J. Math. Soc. Japan
Vol. 57, No. 3, 2005

Essential norms of differences of composition operators on H®
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Abstract. We study essential norms of differences of composition operators on
the Banach algebra H> of bounded analytic functions on the unit disk.

1. Introduction.

The algebra H>(= H™>(D)) of the bounded analytic functions on the open unit
disk D forms a Banach algebra under the supremum norm || f{l = sup,.p |f(z)]. An
analytic self map ¢ on D induces through composition the bounded lincar operator Cy,
on H* defined by

Colf)=fow (feH™),

and the set of the analytic self maps on D will be denoted by . (D). Bach ¢ in the closed
unit ball B(I{*°) of H® (except constant functions of modulus one) can be viewed as an
analytic self map on D and hence determines C,,. Let %(I1°°) denote the set of all such
composition operators equipped with the relative topology as a subset in the algebra of
the bounded linear operators on H™ with the operator norm.

An important problem in the subject is to determine the topological structure (such
as connected components and so on) of the set of all composition operators on the
Hardy space H* [1], [9], [12]. An H-version equally deserves investigation, and in [10]
MacCluer, Ohno, and Zhao showed that C, and Cy, sit in the same connected component
of €(H>°) if and only if ||C, — Cyll < 2. Indeed, they proved

1€, = Cull = Molip, ),
where A(f) = &@,O <t <1, and o(p,v) is gi'V'ct'l by
o) = sup p(p(z),¥(2))
=D
with the pseudo-hyperbolic distance

plz,w) = |z = w|/]1 —zw| (z,w e D).
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One of the questions in [10] was if isolated points in % (H>°) are essentially isolated in
the sence that they are so under the topology induced by the essential (semi-)norm

IC,lle = inf {||C, — K||; K is compact on H>}.

Zheng and the authors gave an affirmative answer in [8], by showing that [|C, —Cyfle = 1
unless C,, Cy sit in the same connected component in €' (H*).

A mnext natural step is to find a handy expression for ||C, — Cylle. It is known that
if ||olloo < 1 then C,, is compact, and by [13], if [[¢flec = 1 then ||Cylle = 1. So we are
interesting in the case ||¢|loc = |¥|lec = 1. In this paper, as partial results towards this
goal, we will characterize a pair (p, 1) satisfying ||Cy, — Cylle = 2, and for Cy, Cy in the
same connected component we will show

ICy = Cylle = Moo, 9))
with

T, ¥p) = limsup p(p(2),%(2))
le ()% (2)| =1

under the additional assumption that

Ep=(lg]) = {m € M(L®); [p(m)| = 1}

is a peak set for H*®. The present work was motivated by the MacCluer-Ohno-Zhao
theorem starting that C, — Cy is a compact operator on H* if and only if

limsup p(p(2),¥(2)) = limsup p(p(2),¥%(z)) =0,
lp(z)|—1 lh(z)|=1

and the following estimate due to Gorkin, Mortini, and Suérez ([6]);

max{ limsup p(¢(2),¥(2)), limsup p(w(Z),w(z))}
fe(2)|—1 [(2)|—1

<1ICy - Culle < 4nm{ limsup plp(2), $(2)), limsup p(w(zmz»},
[e(2)]—1 [P(z)|—1

provided max{||¢lloo, [¥lloc} = 1.

In Section 2, we will introduce the notion of o-asymptotic interpolating sequences
(o € (0,1]), which is motivated by that of asymptotic interpolating sequences in [6], [8].
Let {(wy, w!,)}n be a sequence in D x D with |w,| — 1 and |w),| — 1. If p(wn, w;,) — o,
then the sequence is shown to admit a subsequence {(zx, 2}.) }x such that {zx}x U {2}k is
Ao)/2-asymptotic interpolating. This technique will enable us to obtain lower bounds
for ||C, — Cylle- Namely, in Section 3 we show
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Mowo(p.9)) < ICs ~ Cylle

under the assumption [[p¥floc = 1. Hence, we conclude lCo — Cylle = 2 as long as
levlle = 1 and 0o (p,9) = 1, and we have to deal with the two remaining cases: (i)
levlleo < 1, (ii) lo¥lloe = 1 and oo (@, ¥) < 1. In Section 4, we study upper bounds for
1€ — Cylle. In case (i) we show ||C, — Cylle < 2. Moreover, if Eps(le]) and Ep(|¢])
are peak sets for H* and not so close, then we have ||C,, — Cylle = 1. In case (ii) we
prove [|Cy — Cylle < 2. Moreover, if Ep«(]p]) = Ep~(]1]) and it is a peak set for H>,
then we have ||Cy, — Cylle < Moo (@, ¥)). It is known that the condition 1Cy = Cyll < 2
gives rise to an equivalence relation in (D) ([10]). We show that it is no longer true
for the essential norm | - ||,. Our analysis indicates that the essential norm ICy = Cylle
is closely related to the quantity

Jim [(Cy = Cy)jan ol
and these values are calculated in Section 5.

2. Asymptotic interpolating sequences.

First, we give some definitions and notations used in this paper. Let o be a positive
number with ¢ < 1. A sequence {2k} in D is called U-asymﬁtatia mterpolating if
for every sequence of complex numbers {ag}, with lax| < o for every k, there exists
h € B(H*) satistying |h(zx) — ax| — 0 as k — oo, see [6], 8].

