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Abstract. Let M be a von Neumann algebra, let o be a «-automorphism of M, and
let M >, Z be the crossed product determined by M and «. In this paper, considering the
Cholesky decomposition for a positive operator in M x, Z, we give a factorization theorem
for positive operators in M >, Z with respect to analytic crossed product M >, Z, de-
termined by M and . And we give a necessary and sufficient condition that every
positive operator in M >, Z can be factored by the form A4°4, where 4 belongs to
M>,Z N (M >, Z,)".

1. Introduction.

Let B(s#') be a set of all bounded linear operators on a Hilbert space .
The problem of factorization of operators with respect to a subalgebra U of
B(#) consists in writing a positive operator C in the form A4*4 with 4 in . If
A = B(), then this problem is trivial, however if U < B(#), then it becomes
complicated. Arveson ([2]) has introduced the notion of the outer operator in
analogy with the outer functions in Hardy spaces. He showed that each positive
invertible operator in B(#) can be factored by the form A*4, where 4 belongs
to A and the inverse 4~! is also in A. The factorization of a positive invertible
finite matrix C as 4*A4 with 4 and its inverse in upper triangular form is known
as the Cholesky decomposition. Power ([9], [10], [11]) has found a constructive
Hilbert space version of the Cholesky decomposition to be of fundamental signifi-
cance in the analysis of analytic operator algebras and the factorization prop-
erty. He proved that every positive operator C has a factorization C = 4*A4 with
A outer in a nest algebra if and only if the nest is well-ordered. Factorization
problems for other types of nest algebras are also studied by many authors (cf.
(1], [5]-[8], etc). McAsey, Muhly and the second author in [12]-[14] studied such
a factorization problem with respect to an analytic crossed product. Let M be
a von Neumann algebra, let o be a x-automorphism of M, and let M =<, Z be
the crossed product determined by M and «. They showed that every positive
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invertible operator in M >, Z can be factored by the form 4*4, where 4 belongs
to the analytic crossed product M >, Z, determined by M and « and the inverse
AV also is in M <, Z..

In this paper, we consider the Cholesky decomposition for a positive oper-
ator in M >, Z, and we investigate the factorization problem with respect to an
analytic crossed product M =, Z.,.

2. Preliminaries and definitions.

Let M be a von Neumann algebra and let o be a *-automorphism of M.
We regard M as acting on the non-commutative L2-space L?(M) in the sense of
Haagerup (cf. [4]). For x € M, let ¢, (resp. r,) be the operator on L?(M) defined
by the formula £,y = xy (resp. rxy = yx), y € L*(M). Then ¢ (resp. r) is a faith-
ful normal representation (resp. anti-representation) of M on the Hilbert space
L*(M). Put

((M)={{|xeM} and r(M)={r.|xe M},

respectively. If J is defined on L?(M) by the formula Jy = y*, y € L(M), then
J is a conjugate linear isometric involution on L?(M). Let L?(M), be the
cone of all positive operators in L2(M). Since the quadruple {¢/(M),L*(M),J,
L*(M).,} is a standard form of M in the sense of Haagerup ([3]), the von
Neumann algebra /(M) and r(M) are commutants of one another, and J£(M)J =
r(M). Moreover, by [3, Theorem 3.2], there exists a unitary operator u on L?(M)
such that /,(y) = utxu* and ry,) = ur,u®, xe€ M. To construct a crossed product,

we consider the Hilbert space L? defined by ‘

N TAQIERS oo},

L= {f:Z-—» L*(M)
neZ

where | - ||, is the norm of L2(M). For each x € M, we define operators L,, Ry,
Ls and R; on L? by the formulae

(Lef)(n) = bf(n),  (Ref)(n) = tn)f (”):
(Lsf)(m) =uf(n—1) and (Rsf)(n) =f(n—1),
where feL? and ne Z. Put L(M)={L.|xe M} and R(M) = {R,|xe M}.
We set € = {L(M),Ls}" and R = {R(M), R;}", and define the left (resp. right)
analytic crossed product £, (resp. R.) to be the o-weakly closed subalgebra of £

(resp. R) generated by L(M) (resp. R(M)) and Ls (resp. Rs). Furthermore, we
define

H?={feL?| f(n)=0,n<0},
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and let P be the projection from L? onto H?. We refer the reader to [12)-{16]
for discussions of these algebras including some of their elementary properties.

