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SUMMARY The demand for mobile communication ser-
vices is rapidly increasing, because the mobile communication
service is synonymy of an ideal communication style realizing
communication in anytime, anywhere and with anyone. The
development of economic and social activities is a primary factor
of the increasing demand for mobile communication services.
The demand stimulates the development of technology in mobile
communication including personal communication services.
Thus mobile communication has been one of the most active
research in communications in the last several years. There exist
various problems to which graph & network theory is applicable
in mobile communication services [1]. (for example, channel
assignment algorithm in cellular system, protocol in mobile
communication networks and traffic control in mobile communi-
cation). A model of a cellular system has been formulated using
a graph and it is known that the channel assignment problem is
equivalent to the coloring problem of graph theory. Recently,
two types of coloring problems on graphs or networks related to
the channel assignment problem were proposed. Mainly, we
introduce these coloring problems and show some results on
these problems in this paper.

key words: graph and network, coloring problem, mobile com-
munication, channel assignment problem

1. Introduction

In cellular mobile communication systems (we simply
call a cellular mobile communication system a cellular
system, hereafter), on which are based many of today’s
mobile communication schemes, efficient use of chan-
nels is a very important issue. In a cellular system, the
service area is divided into many small cells and each
channel is re-used in some cells, simultaneously.
Channel assignment methods affect the system capacity
and they are classified into Fixed Channel Assignment
(FCA) and Dynamic Channel Assignment (DCA) [2]
-[4]. In FCA, channels are permanently allocated to
each cell. Basically, all channels are available in every
cell in DCA. In general, DCA gives better perfor-
mance than FCA. However, FCA is better than DCA
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under over load. The size of a cell becomes smaller in
future cellular systems. As it becomes smaller, the
variance of traffic fluctuations in each cell becomes
larger. DCA is more flexible than FCA, so DCA can
cope with the traffic fluctuations. Generally, to obtain
the solution of the channel assignment problem is
NP-hard [3]. So, approximate algorithms must be used
in order to obtain the solution in a practical time when
DCA is applied to the cellular system. Therefore, it is
one of the most important problems to find the algo-
rithms in a cellular system.

The usual model of a cellular system has been
formulated using a graph [3], [5]. There exist the
merits of this formulation using a graph as follows. In
usual, a service area in a cellular system is divided into
regular hexagon cells. A lot of studies on channel
assignment in a cellular system deal with this regular
location of cells. However, a cellular system may have
different size cells and non-uniform interferences from
cells to cells. The formulation using a graph deals with
the cellular system with different size cells and non-
uniform interference comnsistently. Moreover, we can
apply results in graph & network theory to the assign-
ment problem.

Recently, two types of coloring problems on
graphs or networks related to the channel assignment
problem were proposed. In this paper, we introduce
these coloring problems and show some results on
these problems. The channel scheme on one coloring
problem is introduced by offsetting each channel by 1/
k of its channel bandwidth. Another coloring prob-
lem takes the degree of cochannel interference into
consideration. For general terminology in graph the-
ory, we refer the reader to [6], [7].

2. Cell structure

There exist different structures of service areas (see
Figs. 1(a), (b), -+, (f)). The service areas in Figs. 1
(b), (c), (d) are called a band shaped service area,
ring shaped service area and tree shaped service area,
respectively. The service area in Fig. 1(e) has three
dimensional cells. This is a model of an in-building
mobile communication. In Fig. 1(f), a cell is divided
into three cells, called a higher cell, a middle cell and
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Fig. 1 Various structures of cells.

a lower cell. Large-sized cars such as buses use higher
cells and small-sized cars such as private cars use
middle or lower cells. Assuming radio propagation is
on only roads in urban area, the service area is shown
in Fig. 1(d). The service areas in Figs. 1(d), (e) and
(f) are models of micro (or pico) cellular systems.

Fig. 2 Interference to z.

channel allocation. -
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If a channel frequency is used in a cell, it can not
be used in some other cells. These other cells are called
buffer cells of the cell. If the buffer cells of a given cell
consist of all closer than k cells away from it, the
buffering system is called the k-belt buffering. For
example, we assume two-belt buffering system in Fig. 1
(a). cell z;5 is a buffer cell of cell z. A channel A can
be use in z, 2, Z4, Z7, Z0, 23 and 23 at the same time
(see Fig.2). 1In the case of FCA and two-belt
buffering, a channel allocation using channels A, B, C,
D, E, F and G is shown in Fig. 3.

