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Summary

A practical strategy is developed to determine the optimal threshold parameter for wavelet-

based BE analysis. The optimal parameter is determined so that the amount of storage

(and computational work) is minimized without reducing the accuracy of BE solution. In

the present study, the Beylkin-type truncation scheme is used in the matrix assembly. To

avoid unnecessary integration concerning the truncated entries of a coefficient matrix, a

priori estimation of the matrix entries is introduced and thus the truncated entries are

determined twice: before and after matrix assembly. The optimal threshold parameter

is set based on the equilibrium of the truncation and discretization errors. These errors

are estimated in the residual sense. For Laplace problems the discretization error is in

particular, indicated with the potential’s contribution kck to the residual norm kRk used
in error estimation for mesh adaptation. Since the normalized residual norm kck/kuk
(u: the potential components of BE solution) cannot be computed without main BE

analysis, the discretization error is estimated by the approximate expression constructed

through subsidiary BE calculation with smaller degree of freedom (DOF). The matrix

compression using the proposed optimal threshold parameter enables us to generate a

sparse matrix with O(N1+γ) (0 ≤ γ < 1) non-zero entries. Although the quasi-optimal

memory requirements and complexity are not attained, the compression rate of a few

percent can be achieved for N ∼ 1, 000.
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1 Introduction

In engineering applications of the boundary element method (BEM), the system of N

algebraic equations (N : degree of freedom) derived through the discretization of a bound-

ary integral equation (BIE) has a dense N×N coefficient matrix. Such a matrix obviously

requires O(N2) amount of storage. Besides, the computational work for solving the alge-

braic equations grows with O(N3) and O(N2) for direct and iterative solvers, respectively.

These properties make it difficult to apply the BEM to large-scale problems. To overcome

this obstacle, the effective techniques for reducing the computational cost have been de-

veloped over the last decade: a wavelet-based boundary element method (wavelet BEM,

e.g., [1][2][3][4]) and a fast multipole method (FMM, e.g., [5][6]) are major fast methods

for BE analysis.

In the wavelet BEM, wavelets, with which a function can be represented on various

resolution levels, are employed as the basis functions for discretizing a BIE. In this situa-

tion, the entries of the coefficient matrix are generated through evaluation of the single-

or double integrals including the wavelets. Moreover, the matrix entries have a faster

decay on the distance between two supports of the bases than that in conventional BE

analysis. This is due to the local support and vanishing moment properties of wavelets.

As a result, most of the matrix coefficients, in particular the far-field influences in the en-

tries, have small value relatively to the entries populated around matrix diagonal. We can

thus assemble a sparse coefficient matrix by truncating these small entries of the original

fully-populated one.

The wavelet BEM however, has some difficulties on its engineering application. One

is that it is difficult to generate surface wavelets suitable for 3-D BE analysis. Many

surface wavelets are hence defined by tensor products of univariable wavelets (e.g., [2]).

Otherwise we have to use the multiwavelet [8] that enables us to implement triangulation

of surfaces; this wavelet has the discontinuity of polynomials on the supports. Another

is that one needs to determine the thresholding value for the truncation of small entries

in advance. In the present stage of engineering applications of the wavelet methods, the

wavelet algorithm with the complexity of O(N) has been proposed [9]; in general it is

difficult to develop the wavelet methods comparable to the FMM. Many researchers thus

recognize that the wavelet BEM is hard to apply the practical large-scale problems like

3-D problems in contrast to FMM algorithms. However, the basic idea of the wavelet

methods is comparatively simple; the wavelet BEM can readily reduce the computational

cost by only using the wavelets as the basis functions. Hence, this approach can become

one of the choices for the cost reduction for BE analysis.

As stated above, in wavelet-based BE analysis a sparse matrix is generated by truncating

small matrix entries. The truncation, which is to replace smaller entries than prescribed

thresholding value by null entries, is an important technique to reduce the cost of the

wavelet BEM. Obviously, the use of large thresholding value is effective for memory re-

duction. In matrix assembling, when the a priori-type truncation schemes (e.g., [3]) are

used, the boundary integrals on the truncated entries are not calculated. Then, we can
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shorten the CPU time remarkably. However, the matrix compression with an extremely

large threshold incurs the accuracy reduction in BE solution. We therefore, have to use

the truncation strategies that reduce the computational cost as much as possible with

sustaining the accuracy.

The truncation strategy preserving the accuracy of BE solution has been utilized in

mathematical and numerical analysis by Dahmen et al. [7], Schneider [9], Schwab and his

co-researchers [3][8][10][11] and Rathsfeld [2]. In this strategy the truncation is carried

out so that the rate of asymptotical convergence of the BE solution is not affected by the

matrix compression. To preserve the convergence rate, the truncation is carried out using

the thresholding values dependently on the resolution levels of wavelets. As a result, we

can reduce the amount of storage and the computational work to O(N(logN)a) (a ≥ 0).
In this compression scheme, the magnitude of the thresholding value is controlled with

several truncation parameters: those are determined through theoretical estimations and

subsidiary computations with lower DOFs.

In many engineering applications, the truncation algorithm proposed by Beylkin et al.

[12], which is the alternative of the above Dahmen-Schwab matrix compression scheme

(e.g., [4], [13], [14], [15]). The Beylkin-type truncation scheme enables us to reduce the

memory requirements to O(N logN) using a fixed threshold parameter independently

of the DOF. Although this method has a simple criterion and the truncation is carried

out under a threshold irrespective of the wavelet level, the determination method of the

optimal thresholding value has not been developed.

In the present paper, we develop a practical strategy for determining the threshold

parameter used in the Beylkin-type matrix compression scheme. We target to determine,

in particular, the optimal threshold parameter, by which the matrix compression minimizes

the number of stored entries with preserving the accuracy of BE solution. To determine

such optimal value, we allow the truncation error in BE solution up to the level comparable

to the discretization error. Hence, the optimal threshold parameter obviously has problem

dependency, and consequently, its value varies with the boundary conditions, the degree

of interpolation and the DOFs. In particular, the optimal value depends on DOF, even if

the boundary conditions and the degree of interpolation remain unchanged. We derive the

estimation of the optimal threshold parameter based on the equilibrium of the truncation

and discretization errors. These errors are estimated in the residual sense, in particular,

the discretization error is indicated with the residual R, which is used in error estimation

in adaptive meshing [18][19]. As a result, the estimated value shows O(N−β) where β is the

asymptotical order of the potential’s contribution kck to the residual norm kRk. By taking
the dependence on the DOF into account and introducing further several assumptions and

approximations, the optimal threshold can be estimated from its approximate expression

constructed through computations with smaller DOFs than that on main BE analysis,

like the Dahmen-Schwab compression scheme. The validity and justification of these

assumptions and approximations will be verified below through numerical tests.