3. Factorizations.

We start with some general constructions for positive operator matrices.
Although the following lemma is well-known, it contains an important idea of
our approach. So we shall give full details of proof.

LemMA 3.1.  Let # be a Hilbert space with orthogonal decomposition 3# =
#1 @ #> and C be a positive operator on # with the matrix form

b\ i
(3 )¢
b a A
with respect to H = S @ #>. Then there exists the operator ¢ = lim,_ ., b* -
(a+n"’11)“lb in the strong operator topology and

c b*
C = ( : ) <cC.
b a
In particular, Cy is minimal amongst those positive operators that agree with C on
the subspace H;.

Proor. If a is invertible, then the operator matrix

L 0
4= (—a”‘b Iz)

is also invertible and

P |
A*CA:(C b*a=1b O)
0 a
Hence C is a positive operator if and only if ¢ —b*a~'b > 0.
In general, for each n € IV, applying the preceding operation to the positive

operator

C+n_lI=(C+n—]I] b )

b* a+n'lh

we have b*(a+n"'L)'b<c+n'I;. Since {b*(a+n"15)7'b} is a bounded
increasing sequence of positive operators, it converges in the strong operator
topology to an operator ¢; < c. Putting
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LN A
a-(3 %)%
a fz

the positive operator C; satisfies the required minimality condition. |

The minimality of the positive operator C; in Lemma 3.1 is important for
our discussion. So we give the following:

DeriNiTiON 3.2, Let C be a positive operator in B(#) and let # =
A @ H#>. Then a positive operator C; is said to be the #%-minimal part of C if

P)ﬁ C[Pjﬁ = S-]ii_I'lg Py, C(tP‘;fz + P%CPXZ)ACPM,

where Py, is the projection from # onto # (i=1,2). Moreover if C = (j,
then we say that C is #-minimal.

Let C be a positive operator such that

=\

C— (c b ) D

b a #,
with respect to J# = #, @ #5. Let e, denote the spectral projection for the
operator a corresponding to the interval (¢,00). Then, for each ¢ > 0, we have

“b“a—l/z?etﬂz = ’112330 Hb’“(a +n-1)~1/281(a +n——])—1/2b”
< lim [Ib*(a+n"")7|
< llall- ‘ (3.1)

Therefore b*a~'/%¢, converges to an operator d in the strong topology as ¢ — 0.
For each x e #}, we have

da?x = 1in3 b*a12e,q /2%
[

= b%epix.
Furthermore, the inequality
0<b(a+n ') b<c+n'h
implies that

0<b*(na+1)'b<nlc+nn.
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Taking the strong limit as n — o0, we see that
b* (I — eos )b = 0,
and so we have
da'? = b*ep, = b*eqy + b*(I) — eqy)
=b".

Since a'?d* =b, the map a'2:b#s — d*#, is well-defined such that
d*=a"'?p. From the inequality (3.1), we have that ¢; > (b*a~'%e,)a"1/2p.
Taking the strong limit as ¢ — 0, we see that dd* < ¢y.

