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Abstract. Using the numerical diagonalization method, we investigate superconduc-

tivity and related ferromagnetism in the one-dimensional two-orbital Hubbard model

with a finite band splitting at less than half filling. We obtain the superconducting

(SC) region with the Luttinger liquid parameter Kρ > 1 and confirm the anomalous

flux quantization in the SC state. It is found that the SC phase appears near the par-

tially polarized ferromagnetic phase. We also calculate the various paring correlation

functions to clarify the nature of the SC phase. Detailed analysis of these functions

indicates that the triplet paring between the nearest neighbor sites is relevant to the

superconductivity. It suggests that the ferromagnetic fluctuation plays an important

role for the superconductivity.

PACS numbers: 71.10.Fd, 74.25.Dw

1. Introduction

The orbital degrees of freedom in strongly correlated electron systems are expected to

play an important role for various interesting phenomena such as the metal-insulator

transition, ferromagnetism and superconductivity. [1, 2, 3, 4, 5, 6] In the previous

work[7], we studied the multi-orbital Hubbard model in one-dimension using the

numerical diagonalization method. We found that the fully polarized ferromagnetism

becomes unstable against the partially polarized ferromagnetism when the exchange

(Hund’s rule) coupling J is larger than value of order of the crystal-field splitting ∆.

The superconducting(SC) phase was observed for the singlet ground state in the vicinity

of the partially polarized ferromagnetism.

However, the nature of the superconductivity has not been sufficiently considered

in that work. In the present work, we investigate the same model to clarify the possible
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mechanisms of superconductivity, particularly paying attention to the symmetry of

paring. We analyze the various paring correlation functions and discuss relationship

between the ferromagnetism and the superconductivity.

2. Model Hamiltonian and Luttinger Liquid Relation

We consider the following Hamiltonian for the one-dimensional multi-orbital Hubbard

model:

H = − t
∑
i,m,σ

(c†i,m,σci+1,m,σ + h.c.) + U
∑
i,m

ni,m,↑ni,m,↓

+ U ′ ∑
i,σ

ni,u,σni,l,−σ + (U ′ − J)
∑
i,σ

ni,u,σni,l,σ +
∆

2

∑
i,σ

(ni,u,σ − ni,l,σ)

− J
∑
i,m

(c†i,u,↑ci,u,↓c
†
i,l,↓ci,l,↑ + h.c.)− J ′ ∑

i,m

(c†i,u,↑c
†
i,u,↓ci,l,↑ci,l,↓ + h.c.) (1)

where c†i,m,σ stands for the creation operator of an electron with spin σ in the orbital

m (= u, l) at site i and ni,m,σ = c†i,m,σci,m,σ. Here, t represents the hopping integral

between the same orbitals and we set t = 1 in this study. The interaction parameters

U , U ′, J and J ′ stand for the intra- and inter-orbital direct Coulomb interactions, the

exchange (Hund’s rule) coupling and the pair-transfer, respectively. ∆ denotes the

energy difference between the two atomic orbitals, that is, crystal-field splitting. For

simplicity, we impose the relations, J = J ′ and U = U ′ + 2J . In the noninteracting

case (U = U ′ = J = 0), the Hamiltonian eq. 1 yields a 　 dispersion relation

ϵ±(k) = −2t cos(k) ± ∆
2
, where k is the wave vector and ϵ+(k) (ϵ−(k)) represents the

upper (lower) orbital band energy. When the lowest energy of the upper orbital band,

ϵ+(0), is larger than the Fermi energy, EkF , electrons occupy only the lower orbital

band with kF = πn
2

and the model is regarded as a single component electron system.

Hereafter, we mainly treat the case with ϵ+(0) ≥ EkF .

We numerically diagonalize the model Hamiltonian up to 9 sites (18 orbitals) and

obtain the value of Kρ from the ground state energy of finite size systems using the

standard Lanczos algorithm. We use the periodic(antiperiodic) boundary condition for

the lower (upper) orbital band at Ne = 4m+2 and the antiperiodic(periodic) boundary

condition for the upper (lower) orbital band at Ne = 4m, where Ne is the total electron

number and m is an integer. This choice of the boundary condition removes accidental

degeneracy and shows smaller finite size effect than another boundary condition.