As stated above, the matrix compression based on the Beylkin-type algorithm results
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in O(N logN) amount of storage using a fixed thresholding value. However, we utilize

the optimal threshold parameter that depends on the DOF. When using such optimal

value, we cannot unfortunately obtain the memory requirements of quasi-linear order:

the number of non-zero entries has O(N1+γ) (0 ≤ γ < 1). Although this asymptotical

order is not as good as that for Dahmen-Schwab matrix compression of O(N(logN)a)

complexity, the compression rates of coefficient matrix are reduced to a few percent for

about 1,000 DOFs, as will be shown in Section 6. Through these results, we can find

that the matrix compression using the present algorithm is sufficiently effective for the

reduction of memory requirements and computational work.

The present paper is organized as follows: in Section 2, we summarize implementation

of the wavelet BEM using the non-orthogonal spline wavelets. These wavelets developed

by the authors [4] have several properties suitable for BE analysis. Section 3 contains

the estimation of the discretization- and truncation errors in BE solution. The details

of the present determination strategy, which is developed based on the error estimations,

are described in Section 4. In Section 5, we estimate the number of non-zero entries of

the matrix that is compressed with the Beylkin-type algorithm and using the optimal

threshold parameter. In Section 6, the numerical experiments on 2-D Laplace problems

are undertaken to verify the numerical manipulations in the present strategy. We also

demonstrate the Beylkin-type matrix compression using the optimal threshold parameter

through the test examples. Finally, the concluding remarks on the present study are

summarized in Section 7.

2 Wavelet BEM

2.1. Wavelets

In the wavelet BEM, the solution of a boundary integral equation is approximated by

wavelet series. The wavelet series consist of two kinds of basis functions: a scaling function

φ and a wavelet ψ. These basis functions are defined as the bases of the following subspaces

V andW in the Hilbert space L2[0, 1]:

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ L2[0, 1], (1)

Vk+1 = Vk +Wk, (2)

Vk = span{φk,j := 2k/2φ(2kξ − j), j = 1, 2, . . . , n(k)φ }, (3)

Wk = span{ψk,j := 2k/2ψ(2kξ − j), j = 1, 2, . . . , n(k)ψ }, (4)

where n
(k)
φ is the number of the bases φk,j with resolution level k, and n

(k)
ψ = n

(k+1)
φ −n(k)φ .

From equations (1) and (2), the space L2[0, 1] can be decomposed into a direct sum of

V0 andW at every resolution, that is,

L2[0, 1] = V0 +
∞[
k=0

Wk. (5)

This relation ensures that a function f in L2[0, 1] can be represented using the basis
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functions of the subspaces. Hence, we can obtain the following expression as the wavelet

expansion of the function f :

f(ξ) =
nsX
j=1

f̂0,jφ0,j(ξ) +
∞X
k=0

nwX
j=1

f̃k,jψk,j(ξ), (6)

where f̂0,j and f̃k,j are the expansion coefficients corresponding to φ0,j and ψk,j . ns and

nw are equal to n
(0)
φ and n

(k)
ψ , respectively.

In equation (6), truncating the summation with respect to k up to prescribed resolution

level M , we obtain the projection PM+1f(ξ) ∈ VM+1 as an approximation of the function

f . i.e.,

f(ξ) ' PM+1f(ξ) :=

nsX
j=1

f̂0,jφ0,j(ξ) +
MX
k=0

nwX
l=1

f̃k,lψk,l(ξ). (7)

Many kinds of wavelets used in equations (6) and (7) have been developed. In the

present stage of application of the wavelet BEM to engineering analyses, the Chui’s semi-

orthogonal wavelets [1][10], several orthonormal wavelets [13][14][15][16] and the non-

orthogonal wavelets developed by the authors [4] have been used in 2-D BE analysis.

Moreover, the multiwavelets are available for 3-D problems, which has been shown by e.g.,

Schwab et al. [3][8]. In the present study, we define wavelet series (7) using the B-spline

φm and the non-orthogonal spline wavelet ψmn . These basis functions possess the proper-

ties suitable for BE analysis: these have closed forms and compact supports. The scaling

function and the wavelet are defined as follows [4]:

φ(ξ) = φm(ξ) =
1

m!

m+1X
j=0

(−1)j
µ
m+ 1

j

¶
(ξ − j)m+ =

1

2m

m+1X
j=0

µ
m+ 1

j

¶
φ(2ξ − j), (8)

ψ(ξ) = ψmn (ξ) =
αmn
m!

m+n+1X
j=0

(−1)j
µ
m+ n+ 1

j

¶
(2ξ − j)m+ = αmn

nX
j=0

(−1)j
µ
n

j

¶
φ(2ξ − j),

(9)

where αmn is the constant to normalize ψ(ξ) on the intrinsic coordinates ξ, and ( · − j)m+
represents the truncated power function of degree m. n is the order of vanishing moments;Z ∞

−∞
ξk · ψ(ξ) dξ = 0, (k = 0, 1, . . . , n− 1). (10)

In BE analysis, we can generate a larger number of small matrix entries using wavelets

with higher-order vanishing moments, and then we can obtain a sparser coefficient matrix

by truncating the small entries [4][12]. The non-orthogonal wavelet (9) allows us to choose

the order of the vanishing moments independently of the degree of polynomials m. This is

an important characteristic of the non-orthogonal wavelets on BE analysis. On the other

hand, the accepted wisdom is that the choice of a higher-order of vanishing moments

is not always advantageous for reduction of computational work: Lage and Schwab [3]

have argued that the asymptotical complexity is almost optimal using the wavelets with

4



a minimal number of vanishing moments (e.g., Haar wavelet). This view is based on the

fact that the number of subintervals of the spline wavelets increases linearly with the order

of vanishing moments. A matrix entry concerning the wavelets with many subintervals

is calculated costly, in particular through numerical integration with the conventional

Gauss-Legendre formula; the amount of this computational cost can be reduced with the

wavelet-weighted Gaussian quadrature formulae [17].

The wavelet series using basis functions (8) and (9) however, have no completeness on

a finite interval. This is because the basis arranged at the ends on the interval has a

truncated support. To ensure the completeness of the wavelet expansion, we introduce

the special basis functions. These are referred to as boundary scaling function or boundary

wavelet.