3. Usual Formulation Using a Graph

We construct an undirected graph G for a cellular
system. G is a graph in which a vertex v; corresponds
to a cell z in the cellular system and an edge e= (v;, v;)
represents that the cochannel interference between cells
z; and z can not be neglected. The graph G is called
the interference graph of the cellular system. An
assignment of colors (element of some set) to vertices
of a graph G, one color to each vertex, so that adjacent
vertices are assigned different colors is called a color-
ing of G. For every coloring of G, the minimum
number of colors is called the chromatic number of G
denoted by y(G). In the interference graph, assigning
channels to cells is equal to assigning colors to vertices.
So, in the formulation of a cellular system using a
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Fig. 4 A replacement of a vertex.

graph, the number of channels for any channel assign-
ment for a cellular system, is not less than the chro-
matic number x (G) of the interference graph G.

If some users are in a cell, we have to assign a
channel to each user. In this case, we reconstruct or
modify the interference graph as follows. We consider
assigning ¢ channels (£=1) to a cell z;, We replace the
vertex v;, with a complete graph with ¢ vertices. An
example of the replacement in the case of r=3 is shown
in Fig. 4. Therefore, we consider only assigning a
channel to each vertex of the interference graph here-
after.

4, Channel Offset Scheme

Usually, a spectrum which is divided into channels is
shown in Fig. 5. Recently, a channel offset scheme has
been introduced [8], [9]. A 1/k channel offset scheme
is introduced by offsetting each channel by 1/k of its
channel unit bandwidth. The 1/3 channel offset
scheme is shown in Fig. 6. We call the channel scheme
in Fig. 5 the offsetless scheme. The number of channels
for a given bandwidth in a channel offset scheme is
larger than in the scheme (offsetless scheme) in Fig. 5.
For simplicity, let us represent the axis of frequency
spectrum by the number line as shown in Fig. 7, where
intervals [0, 1), [1, 2), [1.5, 2.5), -+~ represent channels.
The simple expression of the spectrum in Figs. 5 and 6
are shown in Figs. 7(a) and 7(b), respectively. The
channel [x, y), where y— x=1 which means the chan-
nel bandwidth, is represented by x, that is, a channel x
means channel [x, y). The degree d(f;, f;) of inter-
channel interference between two channels f; and f; is
determined, depending on f;, f;, 1 —|f:—fil, and so on.
If d(d., f;) is large, then it means that the degree of
interchannel interference is large.

The interference g(z;, z;) is the upper bound of the
interference between two cells z; and z; guaranteeing
good voice quality and we assume 0=g(z, z)=1,
where g(z;, z;) is generally determined by the measure-
ment of interference. That is, g(z;, z;) depends on the
location of service area, the size of cells, and so on.

In this section, we assume that a service area, the
interference ¢(z;, z) for every pair of cells in the
service area and the degree d(f;, f;) of interchannel
interference for every pair of channels are given. Here,
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Fig.5 A channel scheme.

Fig. 6 1/3 channel offset scheme.
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Fig. 7 Simple representations of channel offset schemes.

we define d (f;, f;) as follows'.
1-|fi—filif [fi—fil=1,

0 otherwise.

a(fi £ =

We assume that the bandwidth of a channel is one. So,
if |i—f;|=1 for two channels f; and f;, then we can
ignore the interference between f; and f;. Let ¢ be a
mapping from a cell to a channel. For each cells z, z;,
if d(c(z), c(z;)) =g(z, z;), then ¢ is called a feasible
assignment of channels. Let us define total bandwidth
B, as follows:
B zlglixlc (z:) —c{z) +1].

Example 1: Consider a service area in Fig. 1(a). Let
the cellular system be three-belt buffering system,
where

0, if z; and z; are contiguous

0.5, if z; is located at 1 or 2

g(z, z;) = cells away from z;

1, otherwise.

The 1/2 channel offset scheme called interleave is

T In [9], d(f,, f;)=I|fi—fi. For consistency in this
paper, we change the definition of d (f;, f;) as stated above.
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Fig. 8 1/2 channel offset scheme.

Fig. 10 A feasible assignment of channels using a cluster.

shown in Fig. 8. Figure 9 illustrates a cluster of 12
cells for a feasible assignment of channels in a service
area in Fig. 1(a) using the 1/2 channel offset scheme.
Using this cluster, we can assign channels to all cells
(see Fig. 10). The total bandwidth is 6.5. If we use the
offsetless scheme, the total bandwidth is 12.