We denote by .#(H>) the maximal ideal space of H ®°, which is the set of nonzero
multiplicative linear functionals on H>®. With the weak*-topology, .4 (H™) is a compact
Hausdorff space. For a subset E in .# (H*), we denote by E the closure of E in .4 (H®).
We identify a function f in H* with its Gelfand transform; f (€) =C(f), ¢ € AM(H>).
For each point z in D, the evaluation of functions f in H: f = f(z) is a nonzero
multiplicative linear functional, so that we think of D as an open subset in .# (H*). The
well known corona theorem says that D is dense in .4 (H®°), see [2]. We also identify a
function in H* and its boundary function, and we think of H™ as a Supremum norm
closed subalgebra of L, where L™ is the usual Lebesgue space on the unit circle 9D.
We may think of .# (L) as a closed subset in .4 (H ). It is known that .#(L>) is the
Shilov boundary of H*, see [7].

We denote by C(.#(H>)) the algebra of continuous functions on .# (H>). For a
function f in C(.# (H™)), we define

B (f) = {m € A(H); f(m) = 1}.
For a function f in C(.#(L>)), we define
Ep=(f) ={m € A (L*); f(m) = 1}.

A nonempty closed subset E of .4 (L>) is called a peak set for H* if there exists we H>
such that ¢ = 1 on E and |p| < 1 on .#(L>) \ E. In this case, ¢ is called a peaking
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function for E.
For a point z in D and a positive number r with 7 < 1, we write A(zo,7) for the
pseudo-hyperbolic disk with center zy and radius ,

Alzp,7) = {w € D; p(zo,w) <7}

The pseudo-hyperbolic disk A(zp,r) is a Euclidean disk with center ¢ and radius R,
where
1- 7"2 1- !Zoig

R=r

= ———=Z T TSNT
1= r2z2 7" 1= 72|72

By Schwarz and Pick’s lemma, f(A(zg,7)) C A(f(20),7) for every f in B(H™), see [4,

pp. 2-3].
For distinct two points z,w in D, it is known that

- — p(z, w)?
wup {IF(2) - fw)li f € B=)) = 2 m )

In this paper, this equation plays an important role, so we introduce a function At)
defined by

2(1 - VI~ )

, O<t<l.
r <

At) =

It is not difficult to see that A is an increasing function on (0, 1], and lim, o+ A(t) = 0,
so we define A(0) = 0. Thus we get

1f(2) = fw)] < Mp(z,w)) (21)

for every f € B(H>), and there exists a function g € B(H®) satisfying |g(z) — g(w)| =
Mp(z,w)), see [4, p. 42). By the definition of the function A, for every complex numbers
a,b with max{|al, |b]} < Mp(z,w))/2, there is h € B(H*) with h(z) = a and h(w) = b.
This fact leads to the following lemma.

LEMMA 2.1. Let o be a positive number with o < 1, and {2 }n, {2, }n be sequences
in D with p(zn,2,) — o. For two sequences of complex numbers {an}n, {ay}n with
sup, {|anl, [aL|} < A(0)/2, there is a sequence of functions {hn}, in B(H*) satisfying
| (2n) = an| — 0 and |hy(2),) — ay| = 0 as n — oo.

PROOF. Take a sequence of numbers {r;}; with 0 < r; < 1 and r; — L
By the assumption, for each j there is a positive integer N; such that r;A(0)/2 <
Mp(zn, 20,))/2 for every n > N;. We may assume that N; < N4, for every j. We have
max {|7jan], |r5a%|} < A(p(2n, 2,))/2 for every n > N;. For each n with N; <n < Nji1,
there is h,, € B(H®) satisfying hn(2,) = 7ja, and h,(z},) = rja,. Since j — oo as
n — oo, we get the assertion. O
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We denote by & the disk algebra, that is, & is the space of analytic functions on
D which can be extended continuously on the closed unit disk D. The main result in
this section is the following. The idea for the proof is essentially the same as the one of
Theorem 3.1 in [8].

THEOREM 2.2, Let o be a positive number with o < 1 and {(wn W)} be a
sequence in D x D with |wy,| — 1 and |w!,| — 1. If plwn, wl) = o asn — oo, then there
is a subsequence {(2k, z) e of {(wn, w),)}n such that {2} U{zi}e is A(o)/2-asymptotic
interpolating.

PROOF. Assume that w,, — «a and wy, — &' as n — oo for some a, &' € Y. Then
there are two functions f, ¢ in & satisfying

flay=f(@')=1, 0<|f]<1 on D\ {a,a'} (2.2)
and
gla) =g(a') =0, 0<lg/<1 on D\ {o,a'}.

Write g, = g'/™ for every positive integer n. Then g, € &, ||gnllso < 1, gn() = gn(a’) =
0, and

1I’Liw_nfx‘ l9n(2)] =1 for each z € D. (2.3)

Write
e =1—(1/2)* (2.4)
for £ > 1. By induction, we shall find two sequences of increasing positive integers

{mu}x, {nr}r, and a subsequence {(z, ) be in {(wy, w),)}, satistying the following four
conditions; for every N > 1,

N
sup Z Hew ™ gn, ) (2)] < 1, : (2.5)

2€D p—y

. N-1 N-—1 ‘
max{ 3 (61 g o)), 3 ™ am )l <1-ev, (26)
k=1

k=1
min{[(f™ gnp ) (20| 1™ G ) (23) 1} > en, (2.7)
and
max {|f™" (z;)], }me(z;)l} <l-eny for1<j<N. (2.8)

First, take m; = 1. By (2.2), there is a point (z1,21) in {(wn,w!)}, with
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min {|f(z1), | f(z])|} > ¢1. By (2.3), there is a positive integer n; satisfying

min {|(f™ gn,)(z0)1, [(f™ 90,) (211} > e
Then we have (2.5) and (2.7) for N = 1.