The boundary scaling function φ̄mi is given by the B-spline with a multiple knot at the

truncated point of the support, whereas the boundary wavelet ψ̄i is defined by

ψ̄i(ξ) = ψ̄min(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ0n+i(ξ) (m = 0)

ᾱmi1
£
φ̄m1 (2ξ) + pi · φ̄mi+1(2ξ)

¤
(i < m, m ≥ 1, n = 1)

ᾱmi1
£
φ̄m1 (2ξ) + pi · φm(2ξ)

¤
(i = m, m ≥ 1, n = 1)

ᾱmin

h
ψ̄m1(n−1)(ξ) + ai,n−1 · ψmn−1(ξ)

i
(i ≤ m, m ≥ 1, n ≥ 2)

(11)

where ᾱmn is the constant normalizing ψ̄i. The constant pi is set to such value as ψ̄
m
i1

satisfies the first-order vanishing moment condition, and ai,n−1 is evaluated by

ai,n−1 = −

Z ∞
0

ξn−1ψ̄mi1(ξ) dξ +
n−2X
j=1

ai,j

Z ∞
0

ξn−1ψmj (ξ) dξZ ∞
0

ξn−1ψmn−1(ξ) dξ
. (12)

where αm0 = ai,0 = 0.

In definition of the wavelet expansion on a finite interval, the basis functions with trun-

cated supports are replaced by the boundary bases φ̄mi and ψ̄i. Then, we have to choose

the wavelets of m+ n =(odd), in order to preserve symmetry of expanded functions.

2.2. Boundary element equations

Let us now consider 2-D Laplace problems, which are described by the following BIE:

c(x)u(x) +

Z
Γ
q∗(x,y)u(y) dΓy −

Z
Γ
u∗(x,y)q(y) dΓy = 0, (x,y ∈ Γ), (13)

where u and q are the potential and its outward normal derivative on the boundary Γ,

respectively. The kernel functions u∗ and q∗ are the fundamental solutions corresponding

to u and q. c(x) is the free term.

To derive the system of equations from the BIE, we introduce the approximations ũ and
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q̃ defined by the following wavelet series:

ũ =

NX
i=1

Ũiwi =

nsX
j=1

û0,jφ0,j +

mrX
k=0

nkX
l=1

ũk,lψk,l,

q̃ =

NX
i=1

Q̃iwi =

nsX
j=1

q̂0,jφ0,j +

mrX
k=0

nkX
l=1

q̃k,lψk,l.

(14)

where ns and nk are the number of the scaling functions φ0,j and the wavelets ψk,l,

respectively. The bases {wi} (i = 1, . . . , N) consist of all the scaling functions and the

wavelets used in equation (14). û0,j , ũk,l, q̂0,j and q̃k,l are the expansion coefficients.

Moreover, N is the degree of freedom, and mr is the finest resolution level.

In equation (13), the replacement of u and q by ũ and q̃ yields the following residual r:

r(x) := c(x)ũ(x) +

Z
Γ
q∗(x,y)ũ(y) dΓy −

Z
Γ
u∗(x,y)q̃(y) dΓy. (15)

We now apply the Galerkin method to equation (15): we require to satisfy withZ
Γ
r · wi dΓ = 0, (i = 1, 2, . . . , N). (16)

In the wavelet BEM, the BIE is usually discretized by the Galerkin method. Although

we can use the collocation method for the discretization, we have to perform special

algorithm (e.g., the fast wavelet transformation: FWT) to the coefficient matrix derived

by the collocation scheme [2][7][16], in order to obtain the computational performance

comparable to that of the Galerkin scheme.

From equations (14), (15) and (16), we obtain a system of algebraic equations as follows:

Hu = Gq, (17)

where the components of the vectors u and q are the expansion coefficients Ũi and Q̃i,

respectively. The matrices G and H are assembled through evaluation of the following

single- and double integrals:

gij =

Z
Γi

wi

Z
Γj

u∗wj dΓ2,

hij =
1

2

Z
Γi

wiwj dΓ+

Z
Γi

wi

Z
Γj

q∗wj dΓ2, (i, j = 1, 2, . . . , N).

(18)

Note that gij and hij denote the entries of G and H.

Taking account of boundary conditions, we consequently obtain the following linear

equation:

Az = Bȳ = b, (19)

where A and B are the coefficient matrices corresponding to the unknown vector z and

the known vector ȳ, respectively. In implementation of the wavelet-based BE analysis,

we have to evaluate the known expansion coefficients ȳ. This computation requires the

inversion of the N×N matrix; we can perform the computation at O(N) operations using

the FWT algorithm [4].
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2.3. Truncation strategy

As mentioned above, we truncate the small entries of the coefficient matrix using the

Beylkin-type algorithm [12]. This truncation strategy enables us to generate a sparse

coefficient matrix by neglecting smaller entries than prescribed thresholding value that

is independent of the level of wavelets. In matrix compression based on the Beylkin-

type original scheme, we first generate all the matrix entries gij and hij by equation (18),

and the truncated entries are usually selected through comparing the absolute value of the

matrix entries with the thresholding value. We thus need O(N2) operations for generation

of O(N logN) or O(N1+γ) (0 ≤ γ < 1) non-zero entries. To save the computational work,

we should avoid unnecessary operations concerning the truncated entries. In the present

study, we reduce the computation by determining truncated entries not only at after

calculation of gij and hij , but also at before the integration.

In the stage before generating the matrix entries, we estimate the absolute value of the

entries using asymptotic expansion, instead of calculating equation (18). The estimates

are given by

|gij | ' ḡij := Cg ·
2−

2n+1

2
(ki+kj)

r̄n(βi+βj)
, |hij | ' h̄ij := Ch ·

2−
2n+1

2
(ki+kj)

r̄n(βi+βj)+1
,

Cg :=
¯̀nβi+1
i

¯̀nβj+1
j {n(βi + βj)− 1}!
(m+ 1)2−βi−βj

½
αmn

(m+ n+ 1)n+1

¾βi+βj
, Ch := Cg · n(βi + βj),

(20)

where r̄ := dist(supp wi, supp wj), and ¯̀ is the support length of the scaling function

φ0. The constant β is equal to 0 (w = φ0) or 1 (w = ψk). ki and kj are the resolution

level of the bases wi and wj , respectively. Note that k = 0 for w = φ0. Cg and Ch are

independent of ki, kj and r̄, and are determined from the coefficients of the leading terms

of the asymptotic series.

The truncation before generating gij and hij , namely a priori truncation, is carried

out using estimate (20). Although the a priori truncation spends computational work

of O(N2), the computation time for this estimation is negligible in the assembly of the

matrix owing to the simple form of equation (20), as will be shown in the numerical tests.

The matrix entries satisfying the following conditions are truncated without calculation

of double integral (18):

ḡij < ηg ·Gmax, h̄ij < ηh ·Hmax, (21)

where Gmax and Hmax are the maximum value of |gij | and |hij | whose both two basis
functions wi and wj are given by scaling functions. ηg and ηh are the threshold parameters

corresponding to the matricesG andH, respectively. We will determine the optimal value

of these parameters.