According to the Luttinger liquid theory, the critical exponents of various types of

correlation functions are determined by a single parameter Kρ.[8, 9] It is predicted that

SC correlation is dominant for Kρ > 1 (the correlation function decays as ∼ r
−(1+ 1

Kρ
)
in

the Tomonaga-Luttinger (TL) regime and as ∼ r
− 1

Kρ in the Luther-Emery (LE) regime),

whereas the CDW or SDW correlations are dominant for Kρ < 1 (the correlation

functions decay as ∼ r−(1+Kρ) in the TL regime and as ∼ r−Kρ in the LE regime).

Here, the LE regime is characterized by a gap in the spin excitation spectrum, while in
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Figure 1. (a) Kρ as a function of J(= U ′) for n = 2/3(6electrons/9sites) at

∆ = 1.0, 1.2, 1.4, 1.6, and 1.8. The singlet ground state changes into the partially

polarized ferromagnetic (S=1 or 2) state at U ′ ≃ 1.1, 1.5, 2.1 2.8 and 4.1 for ∆ =

1.0, 1.2, 1.4, 1.6 and 1.8, respectively. The dashed line represents a weak coupling

estimation for Kρ. Inset shows the energy difference E0(ϕ)−E0(0) as a function of an

external flux ϕ for n = 2/3(6electrons/9sites) at ∆ = 1.2.

the TL regime, the excitation is gapless. In the case of non-interacting fermion systems,

the exponent Kρ is always unity. Thus, the effective interaction between quasi-particles

is attractive for Kρ > 1 whereas that is repulsive for Kρ < 1.

3. Numerical Results

Figure 1 shows the value of Kρ as a function of J(= U ′) for several values of ∆ at

the electron density n = 2/3(6electrons/9sites). The broken line represents the weak

coupling approximation for Kρ.[7] As J increases, Kρ decreases for a small J , while it

increases for a large J , and then becomes larger than unity. In the region Kρ > 1, the

SC correlation is expected to be the most dominant compared with the CDW and SDW

correlations. When J is larger than a certain critical value, the ground state changes

into the partially ferromagnetic state with S=1 or S=2 from the singlet state S=0.

To confirm the SC state, we calculate the lowest energy of the singlet state E0(ϕ)

as a function of an external flux ϕ. As shown in the inset of Fig. 1, the anomalous

flux quantization occurs clearly at J ∼ 1.3, where Kρ is about 1.2. When J = 0.4,

Kρ is less than unity and the anomalous flux quantization is not found. We have also

confirmed that the superconductivity does not vanish even if the pare-transfer term is

omitted. It suggests that the superconductivity is caused by not the pair-transfer J ′

but the exchange interaction J .

In Fig.2, we show various types of SC paring correlation functions C(r) in detail
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for n = 2/3(6electrons/9sites) at ∆ = 1.2 and J(= U ′) = 1.48. The paring correlation

functions are defined by

Sll(r) =
1

Nu

∑
i

< c†i,l,↑c
†
i,l,↓ci+r,l,↓ci+r,l,↑ >, (2)

Suu(r) =
1

Nu

∑
i

< c†i,l,↑c
†
i,u,↓ci+r,u,↓ci+r,u,↑ >, (3)

Sl−l(r) =
1

2Nu

∑
i

< (c†i,l,↑c
†
i+1,l,↓ − c†i,l,↓c

†
i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ − ci+r+1,l,↑ci+r,l,↓) >, (4)

Su−u(r) =
1

2Nu

∑
i

< (c†i,u,↑c
†
i+1,u,↓ − c†i,u,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ − ci+r+1,u,↑ci+r,u,↓) >, (5)

Sul(r) =
1

2Nu

∑
i

< (c†i,l,↑c
†
i+1,u,↓ − c†i,l,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,l,↑ − ci+r+1,u,↑ci+r,l,↓) >, (6)

Tl−l(r) =
1

2Nu

∑
i

< (c†i,l,↑c
†
i+1,l,↓ + c†i,l,↓c

†
i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ + ci+r+1,l,↑ci+r,l,↓) >, (7)

Tu−u(r) =
1

2Nu

∑
i

< (c†i,u,↑c
†
i+1,u,↓ + c†i,u,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ + ci+r+1,u,↑ci+r,u,↓) >, (8)

Tul(r) =
1

2Nu

∑
i

< (c†i,l,↑c
†
i+1,u,↓ + c†i,l,↓c

†
i+1,u,↑)

× (ci+r+1,u,↓ci+r,l,↑ + ci+r+1,u,↑ci+r,l,↓) >, (9)

where C(r) = Sll(r), Suu(r), Sl−l(r), Su−u(r) and Sul(r) denote the singlet paring

correlation functions on the same site in the lower orbital, on the same site in the

upper orbital, between the nearest neighbor sites in the lower orbital, between the

nearest neighbor sites in the upper orbital, between lower and upper orbitals on the same

site, respectively. Further, Tl−l(r), Tu−u(r) and Tul(r) are the triplet paring correlation

functions between the nearest neighbor sites in the lower orbital, between the nearest

neighbor sites in the upper orbital and between lower and upper orbitals on the same

site, respectively.