Next, assume that {mg}h_,, {nx}¥.;, and {(zk, 2,)}o., are chosen to satisfy the
conditions. Put

N
Fy = _lcef™gn,| onD.
k=1

Noting that g,(c) = gn(¢/) = 0, we have that Fy(«) = Fny(a') = 0. Take an open
subset Uy of D containing {a, o'} such that

{zk,z};;lngN}ﬁUNzZ (29)
and

Fy <1—cys1 onUn. (2.10)

By (2.4) and (2.5), there is a positive integer my41 such that my < myy1,

|fmV+] <1 —=cyy1 on D\ Uy, (2.11)
and
Fn +|f™+1 <1 onD\Uy. (2.12)

Combining (2.9) and (2.11), we have (2.8) for N + 1. By (2.2) again, there is a point
(2N+15 2 41) I {(wn, wh) }n N (Un x Un) with

min {|f™ (zn 02)] 1 (2l > evae

By (2.10), we have (2.6) for N + 1. By (2.3), there is a positive integer ny, satisfying
ny < ny4y and

min {|(f™* gny, ) (2nve1)] (™ g o1 ) (En 1)1} > envgr

This leads (2.7) for N + 1. By (2.12), Fx + |f™¥*gny,,| < 1 on D\ Uy. Since
nme*‘lgnNs:-J!OO < 1! by (210)

sup (Fn(2) + enr|(f™* gnyoa ) (2)]) < 1.
z€ED
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Thus we get (2.5) for N + 1. This completes the induction.
By (2.4) and (2.8), we have
D ek f™gn, ) (zn)] < Z (1/2)% = 1/2". (2.13)

k=N+1 k= N 41

Let {ax}x and {a} }x be sequences of complex numbers with
k
sxip{lakL lail} < Mo)/2.

Set

_ali™ )@l ) (o)
A= g T TG

(2.14)

Then maxy {|Axl,|AL|} < A(o)/2. Since p(zk,2,) — o, by Lemma 2.1 there is hy €
B(H®>) satisfying

lim |hg(2x) = Ak] =0,  lim |hg(zp) - Ayl =0. (2.15)
k—o0 k00

Here we define a function h(z) as
o0
=D k() (™ gn,)(2)
k=1

for z € D. Then by (2.5), h € B(H*). We have
Jim Jax — enhin (2n) (/™ g ) (23)] = 0. (2.16)
For,

lan = enhn (zn)(f™ gy ) (2n)]
= lan —en(hn(zn) = AN gny ) (2n) = EN AN gny ) (28)]
<lhn(zn) = Anl+ lan|(1 = en|(f™Vgan)(zn)l) by (2.14)
= |hn(zn) = An| +lan|(1 = en) +lanlen (1= [(f™ guy ) (z8)])
< |hn(zn) = An| + lan|(1 = cn) + lanlen/2V by (2.4) and (2.7)
-0 as N — oo by (2.15).

Therefore by (2.6) and (2.13),
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[h(zn) — an| < lan — enhn(Zn) (™ gnn ) (2N)]

N-1 o0

+ 3 eef™gn)zn)l + D len(F™ g ) (2n)]

k=1 k=N+1

< lan = enbn(zn)(F™ gny ) (zn)] + 2(1/2)Y
-0 as N — oo by (2.16).

Similarly, we can prove that |h(z}y) — ay| — 0 as N — oo. d

3. Lower bounds.

In this section, we will obtain lower bounds for ||C, — Cylle. The main idea in this
section comes from Lemma 4.2 of [8]. The following theorem is a key for lower bounds.

THEOREM 3.1. Let T be a bounded linear operator on H* and o be a positive
number. Suppose that there exist a sequence {hi}r in B(H®) and a sequence {Zn}n in
M (H*) satisfying the following conditions;

(i) limy—oo(Thi)(zn) = o for each fized k,
(ii) limp—oo (limgooo(Thi)(zn)) = —0.

Then ||T|le = o.

ProoF. Let {hx}r be a sequence in B(H*) and {z,}, in (H>) satisfying
conditions (i) and (ii). Let K be an arbitrary compact operator on H*. Then we have

[(The)(zn) + (Khi)(zn)| < (T + K. (3.1)
Let 2 be a cluster point of {x,}, in #(H>). By (i),
o + (Khi)(wo)| < 1T + K|

for every k. Since K is compact, considering a subsequence of {hi}r we may assume
that || Khy — hllec — 0 as k — oo for some h € H>. Then

o+ h(xo)| < 1T + K- (3.2)

On the other hand, letting kK — oo in (3.1), we have

klifl;(Thk)(“;") + h(zn)| < IT + K|

for each n, and by (ii), | — 0 + h(zo)| < ||T + K||. Combining with (3.2), we get

20 < o — h(zo)| + lo + h(zo)| < 2|IT + K.
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This completes the proof. O