The entries over the thresholding value ηg · Gmax or ηh · Hmax in truncation condition
(21) are evaluate by equation (18). Then, the matrix entries gij and hij satisfying

|gij | < ηg ·Gmax, |hij | < ηh ·Hmax, (22)
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are replaced by zero. We call this procedure a posteriori truncation.

Note that we do not apply the above truncation process to the entries satisfying: (i)

r̄ < (2−ki ¯̀i + 2−kj ¯̀j) or (ii) both bases are scaling functions.

3 Error estimation for determining optimal threshold parameter

In the present paper, we attempt to determine the optimal threshold parameter used in

the Beylkin-type truncation algorithm for the wavelet BEM. As stated in Section 1, the

matrix compression using the optimal thresholding value minimizes the memory require-

ments of stored entries with preserving the accuracy of BE solution. To determine such

optimal value, the equilibrium of the truncation and discretization errors is imposed on

the BE solution. We consequently have to separately estimate these errors for the optimal

value setting.

3.1. Truncation error

To estimate the truncation error, let us consider boundary element equation (19). Then,

the coefficient matrices obtained after the truncation, Ã and B̃, are expressed as

Ã = A+∆A, B̃ = B+∆B, (23)

where the matrices ∆A and ∆B consist of the truncated entries of A and B, respectively.

The truncation of the small entries of A and B yields an additional error ∆z of the BE

solution z, and then boundary element equation (19) is rewritten by

Ã(z+∆z) = B̃ȳ. (24)

Rearranging equation (24) and then applying equation (19) to the resulting equation, we

obtain the contribution A∆z of the truncation error to the residual of equation (24) as

follows:

A∆z ' −[∆A]z+ [∆B]ȳ = −[∆H]u+ [∆G]q, (25)

where ∆G and ∆H are the matrices whose entries are the truncated ones of the matrices

G and H, respectively. The truncation error ∆z can be obtained by solving equation (25).

This equation however, has the same DOF, N , as that of BE solution (14). In the stage

of determination of the optimal thresholding value, the matrix A is not compressed, i.e.,

this is an N ×N fully-populated matrix. The direct estimation of ∆z obviously requires

larger computational work than that of main BE analysis. We thus attempt to indirectly

estimate the truncation error in the residual sense.

The residual norm ||A∆z|| is estimated by applying the triangle inequality to equation
(25) as follows:

||A∆z|| ≤ ||∆H|| · ||u||+ ||∆G|| · ||q||. (26)

Substituting q = G−1Hu in equation (26), we have

||A∆z||
||u|| ≤ ||H||

µ ||∆H||
||H|| + cond(G)

||∆G||
||G||

¶
, (27)
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where cond(G) is the condition number of the matrix G.

3.2. Discretization error

Following the truncation error estimation, we now describe an approach for estimating

the discretization error in the sense of residual. This estimation has to be consistent of

the above truncation error estimation. We thus estimate the discretization error using the

residual R, which has been proposed for the error estimation in adaptive meshing scheme,

by Abe [18][19].

To clarify the relation between the discretization error and the residual R, let us con-

sider the residual r defined by equation (15). The residual r is equal to a difference

between equations (13) and (15), since equation (13) holds for the true solution of the

BIE identically. That is,

−1
2
(u− ũ)−

Z
Γ
q∗(u− ũ) dΓ+

Z
Γ
u∗(q − q̃) dΓ = r. (28)

When applying orthogonal condition (16) to equation (28), we obtain the equations with

respect to (u− ũ) and (q − q̃) as follows:
1

2

Z
Γ
wi(u− ũ) dΓ+

Z
Γ
wi

Z
Γ
q∗(u− ũ) dΓ2 −

Z
Γ
wi

Z
Γ
u∗(q − q̃) dΓ2 = 0,

(i = 1, 2, . . . , N).

(29)

In equation (29), we rearrange (u− ũ) and (q − q̃) to

u− ũ = (u− ǔ) + (ǔ− ũ), q − q̃ = (q − q̌) + (q̌ − q̃), (30)

where ǔ and q̌ are the wavelet series corresponding to the true solutions u and q, and are

given by

ǔ =
NX
i=1

Uiwi, q̌ =
NX
i=1

Qiwi, (31)

where Ui and Qi are the expansion coefficients of the true solutions u and q, respectively.

Substituting equations (14), (30) and (31) into equation (29), we can obtain the following

algebraic equation:

Ae = R. (32)

In equation (32), e is the discretization error vector, because the components of the vector

are alternatively given by the approximation errors of the expansion coefficients, (Ui− Ũi)
and (Qi− Q̃i). This equation thus justifies the estimation of the discretization error using
the residual vector R. A is the same coefficient matrix as that of equation (19). Moreover,

the components Ri of the residual vector R are defined by

Ri = −
1

2

Z
Γ
wi(u− ǔ) dΓ−

Z
Γ
wi

Z
Γ
q∗(u− ǔ) dΓ2 +

Z
Γ
wi

Z
Γ
u∗(q − q̌) dΓ2,

(i = 1, 2, . . . , N),

(33)

where the true value of (u− ũ) and (q− q̃) cannot be given in general cases, and then the
components Ri (i = 1, 2, . . . , N) are evaluated approximately.
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4 Determination of optimal threshold parameters

As defined above, the optimal threshold parameter prescibes the thresholding value

by which the matrix compression yields the coefficient matrix with the least memory

requirements without the accuracy reduction in BE solution. In the present paper, we

attempt to determine the optimal value for the Beylkin-type matrix compression. To

achieve this, we impose the equilibrium of the truncation and discretization errors on BE

solution. This is however, only the basic idea for setting the optimal value. We thus

introduce several assumptions and approximations together with the error equilibrium, to

develop the parameter determination strategy available for practical and engineering BE

analysis.

