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Covering Problems in the p-Collection Problems

Kaoru WATANABE', Masakazu SENGOKU'!, Hiroshi TAMURATT,

SUMMARY The lower-bounded p-collection problem is the
problem where to locate p sinks in a flow network with lower
bounds such that the value of a maximum flow is maximum. This
paper discusses the cover problems corresponding to the lower
bounded p-collection problem. We consider the complexity of
the cover problem, and we show polynomial time algorithms for
its subproblems in a network with tree structure.

key words: location problem, network flows, NP-complete, opti-
mization problem

1. Introduction

Location problems are an important in a lot of fields,
applied mathematics, computer science, operations re-
search, management science and industrial engineer-
ing (see the papers[1],[2], or the book[3]). The p-
collection problem is the problem where to locate p
sinks in a flow network such that the value of a maxi-
mum flow is maximum [6]. This problem is an impor-
tant location problem in a flow network because one
can apply to locating p resources (e.g. data bases, file-
servers, etc.) in a computer network such that as many
terminals (clients) can utilize these resources as possi-
ble. The paper[4] deal with cover problems in flow
networks. This paper discusses new cover problems,
which correspond to the p~collection problems.

Let D = (V, A) be the digraph with a vertex set V'
and an arc set A such that (v,u) ¢ A for any arc (u,v) of
A. Let b~ and bT be functions: V' — Z (the set of inte-
gers) such that b~ (v) < b*(v) for any v of V, let ¢~ and
c™ be functions: A — Z such that ¢~ (a) < ¢¥(a) for any
a of A, and let d~ and d' be functions: V — Z U {co}
such that d=(v) < d*(v) for any v of V. The func-
tions b™(v) and b~ (v) imply respectively an upper and
an lower bounds of flows from the source to v. The
functions c¢*(a) and ¢~ (a) correspond to respectively
the capacity and the lower bound of a. The functions
d*(v) and d~(v) mean respectively an upper and an
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lower bounds of flows from v to the sink. We call a
7-tuple:

N = (D,b~,b%,c7,c",d",d")

a network with lower bounds (usually, described as
N = (D,b*,c*,d*), and called a network, for conve-
nience). Figure I (a) illustrates an example of a network
with lower bounds. Let s and ¢ be new specified vertices
called the source and the sink, respectively. We repre-
sent V*, A® and A? as the vertex set VU{s, t}, the arc sets
{(s,v) : v € V} and {(v,t) : v € V'} respectively. Let X
be an arbitrary subset of V, let A% = {(z,t) : z € X},
and let A% = AUA®U A% . We define functions e~ and
et: At — Z U {oo} as

bE(v)  ifu=s
et (u,v) = d*(u) ifv=t
c*(u,v) otherwise.

(In this paper, double signs in an equation are in same
order.) And we define the adjoint network Nx of N
with respect to a subset X of V as the s flow network
with lower bounds:

Nx = (Dx,s,t,e"|A%, e |A%),

where Dx = (V*, A% ), and where e~ |A% (respectively,
et|A%) denotes the restrictions of e~ (e™ respectively)
on A%. The adjoint network Nx is feasible if there
exists a flow f in Ax meeting the following conditions.
Capacity Constrain: For any a € A%,

V1
[2,2]
va [-2,-1] s
[1,3]
Va
(a)
b~ (Ul) =-1, b+(“1) =3, ) =
b—<U2) =0, b+(’l)2) =2, ) =
b_(’Ug) =-1, b+(”3) =-1, d~ ('UB) =-1, d+(’L)3) =3
Fig. 1 (a) A network N, (b) the adjoint network of N with

respect to X = {v1,v3}.
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e (a) < fla) < e+(a).

Flow Conservation: The flow f is conserved in any
vertex v of V' in Ny. That is,

Z f(v,u):O,

u€ad(v)

where ad(v) is the set of vertices adjacent to-or-from v
in Nx, and where f(v,u) = —f(u,v) for any (u,v) of
A%.
A flow has skew symmetry, which is already used in
the condition of Flow Conservation. That is, we can
assume that, if (u,v) is an arc of A%, then f(v,u) =
—f(u,v). For any (u,v) of A%, we can also suppose
that ¢*(v,u) = —cF(u,v), and e*(v,u) = —eT(u,v),
since the capacity constrain holds for the pair (v, u).
If Nx is feasible, the value of f is val(f) =
ZaeA‘;( f(a) for any flow f in Nx. Given a network

N, we define hy(X) as

_ | maxgval(f) if Ny is feasible
iy (X) = { —0 otherwise.