THEOREM 3.2.  Let ¢, ¢ be functions in (D). If |o¥|le = 1, then ||C, — Cylle >

PROOF. By the definition of o (p,¥), there is a sequence {2z, },, in D satisfying
szﬂ[ -1, 1@(sz)§ -1, [w(zn)i — 1, and p(&(zn):w(zn)) — oo (P, l»‘i') By Theorem 2.2,
we may assume that {¢(zn)}n U {¥(20)}n 18 Mow(p, ¥))/2-asymptotic interpolating.
Write E = {z,}» and take a sequence of subsets {Ey}x in E such that Egyy C Ej and
Ex \ Ery1 is an infinite set for every k. Then for each positive integer k, there exists
hi € B(H®) satisfying the following four conditions;

lhi(9(2n)) = Mo (e, ¥))/2] = 0, (3.3)
lhie(¥(zn)) + Moo (0, ¥))/2] — 0 (3.4)

as |z, — 1 and z, € Ey, and

Ihk((p(zﬂ)) + )\(G’w((p, l/)))/Ql — 0, (35)
i (¥(2n)) — Ao (9, 9)) /2] — 0 (3.6)

as |z,| — 1 and z, ¢ Ex. Take a point zj in Ey \ Exq1 \ (Ex \ Eg+41). Since E,, C Ej
for n >k, z, € Ey \ Ex for every n > k. By (3.3) and (3.4),

((Cp = Cy)hi)(@n) = Moso(p, %)) for every n > k.

Noting that E, \ E,+1 C E\ Ei for n < k, we have that 2, € E\ E \ (E'\ E) for
n < k. Thus (3.5) and (3.6) give

((Cp = Co)hi)(@n) = ~Mows(py)) for every n < k.

By Theorem 3.1, we get the assertion. O

COROLLARY 3.3.  Let @,9 be functions in (D) with [pYllec = 1. If ¢ # 4 on
Eys(J@y]), then ||Cp = Cylle = 2.

PRrROOF. Let z be a point in .#(H) satisfying |(p¥)(z)| = 1 and @(z) # ¢¥(z).
By the corona theorem, there exists a net {zy}q in D with z, — z. Then ¢(2,) — ()

and ¥(zs) — ¥(z). Since [p(z)| = [P(z)] = 1 and @(z) # P(z), p(P(za), ¥(2za)) — L.
Hence by Theorem 3.2, we have the assertion. o

COROLLARY 3.4. Let E be a measurable subset in 0D with dO(E) > 0. Let @, be
functions in (D) satisfying ¢ # ¥ and |p| = |¢| = 1 for almost all points in E. Then
UC@ - C?b”e =2.

COROLLARY 3.5. Let ¢, be functions in (D) with ||pp|lee = 1. If Eg=(|pt]) #
Eg=<(lg|), and Eye(|@w|) is not an open and closed subset of Ep(lpl), then



678 T. Hosokawa and K. IzucHi

0o, ¥) =1 and |Cy — Cylle = 2.

PROOF. By the assumption, there exists a sequence {z,}, in A (H*)\ D such
that |p(z,)| = 1, |¥(z,)] < 1 for every n, and |[¥(z,)| — 1. By the corona theo-
rem, for each fixed n there exists a net {z, o} in D satisfying limg_.oo |¢(22, o) = 1
and limg oo [¥(22,,6)] = [¥(2,)] < 1. Then p(¢(zs,.0) ¥(22, a)) — 1 as & — o0, s0
that there exists ay,, such that |p(zna,)| > 1 = 1/n, [¥(2zne, )] > [¥(z,)] = 1/n, and
P@¢(zn,00 ), ¥(Zn,a,,)) > 1 = 1/n. Hence [¢(zn,4, )| — 1 as n — oo, and by Theorem 3.2
we get the assertion. ]

The following corollary is one of the main results in [13].

COROLLARY 3.6.  Let @ be a function in (D). If C, is not a compact operator
on H*, then ||Cylle = 1.

Put ¥ = —¢p. Then ¢ and % satisfy the assumption of Corollary 3.3, so that 2 =
ICp = Cylle < ICylle +ICylle < 2. Thus we get ||Cylle = 1. O

Proor.  We have ||Cy|| = 1 and ||Cylle < 1. Since Cy, is not compact, ||¢lle = 1.

4. Upper bounds.

In this section we will obtain upper bounds for the essential norm of Cy, — Cy. For
each g € H*, define the multiplication operator My, on H*® by Myf = gf for every
f € H*. Clearly, My is a bounded linear operator on H*. For a function f in H* and
a subset E of D, write

Ifllz = sup | f(2)].
z2€E

The following lemma characterizes the compactness of M,C,,.

LEMMA 4.1.  Let ¢ be a function in #(D) with ||¢llec = 1 and g € H*®. Then
MyCy is a compact operator on H* if and only if limy,(.) -1 g(z) = 0, that is, g = 0 on
Ey=(l¢l).

ProoF. Write K = My,C,. Suppose that limj,(;)—1 9(z) = 0. We will show
that K is compact. Let {f;}; be a sequence of functions in B(H*) satisfying f; — 0
uniformly on each compact subset in D. It is sufficient to show that ||K f;llcc — 0 as
Jj = oo, see [3, Proposition 3.11]. For every € > 0, there exists a positive number
with » < 1 satisfying |g| < € on U,, where U, = {z € D;|p(z)| > r}. Then we have
1K fillo, < e for every j. Since |p|lp\v, <7 <1,

Jim 1K fy oy, = lim lg(f; 0 @)l p\w, = 0-
Thus we obtain ||K fillec — 0 as j — oo.