In the optimal parameter setting, we have to ensure the equilibrium of the discretization

and truncation errors, at least. This error equivalence is dealt with in terms of their

potential components, i.e., ||∆zu|| ∼ ||eu|| where a subscript “u” represents the potential
components of the vectors. This is because boundary integral equation (13) is described

in the order of the potential. Moreover, the equilibrium is imposed on the residual norms:

||A∆z|| ∼ ||Ae||. Then, we assume that the error equilibrium ||∆zu|| ∼ ||eu|| is not
violated when the residual norms satisfy the relation ||A∆z|| ∼ ||Ae||. Considering the
residual norm equilibrium, we requires the following relation:

||A∆z||
||u|| =

||Ae||
||u|| =

||R||
||u|| , (34)

in the case of matrix compression using the optimal thresholding value. In implementa-

tion of the present determination strategy, the components of the residual vector R are

approximated by

Ri ' ci, (35)

ci = −
1

2

Z
Γ
wi(ˆ̂u− ũ) dΓ−

Z
Γ
wi

Z
Γ
q∗(ˆ̂u− ũ) dΓ2, (i = 1, 2, . . . , N), (36)

where ˆ̂u is a higher-order interpolation of ũ. We now define ˆ̂u by the scaling functions

φmr+2,i (i = 1, 2, . . . , N + nmr+1) at the level (mr + 2) as

ˆ̂u =

N+nmr+1X
i=1

ˆ̂
U iφmr+2,i. (37)

Hence, equation (34) is rewritten as

||A∆z||
||u|| =

||c||
||u|| . (38)

In equation (38), if we attempt to evaluate the true value of ||c||/||u||, we have to
calculate the BE solution ũ as shown in equation (14): ũ is just the BE solution on main

analysis. This pre-processing – evaluation of ||c||/||u|| – requires large computational

cost comparable to that of main BE analysis, and is inpractical. The residual norm

||c||/||u|| may however, usually have the asymptotical convergence like the BE solution,

10



because this norm indicates the discretization error. We thus introduce the following

approximation to evaluate the value of ||c||/||u||:
||c||
||u|| ' α ·N−β, (39)

where the constants α and β are independent of the DOF. In the present strategy, we

determine the values of α and β using BE solutions. Note that these solutions are obtained

under the same boundary conditions as that of main analysis, but have smaller DOFs than

ũ. The smaller DOFs of the solutions are obviously advantageous to save the additional

computational work.

Next, let us derive the relation between the truncation error and the optimal threshold

parameter, from the right-hand side terms of inequality (27). The norms ||G||, ||H||,
||∆G|| and ||∆H||, which are estimated in the sense of maximum norm, are bounded as

follows:

||G||∞ ≤ C1, ||H||∞ ≤ C2, ||∆G||∞ ≤ C3, ||∆H||∞ ≤ C4, (40)

where the constants C1, C2, C3 and C4 are independent of DOF. The proof of equation

(40) is lengthy, and is thus omitted. In what follows, the norm k · k implies the maximum
norm k · k∞.
Based on inequality (40), we propose the following relation from inequality (27):

||A∆z||
||u|| ≈ ||H||

µ
∆Gmax
Gmax

+
∆Hmax
Hmax

¶
≈ ||H||(ηg + ηh),

∆Gmax := max
i,j=1,... ,N

|∆gij | ≈ ηg ·Gmax,

∆Hmax := max
i,j=1,... ,N

|∆hij | ≈ ηg ·Hmax,

(41)

where ∆gij and ∆hij are the entries of the matrices ∆G and ∆H, respectively.

As shown in equation (41), the threshold parameters ηg and ηh indicate the contribu-

tions of truncation error concerning the matrices G and H to the residual norm ||A∆z||,
respectively. Hence, it is rational to set ηg and ηh to a thresholding value: ηg = ηh = ηopt.

Then, the first equation in (41) can be rewritten by

||A∆z||
||u|| ≈ 2ηopt||H||. (42)

where ηopt is the optimal threshold parameter.

Substituting equations (38) and (39) into equation (42), we have

α ·N−β ' 2ηopt||H||. (43)

In the above equations, ||H|| is the norm of the N ×N matrix H with the same DOF as

that of main BE analysis; evaluation of kHk requires generation of all the entries of N×N
matrix. We thus approximate kHk by

||H|| ' ||H̄||, (44)

11



where H̄ is the coefficient matrix H that is generated to determine the constants α and β

in equation (39). The size of the matrix H̄ is set to substantially smaller than that of the

matrix H, in implementation of the determination procedure. The computational work

for evaluating the norm kH̄k will thus become small in comparison with that of the main
BE analysis.

From equations (42), (43) and (44), a priori estimation of the optimal threshold param-

eter is derived from equations (43) and (44) as follows:

ηopt =
αN−β

2||H̄|| . (45)

In the present determination strategy, a priori estimation (45) is derived by imposing

several assumptions and approximations on error equilibrium (38). These will be verified

through numerical experiments in Section 6.

5 Non-zero entries of coefficient matrices

The matrix compression based on the Beylkin-type algorithm ensures O(N logN) non-

zero entries of the N ×N coefficient matrix [12]. Indeed, the amount of storage of quasi-

linear order results from the use of fixed thresholding value independently of DOF; the

threshold parameter determined by the present strategy possesses the DOF dependency, in

order to preserve the accuracy. In the situation in which a coefficient matrix is compressed

using such optimal thresholding value, O(N logN) non-zero entries of the compressed

matrix may not be obtained. In the present section, we thus estimate the number of

non-zero entries of the coefficient matrices that are compressed by the truncation strategy

described in Section 2.3 and with the optimal threshold parameter.

We count the number of non-zero entries of matricesG andH. Using Schwab’s technique

[10], this estimation can be carried out in the same manner independently of the kinds

of the matrices. We hence show the details of estimation corresponding to the matrix G

alone.

The non-zero entries of G̃ defined as the compressed matrix of G are counted in every

submatrices as follows:

G̃ := G+∆G, G̃ =

"
G̃φφ G̃φψ

G̃ψφ G̃ψψ

#
, (46)

where ∆G is the matrix assembled by the truncated entries ∆gij of the matrix G. More-

over, the subscripts “φ” and “ψ” represent the kinds of basis used for generation of their

entries. For example, “ψψ” indicates that two basis functions wi and wj are wavelets

both. G and G̃ are N ×N matrices: the DOF of BE solution, N , is defined by

N := ns +

mrX
k=0

nk, (47)

where ns and nk are the numbers of scaling functions and wavelets in the level k, respec-

tively. In equation (47), we assume that nk := 2
k · ns. Then, N = 2mr+1 · ns.

12



In the present truncation strategy, all the entries of G̃φφ are stored. This is because these

entries have only the same decay with respect to the distance r̄ := dist(supp wi, supp wj)

as that in the conventional BE analysis. The number of entries of G̃φφ, (G̃φφ), is thus

estimated as follows:

(G̃φφ) = n
2
s. (48)

Next, let us count the number of the entries of G̃φψ and G̃ψφ. Since G and G̃ are

symmetric matrices, the submatrices G̃ψφ and G̃φψ have the same number of non-zero

entries. i.e.,

(G̃φψ) = (G̃ψφ). (49)

We thus demonstrate the estimation of (G̃φψ) below.