The absolute value of Tu−u(r) is small, but the correlation as a function of r is

the slowest to decay. This result seems to suggest that the relevant paring of the

superconductivity is the triplet paring between the nearest neighbor sites in upper

orbital. and the ferromagnetic fluctuation near the ferromagnetic phase may cause the

paring. To show the behavior of the correlation functions more clearly, we calculate

the ratio R(r) of the paring correlation functions at J(= U ′) = 1.48 and that of

J(= U ′) = 0.3 as R(r) = C(r)J=1.48

C(r)J=0.3
. Although the correlation function C(r) decays

as distance r increases, the function R(r) for relevant paring is expected to increase

with r, because the value of Kρ at J = 1.48 is larger than that at J = 0.3, where Kρ is
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Figure 2. The singlet paring correlation functions C(r) = Sll(r), Sl−l(r),

Suu(r), Su−u(r), Sul(r) and the triplet correlation functions Tl−l(r), Tu−u(r), Tul(r),

respectively(see text). Here we show the absolute value of the correlation functions at

∆ = 1.2 and J(= U ′) = 1.48 for n=2/3(6electrons/9sites).
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Figure 3. The ratio of the singlet paring correlation functions R(r) =

C(r)J=1.04/C(r)J=0.2 for Sl−l(r), Suu(r), Su−u(r), Sul(r) and that of the triplet

correlation functions for Tl−l(r), Tu−u(r), Tul(r) with the power-low r0.33,

respectively(see text). The broken line represents the power-low r0.33 predicted by

the Luttinger liquid relation.

about at 1.26 and 0.93, respectively. Then, the behavior of R(r) is expected to ∼ r0.33.

In fig.3, we show R(r) for Sll(r), Sl−l(r), Suu(r), Su−u(r) and Sul, (upper panel) and

the triplet paring correlation functions Tl−l(r), Tu−u(r) and Tul(r) with the power-low

r0.33 predicted by the Luttinger liquid relation (lower panel), respectively. It indicates

that the function R(r) for Tu−u is much enhanced especially for longer range paring

correlation. On the other hand, the remains are not enhanced or decay as r increases.



Author guidelines for IOP journals in LATEX2ε 6

These results suggest that the paring correlation function in upper orbital Tu−u(r) is

most relevant paring to the superconductivity. Although the system size is too small

to compare the slope of the function R(r) with the power-low enhancement ∼ r0.33

directly, the behavior of Tu−u seems to be roughly consistent with the result of the

Luttinger liquid relation.

4. Summary and Discussion

We have investigate the superconductivity and the related ferromagnetism of the

Hubbard model with two-fold orbital degeneracy with paying attention to the effect

of the interplay between the Coulomb interactions and the band splitting. To obtain

reliable results, we have used the numerical diagonalization method and calculated the

critical exponent Kρ based on the Luttinger liquid theory. In the vicinity of the partially

polarized ferromagnetism, we have found the SC phase, when J exceeds about the energy

of ∆. These behaviors seem to be very similar to the result of n > 1 at ϵ+(0) ≥ EkF

as shown in our previous work[7]. It suggests that the nature of the SC phase may not

much depend on n so long as the band splitting ∆ is sufficiently large and electrons

occupy only the lower orbital band.

In order to clarify the nature of the superconductivity, we also obtained the various

paring correlation functions. The analysis of these functions indicates that triplet

paring between the nearest neighbor sites in upper orbital Tu−u(r) is relevant to the

superconductivity. These results suggests that the ferromagnetic fluctuation produces

the triplet superconductivity, In the ∆ = 0 case, the triplet SC phase with the spin

gap has been already discussed in the recent bosonization method[4, 5] and numerical

method[6, 10]. At this stage, we can not clarify the relationship between both triplet

SC phases. Further study is needed and we would like to address it in future.
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