Next, suppose that limj,(,)—19(z) # 0. Then there is a sequence {z}x in D
satisfying |p(2x)| — 1 and |g(zx)| — ¢ for some ¢ > 0. We may assume that ¢(z) —
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a € dD. Write f,, = (2 +a)"/(2a)". Then ||fulleo = 1, fn(a) =1, and f, — 0 uniformly
on every compact subset in D. We have

1K falloo > I {g(ze)l [(fa 0 @) (2k)] = ¢ > 0,

Therefore K is not compact. £

Let f be a continuous function on .#(L>). Recall that
Ep=(f) = {m € A4 (L®); f(m) = 1}
and for ¢,y € (D),

oo, ) = limsup p(p(2), 9(2)).
{ew)(2)]1

For each m € .#(H®), there is a representing measure i, on .4 (L), that is, f(m) =
i (L) J dpm for every f € H®. We denote by supp p,, the closed support set of p,,.

THEOREM 4.2.  Let ¢,9 be functions in (D) with |||l = 1. Suppose that the
following conditions hold;

() Ere(lel) = Epe ([9]),
(ii) Ere(|¢]) is a peak set for H®.
Then “qu = Cylle £ Moo, ¥)).

PROOF. We may assume that ¢ # 9. If o5 (i0, %) = 0, by (10, Theorem 3] C, —C
is compact. Hence [|Cy, — Cylle = 0 = X(0).
If 0oo(,9) = 1, then Mo (p,9)) = 2. Since IColle € IC,] < 1,
ICo = Cylle < ICpllc + [ICylle < 2.

Thus [|Cy — Cylle < 2 = Mo (p,1)).
So, we assume that 0 < 04 (p,%) < 1. Then we have that v = on Eye(|pl),
especially

p=19 on Ep(|pl). (4.1)

Since ¢ # 1, Ep=(|¢|) # #(L™®). Let F be a peaking function in H® for Ep«(|¢|).
For each positive integer k, define

Up={z€ D;|F(z) - 1] < 1/k}
and

Tk = sup plp(2),9(z)). (4.2)
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We shall prove that

lim o) = Too(ps ¥)- (4.3)
k—oo

Let {zn}n be a sequence in D with |(¢3)(zn)| — 1. Let m be a cluster point of {zn}n
in A(H*). Then |p(m)| = [¢(m)| = 1, so that supp pm C Epe(]p|). Since F is a
peaking function for Epe(|¢]), F = 1 on supp pm, so that F(m) = 1. This implies that
F(z,) — 1 as n — co. Therefore by (4.2), we get 0oo(i0, %) < oy for every k. Tt is clear
that {ox} is decreasing. To prove (4.3) by contradiction, we assume that there exists
§ > 0 such that goo(,9) + 6 < oy for every k. Then for each k, there exists wi € U
satisfying

Too(ipy ) + 6 < plp(we), P (w))- (4.4)

Let ¢ be a cluster point of {wi}x in #(H*). Then F(¢) = 1, so that suppp¢ C
Er(|p]). By (4.1), we have (¢) = #(¢). Let {wk, }a be a net in {w }x with wi, — C.
If |p(¢)| = 1, then |(¢9)(wk, )| — 1. Hence

lim sup p(p(wi, ), YWk, )) < Ooo(ps¥).

[s 2ande &}

But this contradicts (4.4). So, we have |p(¢)] < 1. In this case, since o(¢) = ¥(C), we
have

Jim_p(ip(wi, ), (wi,)) = 0.

This also contradicts (4.4). Thus we get (4.3).
For each positive integer n, define

T(z)=1-F"(z), z€D (4.5)
and
K, =M, (C,—Cy) on H®. (4.6)

By the above argument, we note that Epeo (le U Ens=(|¢]) € Eg~(F). By the assump-
tion and Lemma 4.1, (4.5) gives that K, is a compact operator on H*>.
We need to prove that

liminf [|Cp — Cy — Knll < Aowo(@,%)). (4.7)

T2 OO

Let € be a positive number and f € B(H*). Combining (4.5) with (4.6), we have

(Co—Cy ~Kn)f =F"(fop—foi). (4.8)
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By (4.3), there exists a positive integer ky with A(ok,) < Mos(p, ¥)) +&. Thus (2.1)
and (4.2) yield

[fop—fot| € Aok,) < Mow(e,¥)) +€  on U,.
Hence by (4.8),
”(Cﬂf/‘ - Cy — f{n)f“lfki < AMow(p¥)) +e

for every n. Since ||F|p\v,, < 1, there exists a positive integer ng with [|F™ ovon, <
£/2. Then by (4.8) again,

n(cip - Czb - Kn.o)f”D\ka < E.
Therefore
ICo ~ Cy ~ Kol < Mo (9, 9)) +e.

Thus we get (4.7). This completes the proof. O
Using the same idea as in the proof of Theorem 4.2, we have the following.

THEOREM 4.3. Let ¢, be functions in (D) satisfying [|¢llcc = [|[¥llec = 1 and
lovlleo < 1. If there exist peak sets Ey and Ey for H® such that Epe(l¢|) C Ei,
Ep(|9]) C By, and E; N Ey = &, then ||Cy, — Cylle = 1.