(Notice that maxysval(f) is the value of a maximum
flow in Nx.) If p is a positive integer with p < |V, let
Hy(p) = max{hn(X) : | X| = p}. (We usually omit the
subscripts N of hy and Hy when N is clear from con-
text.) A subset X* of V with | X*| = p is a maximum
p-collection set of N if h(X*) = H(p). We call the opti-
mization problem of searching a maximum p-collection
set of a network the Jower-bounded p-collection problem,
and we write LBC as this problem. For example let’s
solve LBC for the network illustrated in Fig. 1 (a). We
have

]’L(Ul,’UQ) = —0Q, h(Ug,’Ug) = 4, h(’Ug,’Ul) =3.

Thus H(2) = 4, and {vz,vs} is the maximum 2-
collection set.

The p-collection problem discussed in [6] is equiv-
alent to the subproblem of LBC such that

b= (v) =0 for any v of V,
¢ (a) £0< et (a) for any a of A,
d~(v) =0 and d*(v) = oo for any v of V.

In this paper we describe this problem to PRC, the pri-
mary p-collection problem.

The sink-capacitated p-collection problem dis-
cussed in[7] is equivalent to the subproblem of LBC
such that

b~ (v) =0 for any v of V,
c (a) £0< ¢t (a) for any a of A,
d=(v) =0 for any v of V.

In this paper we describe this problem to SCC.

We introduce description a/3/ for subproblems
of the p-collection problem. The first item a denotes is
the value of p. If o = p, suppose that p is arbitrarily
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fixed. The second item 3 indicates a network topology.
This paper deals with two topology types: general net-
work (8 = N) and network with tree structure (5 = T')
where a network with tree structure is a network whose
underlying graph is a tree. The last item v means a
subproblem (PRC, SCC or LBC) on which b+, ¢* and
d* are restricted. For example, the problem p/T/LBC
denotes the lower-bounded p-collection problem in a
network with tree structure.

A subset X of V is a cover of N if h(X) =
> vev bT(v). (Notice that there is not always a cover.)
The cover problem corresponding to LBC is the prob-
lem of finding a minimum cover of N. We refer C/3/~
as the cover problem corresponding to p/8/v. In the
network illustrated in Fig.1(a), the subset {vq,v3} is a
minimum cover, since each subset with cardinality 1 is
not a cover. ‘

In the paper[6] the authors presented an O(n) al-
gorithm for 1/7/PRC, and an O(p?*n3C?) algorithm for
p/T/PRC, where n = [V| and C denotes the maximum
of weight and capacity. Tsukiyama[5] proposed an
O(p*n®C?) algorithm for p/T/PRC. The paper[8] con-
tains some complexity results that p/N/PRC is strongly
NP-hard, and that p/T/PRC is weakly NP-hard. The
paper [9] proves the weak NP-hardness of p/T/LBC,
and presents an O(n) algorithm for 1/7/LBC and an
O(p*n*C?) algorithm for p/T/LBC.

This paper discusses the cover problems. In Sect.2
we obtain complexity results for cover problems. Sec-
tion 3 presents an O(n) algorithm for C/T/PRC, and
Sect. 4 presents an O(n?®) algorithm for C/T/SCC with
dynamic programming type. Hence we know that, al-
though p/T/PRC and p/T/SCC are NP-hard, the cor-
responding cover problems are solvable in polynomial
time.

2. Complexity Results

In this section we shall obtain complexity results for
cover problems. The paper[8] shows strong NP-
hardness for p/N/PRC by polynomial reduction from
the vertex cover problem to this problem. The reduced
instance in there is also the instance of C/N/PRC.
Hence C/N/PRC is strong NP-hard. Hence we obtain
the following theorem.

Theorem 1: The problem C/N/PRC, C/N/SCC and
C/N/LBC are strongly NP-hard.

We can know weak NP-hardness for C/7T/LBC in much
the same way as the proof for p/7'/LBC in the paper[9].
Thus we obtain the following theorem.

Theorem 2: The problem C/T/LBC is weakly NP-
hard.

In Sects. 3 and 4, we shall design polynomial time algo-
rithms for C/T/PRC and C/T'/SCC, respectively. Thus,
although p/T/PRC and p/T/SCC are NP-hard, the fol-
lowing theorem holds for the corresponding cover prob-
lems.
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Table 1
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Complexity results for cover problems.