On the other hand, since

da* b\ _(0 00 0
boa) \a- a2 )\a a2) ="

by the minimality of Cj, we have dd* > ¢;. Thus we obtain that ¢ = dd*, and
so C; has the following matrix representation:

co_ (4 BN _ (0 0 N/0 o0
N oa) e a2)\ar a2)

From the present argument, we see that for each positive operator C on the
Hilbert space # = s @ 5 is always factored by the form

e (0 0[O0 0 c—dd* 0
“Nar a2)\ar a2)T\ o0 o)

(0 0 ,
and we note that the matrix ( - /2) has the lower triangular form and the

matrix [ € —dd 0 is positive
Suppose now that a Hilbert space # have the decomposition
2 9]
H =" oH
and letk

n o3
My= ) @M and Hp=d @M.
k=—om Kk=n
For each positive operator C on J#, let C”*)) be the .4, ,-minimal part of C.
Since C — C"+1) is a positive operator, we can also construct the Ay-minimal
part of C — C"*D) denoted by C,. Repeating this way, we have the operator
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Cr (k < n) as the Aj-minimal part of C — (Cy1 + -+ + C, + C?*D). Putting
RE&-Y = C = (Cp + Cpyy + -+ + Co + C**1), we obtain the decomposition

C=R¥D 4 C+Crpr+-+Cu+ ela)
which we call the Cholesky decomposition of C with respect to # = M1 @
H @ - D H DNy, The following lemma appears in [11].
LemMA 3.3. Keep the notation as above. Then, for each k,ne Z (k < n),
the operator Cy + Ciy1 4 -+ Cy + C"V s the Ny-minimal part of C.

Now we return to the context and notation of analytic crossed products.
Applying the Cholesky decomposition for positive operators in £, we have the
following:

THBOREM 3.4. For each positive operator C in £, there exists a positive
operator Cy, in £ and an operator A in W such that C = A*A+ Cq.

Proor. Putting #, = L*(M) (Vne Z), we may write
9]
L’=)" ot
n=—oo
Thus, considering the decomposition
L2 = vl{_(n+1)®{9f~n® @%@%-H’
we have the Cholesky decomposition of C as follows:
C = R—("+1) +C 4+ Cy+ C(’H'l)'

It is clear that R~ converges to zero in the strong topology as n — oco.
Since C™ > C+1) and C™ is bounded, there exists the limit Co, of {C(™} in the
strong topology as n — oo such that C =372 Ci+ Cy. By Lemma 3.3, the

operator Y po, Cx + Cs is the A,-minimal part of C. For each ne Z, there
exists an operator

o o o\ "%
1/2 ®
A= \{d; a'’" 0] H
o o o/ 9@

Nyl

with respect to L? = .#, | ® #;, ® N4y such that C, = A;A4,. Since

(E)(E)- 5o

k=-—n k=-~n k=—n
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we have || S°7_ , Aill® < ||C|| < oo, it follows that {37_ A} converges to an
operator 4 in the weak operator topology as n — oo such that 4*A =3 _ C,.
We note that the operator 4 has the lower triangular form with respect to the
decomposition

L= @40 @M -

We next show that C, belongs to £. For each fe A, Rsf e M, it
follows that

R;C"™VRsf = R} CRsf
= RiR;Cf
= Cf.

By the minimality of C™, we have R;C"+VR;> C™. Similarly, for each
f € Mny1, we have R;C™R; > CD), this implies RsC™*VR; = C. Thus we
see that R;C, R; = C,,. Moreover, for each n € Z and each unitary operator w
in M, we have

R:C™R,f = R:CR,f
= R'R,Cf
=Cf (Vf € ).

Therefore we have R;C™R, > C®. Replacing w with w*, we also see that
R,CMWR: > C"W, so that R:C,R, = Cy. Hence Co commutes with all gen-
erators of R, and so C, belongs to £ which is the commutant of R.