By dividing G̃φψ into the submatrices G̃
(kj)
φψ (kj 0, 1, . . . ,mr), we have

(G̃φψ) :=
mrX
kj=0

(G̃
(kj)
φψ ), (50)

where G̃
(kj)
φψ is the submatrix corresponding to the resolution level kj . The number of

non-zero entries of each submatrix G̃
(kj)
φψ , (G̃

(kj)
φψ ), is bounded by

(G̃
(kj)
φψ ) ≤ ns

µ
1 + 2δ

2−kj
+ 1

¶
= ns · 2kj

³
1 + 2−kj + 2δ

´
,

δ := min
i,j=1,2,... ,N

½
r̄ := dist(supp wi, supp wj)

¾
.

(51)

From equations (20) and (22), δ is given by

δ ∼ η−
1

n

µ
Gmax
Cg

¶− 1

n

2−
2n+1

2n
kj , (52)

where n is the order of the vanishing moments.

In the matrix compression scheme with the present determination strategy, the threshold

parameter η has the following DOF dependency:

η ∼ C 0N−β, (β > 0). (53)

Substituting equation (53) into (52), we have

δ ∼ C · 2− 2n+1

2n
kjN

β

n . (54)

We now substitute equation (54) into (51), and sum up (G̃
(kj)
φψ ) with respect to kj . As

a result, (G̃φψ) is bounded as follows:

(G̃φψ) ≤ ns
mrX
kj=0

³
1 + 2−kj + 2C · 2− 2n+1

2n
kjN

β

n

´
2kj

≤ C1
³
N + logN +N

β

n

´
,

(55)
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where the constant C1 is independent of N and mr.

Finally, let us consider the submatrix G̃ψψ. The number of the non-zero entries of G̃ψψ,

(G̃ψψ), is defined by

(G̃ψψ) :=

mrX
ki=0

mrX
kj=0

(G̃
(ki,kj)
ψψ ), (56)

where G̃
(ki,kj)
ψψ is the submatrix of which the resolution levels of two basis functions wi and

wj are ki and kj .

The non-zero entries of the submatrix G̃
(ki,kj)
ψψ can be counted as follows:

(G̃
(ki,kj)
ψψ ) ≤ ns · 2ki+kj

³
2−ki + 2−kj + 2δ

´
. (57)

In inequality (57), δ is derived from equations (20), (22) and (53) as

δ ∼ C · 2− 2n+1

4n
(ki+kj)N

β

2n . (58)

Substituting equations (57) and (58) into (56), we can obtain the following estimation of

(G̃ψψ):

(G̃ψψ) ≤ ns
mrX
ki=0

mrX
kj=0

2ki+kj
³
2−ki + 2−kj + 2C · 2− 2n+1

4n
(ki+kj)N

β

2n

´
≤ C2

³
N logN +N1+β−1

2n

´
.

(59)

From equation (48), (49), (55) and (59),

(G̃) = (G̃φφ) + 2 (G̃φψ) + (G̃ψψ)

≤ CN
³
N

β

n
−1 +N

β−1
2n + logN

´
.

(60)

As shown in equation (60), (G̃) has the following asymptotic order dependently on β:

(G̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(N logN), 0 < β < 1,

O(N1+γ1), 1 ≤ β < 2n− 1,

O(N1+γ2), β ≥ 2n− 1,

γ1 := min

½
1,

β − 1
2n

¾
, γ2 := min

½
1,

β

n
− 1
¾
.

(61)

The number of the stored entries of the matrix H̃ := H+∆H, (H̃), can be estimated

in the same manner as estimation of (G̃). i.e.,

(H̃) =

⎧⎪⎪⎨⎪⎪⎩
O(N1+γ3), 0 < β ≤ (2n+ 1)

2

2n
,

O(N1+γ4), β >
(2n+ 1)2

2n
,

γ3 := min

½
1,

β

2n+ 1

¾
, γ4 := min

½
1,
2β − 2n− 1
2(n+ 1)

¾
.

(62)
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Figure 1: Boundary conditions in the numerical example.

6 Numerical results

In this section, we attempt to verify several assumptions and approximations, which

are introduced to set the optimal threshold parameter, through numerical experiments.

We chose the two-dimensional problem with simple boundary shapes as a test problem.

Figure 1 shows the boundary conditions of the test problem. Note that this problem has

the true solution u as

u(x, y) =
1

4
y +

4

π2

∞X
n=1

1

n2 sinhnπ

³
1− cos nπ

2

´
cosnπx · sinhnπy, (63)

and the solution shows the singularity on ∂u/∂n at (1/2, 1) and (0, 1).

This example is not the typical problem that computational cost of BE analysis is sub-

stantially reduced with the wavelet BEM. However, the present numerical experiments will

perform their roles as the benchmark tests for proving the present scheme the effective

detremination strategy of the optimal threshold parameter, sufficiently. This is because

most of assumptions and approximations introduced in Section 4 are concerned with the

treatment of norm or the error equilibrium.

In the present experiments, we employed two kinds of spline wavelets – the Haar

wavelets (m = 0, n = 1) and the piecewise linear non-orthogonal wavelets with second-

order vanishing moments (m = 1, n = 2) – as basis function. The wavelet expansion

for approximating the potential or the flux on the boundary is defined in every interval

corresponding to nb(= 5) subboundaries. The DOF is set to N = nb · 2mr+1 (Haar) or

N = nb · (2mr+2+1) (piecewise linear). Moreover, the constants α and β in equation (39)

were estimated using the BE solutions with 40 and 80 DOFs (Haar wavelets), and 45 and

85 DOFs (piecewise linear wavelets). The entries of the coefficient matrix were generated

through analytical integration.

15



6.1. Verification of basic assumptions

In the error estimation for determining the optimal threshold parameter, we have intro-

duced the following assumptions:

(i) ηg = ηh = ηopt.

(ii) ||A∆z|| ∼ ||Ae|| ∼ ||c|| is equivalent to ||eu|| ∼ ||∆zu||, for truncation under the

optimal threshold parameters.

(iii)
||A∆z||
||u|| ≈ ||H||

µ
∆Gmax
Gmax

+
∆Hmax
Hmax

¶
≈ ||H||(ηg + ηh), in the sense of maximum

norm.

To verify these assumptions, we monitor the relation between the threshold parameter η

and three ratios ||A∆z||/||c||, ||∆zu||/||eu|| and ||A∆z||/(η||H|| · ||u||). Figure 2 depicts
the results for these ratios. In this figure, we also show the error norm ||uexact−u|| where
uexact is the vector corresponding to the expansion coefficients of the true solution u.

Note that in the present experiments the matrices G or H were alternatively compressed

in order to discuss the validity of assumptions (i) and (iii).