Topology type PRC SCC LBC
Network Strongly NPH | Strongly NPH | Strongly NPH
Tree P P Weakly NPH
Theorem 3: The covering problems C/T/PRC and Algorithm 1
C/T/SCC belong to the class P. L1 begin
The obtained results so far are brought together in 12 X 0
Table 1 1.3 while |[V(N)| > 1 do
able 1. 1.4 u «— an arbitrary leaf of N;
1.5 v + the vertex of N adjacent to-or-from wu;
3. The Problem C/T/PRC 1.6 if b+ (u) = 0 then
1.7 if b+ (u) £ ¢ (u, v) then
Let N = (T,b*,c*,d*) be a network with tree struc- 1.8 D« b¥ (u);
ture, where 7' = (V, A). For a cover problem, the func- 1.9 else
. - : : : 1.10 bt (u) — —o0;
tion b (-) has few meaning. For convenience, we assign i
. : 1.11 X — X U{u);
b~ (v) to —oo for any v of V. We present Algorithm 1 L12 i
with complexity O(n) for C/T/PRC, and we prove The- 1.13 fi:

orem 4.

Theorem 4: Algorithm 1 solves C/T/PRC exactly.
Proof: Suppose that the algorithm returns a vertex set
X for a network N = (T, b*, c¢*,d*) where T = (V, 4).
Let vo denote the vertex indicated by u in Step 1.20, let
B(u) denote the value of b (u) in Step 1.6, and let B(vo)
denote the value of b (u) in Step 1.21. If v is a vertex
of V' — {vo}, then n(v) denotes the vertex adjacent to v
and nearest to vp in N, and then U(v) denotes the set
of vertices adjacent to-or-from v excluding n(v). And
let U(vg) denote the set of vertices adjacent to-or-from
vo. To begin with, we show that X is a cover of N. We
define the function f on A% as follows. For any (s,v)
of A%, let f(s,v) = b (v). For any u of V — {wo}, let
f(u,v) be the value of D in Step 1.17. Then f satisfies
the capacity constrain in A® U A. We correct f to be
flow-conserved in each vertex of V — X.

Consider the case where vop ¢ X. Then B(vg) =
> wet(w) f (4 v0) + b7 (vo) < 0. Since bt (vg) = 0, we
can increase some f(u,vg)s with negative value without
exceeding 0 for f to be flow-conserved on vg. Ifvg € X,
then we do not need to have above the consideration.
However, if = is a vertex of X, then let f(u,z) = 0 for
any u of U(z) such that f(u,z) < 0. We call f(u,v) cor-
rected if v € XU{vg}, and if u € U(v). Let v be a vertex
of V. — {wo}. If f(v,n(v)) is corrected, and if f(u,v) is
not corrected for any u of U(v), then we perform the
following operation, hoping for f to be flow-conserved
on v.

Step 1. If B(v) < 0, then increase some f(u,v)s with
negative value without exceeding 0 to meet the
flow conservation on v.

Step 2. Let f(u,v) be corrected for any u of U(v). O

If B(v) = 0, then f is flow-conserved on v. Hence Step 1
corrects f if B(v) < 0. Thus

B(v) = Z f(u,v) + b (v) < 0.

u€elU (v)

.14 ifbt(u) <O then

1.15 D «— max{bT (u),c” (u,v)};
1.16 fi;

1.17 bt (v) « bt (v) + D;

1.18 remove u from N;

1.19  od;

1.20 ' wu « the vertex of N;

1.21 ° ifot(u) > 0 then X « X U {u} fi;
1.22  return(X),

1.23 end.

Since b1 (v) = 0, we can always perform Step 1. Hence
this operation changes f to be flow-conserved on v. We
repeat the preceding operation, until f(u, v) is corrected
for any (u,v) of A. After the iteration completes, the
function f meets the capacity constrain in A° U A and
the flow conservation in ¥V — X. We finally define

fat= Y flo,2) +b% (),

vEad(zx)

and the function f has changed to a flow in Nx such
that f(s,v) = b*(v) for any (s,v) of A°. Hence X
covers N.

There remains to verify whether X is minimum. If
we remove the arc (v,n(v)) from T for any v of X —{vo},
then we obtain the disconnected digraph. This discon-
nected digraph consists of the connected components
each with either vy or a vertex of X. Let z be a vertex
of X U {vg}, let T, be the component with z, and let
V, = V(T,). Now let W be a subset of V — V,;, and
assume that W is a cover of N. Then there exists a
maximum flow g in Ny such that g(s,v) = b* (v) for
any v of V. For any v of V,, the following inequality
must hold.