PROOF. By the assumption, sup,¢p p(¢(2),9(2)) = 1. Then by [8, Lemma 4.2]
and [10, Theorem 1], ||Cy, — Cylle > 1. Let Fy and F; be peaking functions in H*> for
the peak sets E; and Ejy, respectively. For each positive number r with r < 1, we write

U={zeD;|F\(2)|>r}, V={ze D;|F(z)|>r}
Since By NEy = &, we may assume that UNV = &, Take a positive number € arbitrary.
Then there exists a positive integer n satisfying |F7'| < ¢ on D\U and |F}'| < ¢ on D\ V.
Define an operator K by '
K = Mu-pp)Co = M- rp)Cy-
Then by Lemma 4.1, K is compact. For a function f in B(H°), we have

(Cp = Cy = K)fllprv = [(MppCyp — MppCy) fllpyw < 1+¢€

and ||(C, —Cy— K) fllp\v < 1+¢€. Since UNV = &, we get [|[(Cp, = Cyp~ K) flloo < 1+€
for every f € B(H*). Thus ||C, - Cy — K| < 1 +¢, so that [|Cy, — Cylle < 1. O

A typical example satisfying conditions of Theorem 4.3 is ¢(z) = (2 + 1)/2 and
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P(z) = (z ~ 1)/2.

THEOREM 4.4, Let @, be functions in (D) with ||¢le = Wllow = 1. Let 6
be a positive number with § < 1, and U,V be open subsets in D satisfying the following
conditions,

(i) W(2)| <6 forze U,
(ii) |lp(z)| <6 for z€ V,
(iti) sup,e pywuvy p(e(2), ¥(2)) < 1,

Then ||Cyp ~ Cylle < 2.
PROOF. Let a be a small positive number with @ < 1. Define the operator K, by
(Koh)(z) = ah(0) for h € H*. (4.9)
Then K, is a compact operator on H* and ||K,|| = a. We shall prove that ICp — Cy +
K.,|| < 2 for a sufficiently small a > 0. _

Write

A= sup  pp(2),9(2)).
zeD\(UUV)

Then by (iii), A < 1. Hence by (2.1),

sup [[(Cyp = Cy)hl p\wuvy < A(4) < 2. (4.10)
heB(H>=)

Since (1 +3d)/(2+ 8 + 4?) < 1, we may further assume that a satisfies

. 1435 1 2-\A)
— . 11
O<a<mm{1 TR IS 3 } (4'1)
Then by (4.9)-(4.11),
2+ AMA
sup  [[(Cyp — Cy + Ka)h||p\(wovy < “-hz(‘l <2 (4.12)

heB(H)

Next, we study the estimate on U. Let h be a function in B(H>) and z € U. By
(i), [¥(2)] < 8. Then by Schwarz and Pick’s lemma, ‘

h(y(z)) € A(h(0),6). (4.13)
By [4, p.3],
hO)] =8 hO)[+6 .
1= 8)h(0)] = ol < 15 0JA(0)] for w € A(h(0),6). (4.14)
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First we assume that [k(0)| < (1 + §)/2. Then by (4.13) and (4.14),

W) < 52,
so that
Ih(e(2)) = hv(2)) +ah(O) <14 5 +2 0 4o
Hence by (4.11),
sup (Cy = Cy + K )| < 2. (4.15)
{h€B(H>);|h(0)|<(1+6)/2}
Now, we assume that
(146)/2 < |h(0)] < 1. (4.16)
By (4.14),
lw| > 1/(2+68) for w & A(h(0), ). (4.17)
By (4.11), ah(0) ¢ A(h(0), 6). Hence by (4.13),
IA(2)) = ah(0)] < 1~ afh(0)] < 1~ 29

Therefore

sup I(Cyp = Cy + K, )|y < 2. (4.18)
{he B(H=);(1+68)/2<|h(0)]<1}

If |h(0)| = 1, then h is constant. Hence

sup I(Cp = Cy + K )|y = a < 2.
{h€B(H>);|h(0)]|=1}

Combined with (4.15) and (4.18), we get

sup  [[(Cyp — Cy + Ko)h|ly < 2. (4.19)
he B(H®)

Similarly, we get

sup  [|(Cyp — Cy + Ko )h|ly < 2
heB(H®)
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for a sufficiently small ¢ > 0. Combined with (4.12) and (4.19), we obtain ||C, — Cy +
K.|| < 2. This completes the proof. 0

COROLLARY 4.5.  Let ¢, 9 be functions in (D) with ||¢llec = [Vl = 1. If
”Wffﬂm <1, then HCQD - C’(/lne <2

ProoF. For each positive number § with § < 1, we write
U={z€D;lp(z)| > 6}, V=1{ze D;lp(z)| > b}

Since ||@¥|le < 1, we may assume that U NV = &. Hence |¢(z)| < é for z € U and
lo(z)| < 6 for z € V. Let w be a complex number in D\ (U U V). Then [4(w)| < § and
le(w)| < 6. Hence

sup  p(p(w), Pp(w)) < 1.
weD\(UUV)

As an application of Theorem 4.4, we get the assertion. O

THEOREM 4.6. Let ¢, be functions in (D). Then ||C, — Cylle = 2 if and only
if loplloo =1 and oo, %) = 1.