Let us first consider assumption (i). As shown in Figure 2, ||uexact − u|| has the point
at which the level of the error norm begins to increase. The value of η at the point is the

optimal value of the threshold parameter, and this value is independent of the kind of the

compressed matrix. Assumption (i), ηg = ηh = ηopt, is thus a practical and rational choice

of the threshold parameter in wavelet-based BE analysis.

Assumption (ii) can be verified from the ratios ||A∆z||/||c|| and ||∆zu||/||eu||. For all
exapmles, the value of two ratios are nearly equal, except that the threshold parameter

is substantially small. Consequently, the norm equivalences ||A∆z|| ∼ ||c|| and ||∆zu|| ∼
||eu|| are simultaneously satisfied, and then the threshold parameter η has the optimal
value. Hence, it is valid to employ ||A∆z|| ∼ ||c|| instead of the error equilibrium ||∆zu|| ∼
||eu||, as the condition for determining the optimal threshold parameter ηopt.
Next, we discuss the validity of assumption (iii) based on the results for the ratio

||A∆z||/(η||H|| · ||u||). This is because for alternative compression of G or H it is needed

to hold ||A∆z||/||u|| ∼ kHk(ηg + ηh) ∼ η||H|| in order to determine the optimal thresh-
olding value. As shown in Figure 2, ||A∆z||/(η||H|| · ||u||) is nearly equal to unity at the
optimal value of η in all the examples. Since ||A∆z||/(η||H|| · ||u||) ∼ 1 is equivalent to
||A∆z||/||u|| ∼ η||H||, assumption (iii) is valid.
The above verification is based on the numerical results obtained using the true value

of ||H||. In determination process of the optimal threshold parameter, the norm kHk
is however, approximated by ||H|| ' ||H̄|| where H̄ is the H-matrix of the BE equation

used to generate the approximate expression of kck/kuk. We should thus discuss the
validity of this approximation. Figure 3 shows the relation between the DOF and the

ratio ||H̄||/||H||. The ratio ||H̄||/||H|| varies with the rate of O(N−µ) where µ ≥ 0 has
very small value. This implies that the difference between the true value kHk and the
approximation kH̄k remains small independently of the DOF. We can hence conclude that
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(i) Compression for the matrix G alone.

(ii) Compression for the matrix H alone.

(a) Haar wavelets. (2,560 DOFs)

(i) Compression for the matrix G alone.

(ii) Compression for the matrix H alone.

(b) Piecewise linear wavelets. (2,565 DOFs)

Figure 2: Valiation of three kinds of ratios ||A∆z||/||c||, ||∆zu||/||eu|| and ||A∆z||/(η||H||·
||u||). The matrices G or H were alternatively compressed. ((a): Haar wavelets (2,560

DOFs), (b): piecewise linear wavelets (2,565 DOFs), • : ||A∆z||/||c||, ◦ : ||∆zu||/||eu||,
N : ||A∆z||/(η||H|| · ||u||), × : ||uexact − u||)

||H̄|| provides a good approximation of ||H||. In this situation, the above discussion may
be consistent even if ||H|| is replaced by ||H̄||.

6.2. Accuracy of optimal threshold parameter

We now investigate the accuracy of the optimal threshold parameter determined by the

present strategy. Figure 4 depicts the relation between the DOF and the norm ||c||/||u||,
and the optimal values of the threshold parameter. In this figure, we also plot the optimal

values searched through repetition of numerical experiments: the experimental value is

denoted by η(exp).
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Figure 3: Relation between DOFs and ||H̄||/||H||. ||H̄|| is evaluated using the numerical
solution with 80 (mr = 3, Haar wavelets) or 85 (mr = 2, piecewise linear wavelets) DOFs.
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(b) Piecewise linear wavelets.

Figure 4: The optimal threshold parameters estimated by the present strategy. (◦ : the
estimated value ηopt (by equation (45)), • : the experimental value η(exp) (determined
through repetition of numerical experiments), × : ||c||/||u||)

In derivation of estimation (45) from truncation error estimation (27), we assumed that

||A∆z||
||u|| ≈ ||H||

µ
∆Gmax
Gmax

+
∆Hmax
Hmax

¶
≈ ||H||(ηg + ηh) ≈ 2ηoptkHk.

This assumption that has already been verified in the previous subsection implies that the

optimal threshold parameter ηopt has the same asymptotical order as the residual norm

||c||/||u||. In other words, the estimated threshold parameter shows ηopt ∼ O(N−β) where
β is the asymptotical convergence rate of ||c||/||u||. The validity of this approximation,
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Table 1: Error of the potential ku − uexactk. (“ η = η(exp) ” indicates the results for the

experimental values η(exp). (a): Haar wavelets, (b): piecewise linear wavelets)

(a) Haar wavelets.

Error of the potential
N

(η = ηopt) (η = η(exp))

160 9.639× 10−3 9.526× 10−3
320 5.499× 10−3 5.464× 10−3
640 3.090× 10−3 3.091× 10−3

1,280 1.768× 10−3 1.729× 10−3
2,560 9.661× 10−4 9.604× 10−4
5,120 5.374× 10−4 5.535× 10−4

(b) Piecewise linear wavelets.

Error of the potential
N

(η = ηopt) (η = η(exp))

165 1.350× 10−2 1.342× 10−2
325 6.592× 10−3 6.481× 10−3
645 3.081× 10−3 3.043× 10−3

1,285 1.311× 10−3 1.319× 10−3
2,565 4.547× 10−4 4.551× 10−4
5,125 1.120× 10−4 1.283× 10−4

ηopt ∼ O(N−β), can be verified by comparing the asymptotical order of ||c||/||u|| (or ηopt)
with that of η(exp).

As shown in Figure 4, the asymptotical order of the experimental value η(exp) is roughly

equal to β, though the value of η(exp) is fluctuating. On the other hand, the residual norm

||c||/||u|| decreases uniformly with increasing DOF. The uniform convergence of O(N−β)

is indicated independently of the number of degrees of freedom, and hence we can easily

evaluate the value of kck/kuk by the approximation kck/kuk ∼ α · N−β . In the present
example, the constants α and β used in the approximate expression were determined by

the BE solutions with N = 30 — 100. The DOF N = 30 — 100 corresponds to the DOF

with the finest resolution level mr of 1 — 3. Hence, we will be able to estimate the optimal

threshold parameter at smaller additional work in engineering applications of the wavelet

BEM.

Next, let us consider the reliability of equation (45). The estimated value ηopt by equation

(45) tends to be slightly larger than the value of η(exp), as shown in Figure 4. In the present

matrix compression, the use of larger value of the threshold parameter leads to a highly

compressed coefficient matrix. We may however, encounter the increase in the error of

BE solution. To investigate the influences of the matrix compression using the estimated

optimal value ηopt on the error of BE solution, we tabulate the errors of the potential,

ku− uexactk, in Table 1. Even if the estimated value ηopt is set to a larger value than the
experimental value η(exp), the error for η = ηopt is roughly equal to that for η = η(exp).