Bu)< 3 glus)+g(s,v).

uelU (v)

Consider the case where z = vy, and where x € X.
Then
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Z g{u,z) + g(s,z) > 0.

u€lU(z)

Since z ¢ W, the flow g is not conserved in z. This re-
sult contradicts that g is a flow. Hence W is not cover.
Now consider the case where z € X — {v}. Since
ct(z,n(z)) < B(zx), we obtain

c(z,n(z)) < g(z, n(z)).

This inequality contradicts the capacity constrain.
Hence W is not a cover of N. By the above two con-
siderations, a cover of N must contain a vertex of Ve
for any = of X. Hence | X| < |X*| where X* denotes a
minimum cover of N. We know X is a cover of N, and
so we have | X*| = | X|. Consequently X is a minimum
cover. m

4. The Problem C/T/SCC

In this section we present an algorithm with dynamic
programming type for C/T/SCC. Given a network,
let v; be an arbitrary vertex of it. For convenience,
we add to the given network a new vertex vp and
a new arc (vy,vo) such that ci(vl,vo) = Zoco. Let
N = (T,b%, ct,d*) denote the new obtained network.
We suppose that vg is the root, and regard N as rooted.
For any vertex v of IV, we define the level lev(v) of v as
the number of all the arcs in a v, path between v and
vo. Let L(l) = {v € V : lev(v) = I} for any nonnega-
tive [, and let I* denote the maximum integer such that
L(I*) # 0. If v is a vertex of V — {wo}, then p(v) denotes
the parent of v, the vertex adjacent to v and nearest to g
in N, and then Ch(v) denotes the set of all the children,
all the vertices adjacent to-or-from v excluding p(v). Let
v be a vertex of T', and let U’ be a subset of Ch(v). If we
remove the arcs of {(v, p(v))}U{(u,v) : u € Ch(v)-U"}
from 7', then we obtain the subtree T}y, involving v. Fix-
ing U, let W = V(T},) — {v}, and let N, denotes the
restriction of N on Tp,. Let k be an integer such that
0 <k < |W|, let X be a subset of W with |X| = &,
and let (N#,)x be the restriction of the adjoint net-
work Nx on the digraph obtained by adding to 7%, the
source s, the sink ¢, the arc set {(s,w) : w € W}, and
{(z,t) : © € X}. The subnetwork N§, is k-covered if
there exists a function fx on the arc set of (Ng,)x for
some X, satisfying the capacity constrain for any arc of
(N$)x, and the flow conservation for any vertex of W,
such that fx(s,w) = b (s,w) for any w of W. (Notice
that flows does not always conserved on v.) We define

Fg. (k)
min min u,v) if N’ is k-covered
Jpin, i ulz_;fx( )
00 otherwise.

The value of Fy}, (k) means the minimum value of a flow
on the cut from U’ to v that covers all the vertices of
W.
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Let’s examine the meaning of ngl} (k). There exist
a subset X of W with | X| = k and fx on (NE’SI})X such
that fx(vo,v1) = 0 if and only if there exists a cover
with size k£ of the given network. From the definition
of F} (k), if Ff’gl}(k) > 0, then there is not such X and
fx; otherwise however there exist. Hence ngl}(k) <0
if and only if there exists a cover with size k. Thus we
shall find the minimum of k such that Froa (k) < 0.
We shall obtain an algorithm C/T/SCC by simplifying
the algorithm for p/T/SCC in the paper[7]. That al-
gorithm stores all feasible values of flows on each cut.
In this case the considered algorithm stores only the
maximum value of feasible flows. Thus C/T/SCC is
solvable in polynomial time. Now study the properties
of F5/(k) separating three cases.
Case 1: |[U'| =1, and u € U’ is a leaf.
It is easy to see the following equation for k = 0.

ooy 0T (W) ifbT(u) < ct(u,v)
Fy(0) = { co  otherwise.
And for k=1,
Fy.(1)

_ T (u) —dt(u) ifbt(u) - dt(u) < ¢t (u,v)
o { 00 otherwise.

Case 2: |[U'| =1, and u € U’ is not a leaf.

Let U” = Ch(u), and furthermore consider two cases.

Fig.2 (a) shows state in this case.

Case 2.1: u is not adjacent to ¢, and k < |W|.

