  and σ′are the automorphisms belonging to

Galois points P and P′ respectively.  Then, σσ′==σ′σ if and only if the line ノ

passing through P and P′  lies on S.

PR00F.If′ lies onこ then by Lemma 3.12 we may assumO that」И(σ)=

(ωキωキωキ1)andル頃σ
′
)=(ω′+1+ω Jキωり,Where F=l or2.Espetially

σ and σ′are commutat市e.Conversely,if σσ′=σ ′σ,then ν(σ)and ν (σ
′
)Can

be diagonalized slmultaneously.  Hence in view of Lc― a3.3,σ  and σ′have the

same prdect市 e representation as above.By using the action ofノ ビ(σ)and
iイ(σ
′
)On the deining equation of S,we obtain the same deining equation as in

Lemma 3.12,this mplies that′ lies on S.                        □

REMARK 3.14.  Let G be the group generated by the automorphisms

belonging to the Galois points on S80 We Will show in the fOrthcoming paper i3]

that C has an order 288 and some other properties.

We mention the methods to check Example 2.9。  By Proposition 2.3 all the
Galois,ointS exist on the cuⅣe given by the equations F事″(F)=0。
Proposition 2.5 may be helpful for checking some example such as the Fe■■1■at

quartic.  Next, we use the dist五 bution rule of the Galois points in Lc― a

3.10。  Using Proposition 2.4, we will be able to nnd all the Galois points.

Finally we raise problems.

PROBLEM 3.15。 (1)Find the degrees of irrationality for the surfaces with

δ=1.

□
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(2) Let S be the nonsingular projective model of the Galois closure of KlKp,
where K is the function field of a quartic surface S. Suppose that P is not a
Galois point. Then is it true that the Kodaira dimension of ^i is two? Moreover,
find several geometric invariants of it as we have done in the case of quartic
curves (cf. t6l).

(3) Describe the configuration of 9[ for the surface ,Ss.
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