Next we claim that A belongs to £,. Indeed, since C, = C" — C"t1) and
R;CVR: = C | we have

RsCyR; = Rs(C™ — Cc+D)Ry
= R;C"™R; — R;CVR;
— -1 _ ¢l

= Lp-1-

Now we consider the matrix forms of C,.; and C, as follows:

) . Vﬁn—Z
dn«-ld;_l bn..] 0 O }g@ dnd’: b; 0 %ﬂul
bust @y O | 0| @
Cn_.] - O 0 0 0 @ y Cn = bn ay 0 .%ﬁ,
A 0 ®
0 o ol o @
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From the relation R;C,R; = C,_, it follows that a, = a,_1, b, = by_1 80 that

-1/2
dn*l = an_{ bn-l

= a;'/?b,
= d,.
Thus we have RsA4,_1Rj = A,. Taking a strong limit as n — oo, we have

that RsAR; = A. Furthermore, for every unitary operator v € M, the opsrator
R, has the following matrix form:

) #
A0 &
Rv = y %0 .
@

r@(”) . /Vl
0 RV

Since R,C,R} = C, and considering the matrix form of C, with respect to
My @ H, © Ny as above, we see that

. 0
ran(V)an = aytyn(v)  and - rpn(0)by, omin (0%) =b,.
0 Fyn+1 (U*)
Heoner wie we that
0
ruﬂ (U)dn ranu (v*)
0 Fyne1 (V%)
(- o)
= r"""(v)a’:l/zb” Fyne2 (%)
\0 1 (0%) )
0
= a;ljzra“ (v)bn Fyne2 (0%)
\ 0 Fyns (U*)/

= a;l/zbn =d,.
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Thus we have R,4,R; = A, so that R,AR! = A. Hence 4 commutes with all
generators of R, and so 4 belongs to €. Moreover, since A4 has the lower
triangular form with respect to

H= - QN D DHD -,
we see that 4 belongs to £,. ]

As in [11, Lemma 5], we have the following:

ProposITION 3.5.  Let C be a positive operator in £ with the decomposition
C=A4"A+ Cy as in Theorem 3.5. If there are B in £, and a positive operator
D in 8 such that C = B*B+ D, then A*A > B*B.

ProOF. Since, by Lemma 3.3, A*Pypd + Co = 5. Cy + Cyp is the H?-
minimal part of C, we see that

A*Pp A+ Co, < B*PpB+ D.
Thus, for all n, we have
R;"A* By AR} + Cop = R;" (A" Pyp A + Coo)R]
< Ry"(B*Py:B+ D)R§
< R;"B*P2BR{ + D.
Taking the limit in the strong topology as n — o0, we see that R;"A* P2 AR}

and R;"B*P,:BRj] converge to 0 respectively. Hence we have C,, < D, and it
follows that 4*4 > B*B. ]

In Theorem 3.4, we have an interest in the condition for the factorization
C=A4"A. As an analogue of Arveson’s terminology of outer operator, we in-
troduce the concept of the outer operator in analytic crossed products, and we
consider the problem.

DEerFINITION 3.6.  An operator 4 in £, is called outer if the range projection
E4 of A4 lies in L(M), and AH? is dense in [4L%) N H? where [AL?] denotes the
closed subspace spanned by AL

We note that if 4 is an outer operator, then E, belongs to £,. Thus we see
that E4H? < H?, it follows that E4 commutes with Py,

The following lemma which appeared in [11] essentially characterizes the outer
operators.

Lemma 3.7. Let A be an operator in Ly such that E4 belongs to L(M).
Then the following conditions are equivalent:
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(i) [AH? =[AL*|NH?.
(i) Ep,a(-p,) < Eap,,-
(ili) A*PyA is H*-minimal.

Now we give a necessary and sufficient condition on a positive operator C
for the existence of a factorization C = 4*4 with an outer operator 4 in £..

THEOREM 3.8. For each positive operator C in £, we put
C' = s-im(Py. CPy2) " (tPy2 + Py CPy2) " (Ph.CPy2).

Then C admits a factorization C = A*A, with an outer operator A, if and only if
the operator R;"C'R} converges in the strong operator topology to 0 as n — 0.
Moreover if C is invertible in L, then C satisfies this conditions.