In a cellular system, if the channel offset scheme is
changed, the total bandwidth is change in general.
However, there exists the optimal channel offset
scheme if each g(z;, z) is a rational number [9]. Let
ay be a positive integer. If ay* g(z;, z;) is a nonnegative
integer for each cell pair, then the 1/ channel offset
scheme is optimum. Actually, the 1/2 channel offset
scheme is optimal in Example 1. B=6.5 is the best
(minimum) bandwidth using 1/2 channel offset sys-
tem. And there does not exist the total bandwidth less
than 6.5 using any other scheme.

Next, we formulate the channel assignment prob-
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(b)
Fig. 11 An interference network and a coloring of the network.

lem as an assignment problem of colors to vertices of a
network. N=(V(N), E(N); g) is a network with
vertex set V' (N) and edge set E(N). Each vertex v;
corresponds to cell z; and (v;, v;) EE (N) if and only
if g(z, z;) <1. With each edge (v;, v;), the nonnegative
real number ¢ (z;, z;) called the weight of the edge are
associated. The network N is called the interference
network of the cellular system. If each edge weight is
zero in a network N and we use offsetless scheme,
namely k=1, then the minimum total bandwidth of ¥
is equal to the chromatic number of the underlying
graph of N. Therefore, this assignment problem is a
generalized coloring problem of graphs.

Example 2: In Fig. 11(a), let N be an interference
network. A channel assignment using 1/2 channel
offset scheme is shown Fig. 11(b). The total band-
width is 2.5—1+1=2.5. It is obvious that this value is
optimal.

5. Coloring Taking the Degree of Interference into
Consideration

In this section, we introduce another new coloring
problem on graphs or networks related to the channel
assignment problem [10]-[13]. This coloring takes the
degree of cochannel interference into consideration.

In previous section, if we assume the two-belt
buffering system in Fig. 1(a). A channel A can be use
in 2, Zn, Za, Z7, Zso, Zss3 and z at the same time. The
interference to z may be the sum of the interference
from these cells except for z. A two-belt buffering
system means that the buffering is sufficient for effective
immunity to such interference in the worst case.
However, if z; and z4 only use channel A, a cell that
is a buffer cell of z may be able to use channel A. For
example, z, 21, zs and zs may be able to use channel
A at the same time.

We explain this coloring using a simple example.
Figure 12 illustrates an interference graph. 1In the
graph, we need three channels A, B and C. Figure 13
(a) illustrates a network called an interference net-
work, where each edge weight represents the degree of
cochannel interference. For example, if channel A is
assigned to v, w and w, the cochannel interference is 1
+0.5=1.5. Now, we assume that if the cochannel
interference to each cell is not greater than 1, the
assignment guarantees good voice quality. This means
that the shreshold is one. In this case, we need only
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Fig. 12 A interference graph.

Fig. 13 An interference network and a coloring of the network.
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Fig. 14 A interference (multiple) graph.

two channels (see Fig. 13(b)). Let each edge weight
be 1 and the threshold be 0. Then, the coloring
problem is the same as the coloring problem of graphs.
Therefore, the new coloring problem is a generaliza-
tion of the usual coloring problem.

Assuming that the ratio of all edge weights can be
represented using natural numbers, we can reconstruct
the interference network, that admits multiple edges,
such that all edges have same positive weight. In this
case, the new coloring problem is rewritten into a
coloring problem of (multiple) graphs. For example,
the network in Fig. 13(a) is translated into the graph
in Fig. 14. The minimum number of colors for graph
G is denoted by x,(G), where 4 is the threshold. We
show an upper and a lower bounds of x.(G), as
follows [13].

28 <@ sf7EL, M)

where r is the maximum number of edges that are
incident to v for each vertex v and {x} represents the
minimum integer that is not less than x.,
Example 3: In Fig. 15(a), let A=2. Since r=35, the
upper bound is {6/3}=2. An assignment using two
colors is shown in Fig. 15(b).

In K, that is a complete graph with 4 vertices,
since =3 and y (Ky) =4, the equalities hold in (1) if
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Fig. 15 An interference graph and a coloring of the graph.

h=1. Therefore the upper and lower bounds are
sharp. And if A=0, the upper bound is 4 1. This is
a well-known result in graph theory [6].