Let I, (k) denote the value of FY, (k) in this case. If

Fg, (k) + b7 (u) < ¢t (u,v), then we obtain

Fl (k) = min{ F () + b* (), e (s, 0)};

otherwise Fy; (k) = oo.
Case 2.2: v is adjacent to ¢, and k£ > 1.
Let Fyj,(k) denote the value of F, (k) in this case. If
Fp(k—1)+ b (u) — d*(u) < ¢t (u,v), then we obtain
F (k)
= min{ Fy, (k- 1) + b"(v) — dT(u), ¢ (u,v)};

otherwise F{}, (k) = oo.

(a) (b)
Fig. 2 (a) Case 2, (b) Case 3.
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Algorithm 2
2.1 begin
2.2 i [F —1;
2.3 while 7 > 0 do

JEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

2.4 for all v € L(z) do

2.5 for all € Ch(v) do

2.6 U — {u};

2.7 if w is a leaf then

2.8 calculate F¢,(0) and Fy, (1); {Case 1}

2.9 Xy (0) «— @, and Xy (1) «— {u};

2.10 else

2.11 m — |[V(Tg)| - 1;

2.12 for all 0 <k < m do calculate Fy,, (k) od; {Case 2.1}

2.13 for all 1 £ k £ m do calculate F}, (k) od; {Case 2.2}

2.14 F2,(0) « F,,(0), X (0)  Xcnu) (0), Fyy (m) = F,(m), and Xy (m) — X&, (k)
2.15 forall 1 <k <m do

2.16 if 7y, (k) < Fyj,(k) then I, (k) — Fy;, (k), and Xy (k) — Xenw)(k);
2.17 else Fy, (k) «— Fj,(k), and Xy (k) < X (k= 1)U {u}

2.18 fi;

2.19 od;

2.20 fi;

2.21 od;

2.22 Uy « the set of a vertex of Ch(v);

2.23 while Uy # Ch(v) do

2.24 U, « the set of a vertex of Ch(v) — Uy, and U’ «+ Uy U Us;

2.25 for all 0 < k < |V(T, )| do

2.26 calculate Fyy, (k); {Case 3}

227 Xy (k) — Xy, (k1) + Xu, (k2); {where k1, ko are integers such that Fy, (k) = Fy, (k1) + Fpy, (k2)}
2.28 od;

2.29 Uy « U’

2.30 od;

2.31 od;

2.32 i—1—1;

2.33  od;

2.34  k* « the minimum integer such that Fg’gl}(k) <0;
2.35  return(Xey, (*));
2.36 end.

Using the results in Case 2.1 and 2.2, we can obtain
F (k)

Fl. (k) ifk=0
— { min{F, (k), Fl.(k)} if0<k<|W|
FU, (k) ifk=|W|.

We can compute the value of Fj, (k) if we know the
values of £, (k) for all children u of v.

Case 3: |U'| 2 2.

Let Uy and U, be non-empty subsets of U’ such that
U, UU, = U’, and such that U; N Uy = 0. Figure 2 (b)
shows state in this case. Then

Fiy (k) = min {7, (ka) + F, (k2)},

where k; and ko are integers such that ky + ky = k,
such that 0 £ k1 < min{k, |V (Ty,)| — 1}, and such that
0 < ky < min{k, |V(Ty,)| — 1}. We can estimate the
value of F, (k) if we know the values of Fjj (k1) and
F§, (k) for all ky and k. (In this algorithm we assume
that |Us| = 1.)

From the above results we obtain the recurring formu-
las (Case 2 and 3) and the boundary condition (Case

1) for dynamic programming. Suppose that we know
the value of F, (k) for any k and for any u of Ch(v).
Then we can estimate the value of FY,,(k) for any &
and for any u (Fig. 2 (a)). Next we can obtain the value
of th(v)(k) for any k (Fig.2(b)). We can design Al-
gorithm 2. First the algorithm calculate th(v)(k) for
any v € L(I* — 1), next for any v € L(I* —2), ---, and
last for the root vg.

In algorithm 2, the step 2.5 is executed O(n) times.
It costs O(n) time to calculate each Fy,, (k), Fy;, (k) and
F¥,(k). Since 0 < k < n, the complexity of the algo-
rithm is O(n?).

5. Conclusion

This paper deals with the cover problems correspond-
ing to PRC, SCC and LBC. In Sect.2, we obtain the
complexity results for the covering problems. Section 3
presents an O(n) algorithm for C/T/PRC, and Sect. 4
presents an O(n®) algorithm with dynamic program-
ming type for C/T/SCC. Hence, although p/T/PRC
and p/T/SCC are NP-hard, the corresponding cover
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problems, C/T/PRC and C/T/SCC, are solvable in
polynomial time. We hope to improve Algorithm 2.
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