Proor. If either ||¢fleo < 1 or ||#|loo < 1, then by Corollary 3.6 ||C, — Cylle =0
or 1, because either Cy, or Cy, is compact. So we may assume that [[@fle = [[¥flc = 1.
If [lw]leo < 1, then by Corollary 4.5 ||Cy, = Cylle < 2. So moreover we may assume that
llo¥lloo = 1. By Theorem 3.2, if 006, 9) = 1, then ||Cy, — Cylle = 2.

Next, suppose that

Too(,¥) < 1. (4.20)

We shall prove that |C, — Cylle < 2. By (4.20), we have ¢ = ¢ on Ey«(lpy]). If
Eg~(l¢|) = Eg=(||), by [10, Theorem 1], C, and Cy are contained in the same
connected component of ¢ (H>) and ||C, = Cylle < |Cyp — Cyll < 2. So we may assume
that Eye (|o]) # Ens(|9]). If Ens(|e¢|) is not an open and closed subset in Ege (|¢})
(or Ege(|1)])), then by Corollary 3.5, 0ao(,¥) = 1. This contradicts (4.20). Hence
Eps(|¢]) is an open and closed subset in both sets Ege(|¢|) and Ege(|¢]). We may
take open subsets Wy, Wy, W3 in # (H®°) such that

W1 D Ege(|¢]) \ En=(levl),

Wy D Ene([9]) \ En=(lp¥]), (4.21)

W3 D Ege(|p¥]), (4.22)
and

WinWe=0, WinWs=0, WanWs=2a. (4.23)
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Then there exists 6,0 < § < 1, satisfying || < § on W, and |¢| < § on W;. Write
U=WinDand V=W,ND. Then

[W(z)] <dforze U, |p(z)|<éforzelV.
We shall prove that

sup  plp(2), (2)) < 1. (4.24)
z& D\(UUV)

Assume that (4.24) does not hold. Then there exists a sequence {2, }, in D satisfying
Jim p(p(2n), (zn)) = 1 (4.25)
and
2 dUUV (4.26)

for every n. By (4.25), max {|¢(2n)], [¥(2)|} — 1. We may assume that § < [e(zn)| — L.
By (4.20) and (4.25), we have

limsup |¢(2,)] < 1.
T OO0

Hence by (4.21)-(4.23), z, € W, for large n. This contradicts (4.26). Hence (4.24) holds.
By Theorem 4.4, we get the assertion. 0

For p,y € #(D), we write ¢ ~ ¢ if [|Cy, — Cyl|| < 2. Then by [10], the relation ~
in (D) is an equivalence one. But we note that ICy ~ Cylle < 2 does not induce an
equivalence relation in (D).

EXAMPLE 4.7.  Let ¢, ¢ be peaking functions in the disk algebra & for a point
z = 1. Moreover we may assume that ¢ is an extreme point in B(H®) but 1 is not. By
(8, (10], 0 (9, %) = 1. Then by Theorem 4.6, ||C, — Cylle = 2. Let ¢ be a peaking
function in & for z = —1. Then by Theorem 4.3, ||C,, ~ Cyll. = ||Cy = Cylle = 1. Thus
[Cy — Cylle < 2 does not induce an equivalence relation in .#(D).

We show that ||C, —Cy |l < 2 induces an equivalence relation in some part of .%(D).

PROPOSITION 4.8.  Let ¢ be a function in #(D) such that Epe(|p|) is a peak
set for H. Let Qp = {¢p € F(D); Ep=(1|) = Ep=(lp|)}. Then ||Cy, = Cy,lle =
Moo (¥1,%2)), and [|Cy, — Cy,lle < 2 induces an equivalence relation in Q.

PROOF.  Let 41,4, be functions in Q, with 9, # ;. By Theorems 3.2 and 4.2,
ICy; = Cyylle = Mooo(t1,%2)). It is not d1fﬁcult to see that oo (91,12) < 1 induces an
equivalence relation in €, see [10]. Thus we get the assertion. 0

By [8], [10], it is known that C, and Cy are in the same connected component in
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% (H") with the operator norm (which is the same as the essential semi-norm) if and
only if sup,cp p(p(2),9(z)) < 1. If [l¢lls = 1 and sup,ep p(p(2),¥(2)) < 1, it is not
difficult to see that Ep«(|¢|) = Ep=(|]%]). So under the assumption that [[¢|le = 1 and
Epe(|p|) is a peak set for H*, if C,, and Cy, are in the same connected component in
F(H>), then [|Cy — Cylle = Mos(p, ¥))-

5. Limits on 2" H®.

In this section, we prove the following. An idea for the proof is the same as the one
of Theorem 4.4.

THEOREM 5.1.  Let @, be functions in #(D). Then we have the following.

() If plloo <1 and [[1h]leo < 1, then limy—.co [|(Cp = Cy)jzn =]l = 0.
(ii) If [[plloo = 1 and [l@wllos < 1, then limp_.co [|(Cyp = Cy)znmes | = 1.

Moreover suppose that ||ollee = 1. Then we have the following.

(iii) If Mooo(,®)) > 1, then limn—soo [(Cop = Cip)janir=ll = Aooo (0, ¥))-

(iv) If Mooo(p,9)) < 1 and Ege(|p|) = Egs(|9]), then limy, o0 [(Cp = Cy)jan || =

(v) If Mooo(tp, %)) < 1 and Ego(|¢]) # En(|9]), then limn .0 [[(Cp = Cy)jem =l =
1.