ProOF. Suppose that T = A*A for some outer operator 4 in £,. The
equation 7 = (I — Py2)A*(I — Pg2)A(I — Py2) + A*Py2 A implies that

) ( (I - Py)CI — Pyp) (I - Pm)(A*PHzA)PHz)
Pyi(A*PpA)(I — Pys)  Pyga(A* P2 A) Py
Since A is outer, by (iii) of Lemma 3.7, we see that
C'=(I- P2 ) (A" P2 A)(I - Py2).
Thus, for each f e L%, we have
|R;"C'RYf || = | R5" P A” Py AP R |
= |IR;" P A" Py REAR;" P, RS |
< |||\ | Py R AR;" Py R3 f |
< || AIl(| Pg2 RFARS" P2 RS f — P2 R AS || + || P RY A )
<1411 PR f = fI| + 141l | R;" Py RS AS |
50 (n— ).
Conversely, we assume that

s-lim R;"C'R! = 0. (32)

A0

The positive operator C can be factored in the form A*4 + Cy as in Theorem
3.4. Let P_, be the projection form L? onto Rg"Hz, and let PL =1-P_,.
Then we see that

R;"PpR; = P_, (VneN).
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Since C = P4,CP+, + Pt CP_,+ P_,CP* + P_,CP_, we have

-=H

s-lim P_,CP, {tP%, + P4,CPL}"'PLCP, = R;"C'R].
Thus C" has the following matrix form:

o _ [ PHCPL PLCP,
~ \ PL,CPL, R;"C'RI )

Hence,

ICWfII? = | PL,CPLf + PLCP_, fI|* + || PyCP, f + R;"C' RIS
< IPLCAI? + (ICIHIPLAN + IR CREF ).
This follows that ||[C?f||> = 0 (n — o) by hypothesis (3.2). This implies that
Cx =0, and so we have the factorization C = 4*4. In this case, the operator
o
A*PpA =Y "G,
n=0

is H?-minimal part of C. Thus, by (iii) of Lemma 3.6, we see that A is outer.
We next assume that C is invertible. Since T¢ is invertible in B(H?), by
Lemma 3:1, we see that

C' = HeT: (He!)®.
Thus, for each f e L% we have
IRs"C'RIf || = | R;"He T (Her) Ry S |
< ||HeTE || I(He) RS |
= ||Hc T || 1Py €I — Py2) RS |
< Hc T (1 Py CREFI| + || P CRy2 REF )
= |Hc T |(1Pg2 R CA | + | R5" By2 CPy2 R 1)
= |Hc TS |(I1R5" Py R CF | + || R5" Py CPy2 RIS 1)
-0 (n— o).

This implies that R;y"C’'R} converges to zero in the strong operator topology.
‘ (]

Factorization problems with respect to an analytic crossed product have been
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studied in [12]-[14]. They showed that every invertible element 7 in £ can be
decomposed as T = U4 where U is a unitary operator and A is an invertible
operator in £,. Moreover they proved that every invertible positive operator in
€ can be factored in the form A4*4, where A belongs to (2,)N(2,)"". Asa
corollary of Theorem 3.5, we can obtain the same result.

CoroLLARY 3.9 ([14, Corollary 5.3]). Every positive invertible operator in L
can be factored in the form A*A, where A is outer in £, N (2.)""

Finally, we show that the factorization of positive operators in Corollary 3.9
is unique as following:

PROPOSITION 3.10. Let C = A*A be the factorization in Corollary 3.9. If
there exists an operator B in £, N (534_)“1 such that C = B*B, then there is a
unitary operator U in 8,0 (2.)"" such that B = UA.

ProOOF. Since 4*A = B*B, we see that ||Af| = ||Bf| for each f in L’
Since 4 and B are invertible, there exists a unitary operator U such that B = UA.
Moreover, we see that U = BA™! e_zSLr(‘l(53+)"I because 4 and B belong to

(U aTCUM I O
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