6. Mixture of Previous Coloring Concepts

To efficiently use spectrum further, we combine the
concepts of colorings in Sects.4 and 5. Roughly
speaking, this coloring is a coloring taking the degree
of interchannel interference, including cochannel inter-
ference, into consideration using fractions as colors.
The degree of interference between two channels f; and
f is denoted by d*(f., f;). Here, we define d*(f;, f;)
as follows.

if |fi—fil=1,

otherwise.

d*(f.. )=

Let G be a multiple graph and %~ be a fixed non-
negative integer. We consider a mapping ¢ from a
nonnegative rational number to a vertex. Let N (v) =
{ueV(G)|u is adjacent to v} and m(u, v) be the
number of edges that join » and v. If for any v,

uE%}(v)m(u, vyd*(c(u), c(v))<h,

then ¢ called a feasible coloring with 4. For a feasible
coloring ¢ with 4, let us define the total bandwidth B
B= max |c(u) —c(v) +1|.
u,veV(G)

The minimum number of total bandwidths for feasible
colorings with /4 is denoted by x¥(G). It is easily
shown that xf (G) =x(G) and x¥(G) < xx(G).
Example 4 A simple example is shown in Fig. 16.
The coloring in Fig. 16 is a feasible coloring with 1.
For example.

> mu, w)yd*(c(u), c(w))

ueN(vo)

=2-d*(c(w), c(w)) +1-d*(c(vs), c(w))
+1-d*(c(vy), c(w))

=2-<1—‘%—0 '>+1-<1—‘%—0D+1-0

=0.8<1.
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Fig. 16 A feasible coloring with 1 of a graph.

And the total bandwidth is (7/5) —0+1=12/5.
There exists the following lower bound of this
coloring [14].

9 < (6).

In K,, x(K,)=4 and we easily show that y* (K,) =2.
In this case, the equality in (2) holds.

(h=0) (2)

7. Cell Structure and Computational Geometry

Computational geometry is concerned with the design
and analysis of algorithms for solving geometric prob-
lems. The field of computational geometry includes
geographic information processing, VLSI design, pat-
tern recognition and robotics. The Voronoi Diagram
[15] is one of the fundamental concepts in
computational geometry with many applications. For
two points p and g, let d(p, q) denote the Euclidean
distance between p and ¢g. For a finite set P={p,, ---,
Pn} of points in the plane, region ¥ (p;) is defined by

V(p:) ={pld (p, p:) <d (p, p;) for any j(=i)}.

V (p:) is called the Voronoi region of p;. The Voronoi
regions V(py), -, V(p,) make a partition of the
plane, and this partition is called the Voronoi diagram
for P (see Fig. 17). It is well-known that a Voronoi
diagram on » points in the plane can be obtained in
O(nlog n) time and O (n) space. Recently, the Voronoi
diagram for moving objects has been investigated in
connection with motion planing in robotics and
geometric optimization problem in computational
geometry [16]. A topological change of Voronoi
diagram is shown in Fig. 18.

Now if we regard each element of P as a cell site
and assume that radio signal strength drops in propor-
tion to distance, then we can regard Voronoi regions as
cells. In micro (or pico) cellular systems, by miniatur-
ization of devices, mobile units may be able to have the
function of exchanges, and connect other mobile units
and cell sites. In this case, not only mobile units but
also cell sites move in service area. Therefore, cell
structure changes dynamically. If we know how to
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Fig. 18 Topological change of Voronoi diagram.
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change cell structure, it is available for assignment of
channels and channel switching. The computational
geometry is applicable to cell structure of mobile
communications.

8. Other Problems in Channel Assignment Prob-
lems

There exist various graph & network theoretical
approaches to channel assignment problems. For
example, in [17], some lower bounds of the number of
channels are given. In [18], computational complexity
with respect to channel assignment problem is dis-
cussed. In general, to obtain the solutions of the
channel assignment problems is intractable. So
approximate algorithms must be used in order to
obtain the solution in a practical time. One example is
the application of neural networks [19]-[21].

9, Conclusion

This paper reviewed application of graph & network
theory to mobile communication, especially, to chan-
nel assignment problems in cellular systems. We
introduced new coloring problems on graphs or net-
works related to the channel assignment problems,
compared these problems with the usual coloring
problem and showed some results with respect to these
problems. We considered the relation between cell
structure and the Voronoi diagram.

The demand for mobile communication services is
rapidly increasing. We should work out various
problems in mobile communication services in near
future. Therefore, it is important to apply graph &
network theory to these problems.
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