We can thus conclude that the matrix compression using the estimated optimal threshold

parameter scarcely cause the accuracy reduction of BE solution.

6.3. Performance of BE analysis

Figure 5 depicts the number of non-zero entries of the matrices G and H. Notice that in

the present experiment Haar wavelets (n = 1) were used as basis functions. The residual

norm ||c||/||u|| in the test problem has an asymptotical order of β = 1.32, i.e., O(N−1.32),
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Figure 5: The number of non-zero entries of the compressed matrices G̃ and H̃. In the

present experiment, the Haar wavelets were used as the basis functions. The asymptotical

convergence rate of the residual norm kck/kuk is then O(N−1.32). The numerical results
show (G̃) ∼ O(N1.19) and (H̃) ∼ O(N1.02), whereas using the estimation presented

in Section 5 (G̃) and (H̃) were estimated at O(N1.18) and O(N1.40), resprectively.

Table 2: Compression rate of the coefficient matrices G and H.

(a) Haar wavelets.

N G (%) H (%)

160 22.258 9.211

320 13.613 5.086

640 8.098 2.712

1,280 4.713 1.415

2,560 2.662 0.716

5,120 1.507 0.356

10,240 0.844 0.175

(b) Piecewise linear wavelets.

N G (%) H (%)

165 14.718 13.051

325 8.948 7.124

645 5.468 3.827

1,285 3.257 2.002

2,565 1.896 1.016

5,125 1.103 0.510

10,245 0.654 0.253

and then the numbers of the non-zero entries (G̃) and (H̃) are estimated as O(N1.18)

and O(N1.40), respectively, with equations (61) and (62). On the other hand, the numerical

results also show O(Nγ); γ = 1.19 ( (G̃)) and γ = 1.02 ( (H̃)). Overestimation of

(H̃) with equation (62) will be caused by the fact that in the present estimation the

null entries concerning the kernel q∗ = 0 on a straight line are counted as non-zero entries.

The compression rates of the matrices G and H are tabulated in Table 2. The rate of

compression of N ×N matrix was evaluated by

(Compression Rate)(%) := 100× (Number of Stored Entries)
N2

.

In these examples, the stored entries of G and H are reduced to about 1 — 5 % for
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Figure 6: The CPU time for matrix assembly. This computation time does NOT include

the CPU time for determining the optimal value ηopt. In the present experiments, 0.37

(Haar) and 1.39 (piecewise linear) seconds were spent in estimation of ηopt. (• : Haar
wavelets, ◦ : Piecewise linear wavelets)

N = 1, 000 — 2, 000. As mentioned above, the matrix compression based on the present

truncation scheme leads to O(N1+γ) non-zero entries, not to O(N(logN)a) (a ≥ 0); we
can expect to substantially save the memory requirements in practical BE analysis.

Figure 6 shows the CPU time for matrix assembly. Note that the indicated results in

this figure does not include the computational time for determining the optimal threshold

parameter. The CPU time also increases O(N γ̄) (1 ≤ γ̄ < 2) with DOFs like the number

of non-zero entries. The rates are both O(N1.40) independently of the kinds of wavelets,

and indeed these are roughly equal to the estimation of (H̃) (the number of non-zero

entries of H̃). We can derive the following two conclusions from this fact: (i) the CPU time

can be reduced by using a priori truncation scheme described in Section 2 and avoiding

the integrations concerning the truncated entries, and (ii) for the present numerical tests

the a priori estimation carried out to all the matrix entries does not cause the obvious

increase in the amount of computational work. On the other hand, the additional CPU

time for determining ηopt was 0.37 (Haar) or 1.39 (piecewise linear) seconds. In the present

examples, these are comparable to the total CPU time for N = 300 — 500; are only about

10 % of the CPU time for N ' 2, 000.

7 Concluding remarks

We have proposed a practical determination strategy of the optimal threshold parameter

for matrix compression in the wavelet BEM. In the present paper, we have discussed the

thresholding value for the Beylkin-type truncation algorithm, which have been widely

used in the engineering analyses with the wavelet BEM. The optimal threshold parameter

is used in matrix compression to reduce the memory requirement and the computational
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work as much as possible with the accuracy of BE solution preserving. We have determined

such value as in BE solution the truncation error is comparable to the discretization error.

The both errors are estimated in the residual sense. The estimation of the discretization

error is carried out using the potential contributions ||c|| in the residual vector R, whereas
the truncation error is estimated by the truncation contribution ||A∆z|| in the residual on
boundary element equations. In the determination of the optimal value, we have imposed

||A∆z||/||u|| ∼ ||c||/||u|| on the residual norms. The equilibrium of the residuals plays

the most important role in the present determination strategy, nevertheless, the true value

of ||c||/||u|| corresponding to the DOF of main BE analysis cannot be evaluated without
solving the boundary element equation in the main analysis. We have thus attempted to

estimate the value of ||c||/||u|| using the approximation αN−β, and then the approximate
expression is developed by the BE solutions with smaller DOFs. Furthermore, several

assumptions and approximations have been introduced to determine the optimal threshold

parameter, and have been verified through numerical experiments.

As shown in Section 6, the matrix compression using the optimal threshold parameter

generates a sparse coefficient matrix with O(N1+γ) (0 ≤ γ < 1) non-zero-entries. This is

because we use the Beylkin-type truncation scheme and then require the equilibrium of the

truncation and discretization errors. We cannot consequently obtain the computational

complexity and memory requrements of quasi-linear order, like Dahmen-Schwab truncation

algorithm. On the other hand, the amount of storage can be substantially reduced by the

present compression scheme: in the examples shown in the preceding section we obtained

a few percent compression rates for the DOF N ∼ 1, 000. These results however, seem to

be not sufficient to ascertain whether Beylkin-type truncation reduces a large amount of

computational cost comparable to that for Schwab-type compression or not. We hope to

present the numerical comparison with the alternative (quasi-optimal) compression scheme

in future.

To determine the optimal value of the threshold parameter, we have to calculate BE

solutions with smaller DOFs than that of main analysis. This computation obviously

requires additional computational work. When we are obliged to deal with large DOFs

such as 3-D problems or 2-D problems with complicated boundaries, the additional work

may require large computational cost. In this situation, a number of scaling functions

without vanishing moments is a cause of increasing the computational cost of wavelet-

based BE analysis. Hence, the reduction of such computations is an important issue of

rather the wavelet BEM than the present determination strategy including subsidiary

calculation with smaller DOFs.
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