PRrOOF. (i) is clear.
(i) If ||l¥|leo < 1, then the assertion is also clear. So, we assume that [|[[lec = 1.
For each positive number § with § < 1, we write

Uy, = {z € D;|p(2)| > 8}, Uy ={z € D;[y(2)| > 6}.

Since [[p¥]loo < 1 we may assume that U, NUy = @. Then [¢| < & on U,. Let {;}; be
a sequence in U, with ¢({;) — o for some |a| = 1. We have

1(Cp = Co)iznmr=ll 2 |(Cp = Cy)2" (2 + @) /2]|0
> |(¢"(p + @) /2 = " (¢ + @) /2)(2))]
2 " (23)(0(2)) + @)/2| = 8"

— 146" as j — 0o.
Since 0 < 8 < 1, we get
lim [[(Cp = Cojernrre | 2 1.
Let h be a function in H* with ||hllcc < 1. Then

le"(hoy) —yY"(hoy)| < 1+6" onU,UUy
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and
" (how)—¢™(hoy)] < 28" on D \ (U, UUy).

Hence ||(Cy, — Cy)2"h|lo < max {1+ 6",26"}, so that

(Cy = Cy)jen ool < max {1+ 6", 26"}.
Since 0 < § < 1, we get

7}&*;0 I(Ce = Cy)penme=l|l < 1.
Thus we obtain (ii).
Hereafter, we assume that [[o¥]le = 1.
CLAamM 1. limp oo [[(Cyp = Cy)janm=|l = Moo (@, 9)).

Let {¢;}; be a sequence in D with |(¢¥)({;)] — 1 and p(e((;), ¥(¢5)) = oo, ¥).
We may assume that lim; .o ¢((;) = o, limje ¥(¢;) = B, and |a| = |8] = 1. By
Theorem 2.2, we may further assume that {¢©(¢;), ¥(()} i Moo (i, %))/ 2-asymptotic
interpolating. Then there exists h, € B(H™) satisfying

Jim ha(0(G)) = @ Aow (0, 9)) /2
and

Jim o ($((,)) = ~B" Nowo( )2

Hence

Jim [[(Cy = Cy)2 hal(G)] = Alooolip, ).

This shows Claim 1.
Cram 2. If EHoc(!ch #* E;;cc(ld)l), then lim,, o "(CW - C,/,)!Zrzyso” z L

We may assume that Ep~(|¢]) ¢ Ep~(|¢]). Then there is a sequence {(;}; in D
satisfying ¢((;) — o for some |o| = 1 and sup, [#(¢;)| < 1. In the same way as in the
first paragraph of the proof of (ii), we get Claim 2.

Cramm 3. If ool ¥) < 1 and Epe(lpl) # Eps(|4]), then lim,_ [(C, -
Cy)iznmee|l < max {AMoow(p,9)), 1}

Since oo (@, 1) < 1, we have

o | le(2) = (=) =0, (5.1)
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and by Corollary 3.5, Ege (|¢t|) is an open and closed subset in the both sets Epe(|)
and Epys(|1p]). For each positive number § with § < 1, we write

Us = {z € D;|(p¥)(2)| > 6} (5-2)

Let € be a positive number with ¢ < 1 and n be a positive integer. By (5.1), we may
assume that |¢"(z) — 9™(z)| < € for every z € Us.
Let h be a function in B(H>) and ¢ be a point in Us. Then

le™(O)h((€)) = Y™ ()R ()] < 1™ (ONR(p(€)) — M) +€
< Mp(e(€),¥(C))) +e.

Hence
1(C, = Cy)2"hllus < A( sup p(w((),w(é))) +e
¢eUs

for every h € B(H*).
Let ¢ be a point in D\ Us. Then by (5.2), either |p(£)| < 6Y/2 or [9(¢)| < §1/2,
Then similarly as above we get

1(Cy — Cp)2"hllprus <1+ 87 (5.3)
for every h € B(H®). As a consequence, we obtain
1Co = Coenel < max {350 o000 040D ) + €11+ o2},
U
Letting n — oo, we have
i Gy~ Colennell < max {3 sup p(6(0) 00 ) +21}.
ne ¢els
Letting ¢ — 0, we have
Jm G, - Coennell < max {25 stol@w@).1f G
o .’&

Here we note that by (5.2),

oo, ¥) = lim 5;13 p(e(¢€), ¥(0))-

So, letting § — 1 in (5.4) we obtain Claim 3.
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CLAIM 4. If (Tm(cp,?f)’) < 1 and E};m(l@‘) = Epjw(fﬁii), then lm,, o H(Cgo -

Cyliznm= | < Moo (i, ¥))-

To show this, we follow the proof of Claim 3. In this case we may assume that

sup  max {J(2)] Ro(2)) = & < 1.
ze D\Us

Then instead of (5.3), we get

1(Cp = Cy)z"hllp\us < 267

for every h € B{H®). The rest is the same.

Now, we prove (iii). If oo(p, %) = 1, by Claim 1 we get

i [[(Cyp = Cypanprel = 2 = Aows(0, ).

If 1 < Mos(p, %)) < 2, by Claims 1, 3, and 4 we get the assertion.

(iv) follows from Claims 1 and 4.
(v) follows from Claims 2 and 3. U
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