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SUMMARY We introduce an image contour clustering
method based on a multiscale image representation and its appli-
cation to image compression. Multiscale gradient planes are ob-
tained from the mean squared sum of 2D wavelet transform of an
image. The decay on the multiscale gradient planes across scales
depends on the Lipshitz exponent. Since the Lipshitz exponent
indicates the spatial differentiability of an image, the multiscale
gradient planes represent smoothness or sharpness around edges
on image contours. We apply vector quatization to the multiscale
gradient planes at contours, and cluster the contours in terms of
represntative vectors in VQ. Since the multiscale gradient planes
indicate the Lipshitz exponents, the image contours are clustered
according to its gradients and Lipshitz exponents. Moreover, we
present an image recovery algorithm to the multiscale gradient
planes, and we achieve the skech-based image compression by
the vector quantization on the multiscale gradient planes.

key words: sketch-based image coding, contour detection, image
recovery, wavelet transform, multiscale analysis, vector quantiza-
tion

1. Introduction

Edge-based image coding[1]-[3] is one of the very low-
bit rate image compression techniques. In the sketch-
based image coding[1], an image is represented by im-
age contours and intensity differences across the con-
tours. Contour positions and qunatized intensity differ-
ences are recorded for image compression.

In decoding, an image is recovered by an iterative
procedure. The recovery procedure minimizes a cost
function which is defined by a constraint to the smooth-
ness in intensity changes on planar regions|[1]. The re-
covered image from the sketch-based image coding keeps
only the intensity difference across the contours. Since
the only information which is observed in the coded
data is the intensity difference across the contours, all
edges in the image are reconstructed in discontiniuous
edges. The smoothness or sharpness of edges is lost in
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the image coding process.

The wavelet maxima representation [4]—[6] is em-
ployed as another approach to the image coding based
on contours. If the wavelet maxima representation of
which basic wavelet function corresponds to the first-
order derivative of a smoothing function, the maxima
indicate the positions of contours and describe a mul-
tiscale behavior of edges on contours. The entire set
of wavelet maxima has enough information to recon-
struct an original signal precisely. The wavelet maxima
represent the original image as an edge representation
over the several scales. The decay in maxima amplitude
across scales depend on the Lipshitz exponents [4], [5],
[7] of image edges. The Lipshitz exponent indicates
the differentiability of the image intensity. Hence, the
wavelet maxima representation is capable to represent
the smoothness and sharpness in intensity changes on
contours. In image coding by wavelet maxima [5], [6],
only maxima which indicate contours around objects
are selected by their multiscale behavior. The modulus
of maxima along contours are recorded with a predic-
tive coding.

In this paper, we introduce vector quantization [8]
for a multiscale representation to cluster the image con-
tours. The proposed clustering method is applied to
a sketch-based image compression. Multiscale gradi-
ent planes are defined to describe image contours and
are obtained from the squared sum of two dimensional
wavelet transforms. The multiscale gradient planes al-
low us to describe the gradient of image intensity and
the Lipshitz exponent on each image positions by its
amplitude decay along scales. The vector quantization
is applied to those vectors which consist of the multiscae
gradients on several scales. These vectors on contours
are replaced with representative vectors in a code-book
of VQ. The contours are hence classified according to
the representative vectors that indicate a multiscale be-
havior including the Lipshitz exponents.

For image compression, an image is coded in a
form of the coarsest approximation image of the wavelet
transform, contour positions and indices of the repre-
sentative vectors. Not only the intensity gradient across
contours but the information about differentiability of
the edges on image contours are represented in the coded
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data. Hence smoothness and sharpness of the edges on
contours can be recovered from the encoded images. In
this paper, we demonstrate the possibility of the image
coding by several representative vectors and evaluate the
quality of recovered image. Also we would like to sug-
gest a relationship between image quality and the num-
ber of the represetative vectors to demonstrate the ad-
vantage of the multiscale representation in sketch-based
image coding.

In Sect.2, we define the multiscale gradient planes
by the dyadic wavelet transform. The multiscale proper-
ties of edges on image contours are explained by the de-
cay of multiscale gradients across scales. In Sect. 3, The
vector quantization is applied to the multiscale gradient
planes for clustering image contours. Shape-gain vector
quantization is employed to cluster image contours in
terms of differentiability of edges. In Sect.4, clustering
results are applied to the sketch based image coding.

2. Multiscale Gradient Planes of Images

The one-dimensional dyadic wavelet transform [4]—[7]
is defined as the convolution between a signal f(z) and
a wavelet function ;(z) as:

W; f(z) = ¢; x f(x) (1)

where the wavelet fuction at j-th scale are derived from
a basic wavelet 1)(z) by scaling of 27 as:

bi@) = 55 (3) @

where j is a positive integer and defines the scale of a
wavelet function. The signal f(x) is represented by the
wavelet transforms {W; f(z)}jez. In numerical compu-
tation, it is impossible to compute the value of a wavelet
at an arbitrary fine scale and locations. Now, the finest
scale j is assumed to be limited to one. The scaling
function ¢(z) is introduced to the scale limitation,

1 x
b5(2) = 556 () 3
and the smoothed function at j-th scale is computed by:
Sif(z) = ¢j = f(=). O]

The smoothed function S;f(x) is decomposed to the
wavelet transform W;,,(x) and S;y1(x). S;f(z) is re-
constructed with a synthesis wavelet function x(z) that
satisfies

+o0
[B(W)* =) ¥(2w)X (2w) (35)
j=1

where ®(w), ¥(w) and X (w) indicate the Fourier trans-
form of ¢(z), ¥(x) and x(z), respectively. S;f(z) is
now reconstructed by the fromula:

Sif(@) = xju1 * Wig1 f(z) + ¢j 11 % Sjaf(z) (6)
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where #%,,(z) indicates ¢;1(—z). Hence Sif(z)
which is the smoothed function of arbitrary function
f(z) is decomposed to the form of J-th scale smoothed
function and a collection of the wavelet transforms as a
sequence of functions

Sof AW, fhicici} (7N

where S;f and W;f denotes S;f(z) and W;f(z). In
two dimensional case, a two dimensional smoothed
function S, f(z,y)

Sif(@,y) = ¢; * fz,y) ®)

is obtained by a two-dimensional convolution with a
two-dimensional scaling function that is given by

bi(z,y) = ¢j(x)b;(y). )

In this paper, we define the two dimensional wavelet
transform as

W} f(z,y) = ) * f(=z,y) (10)
and

W7 f(@,y) = 47 * f(z,y) (11)
where two-dimensional wavelet functions are:

Pi(x,y) = ¢j-1(z)¢;(y) (12)
and

Vi(2,y) = ¢j-1(y)t; (o). (13)

The smoothed image Sy f(z,y) is now represented in
the form of the J-th scale smoothed image and two-
directional components of the wavelet transforms

{S1f, W Ficica, WE Fhigi<i}- (14)

If the basic wavelet corresponds to the first-order deriva-
tive of a symmetric smoothing function 6(z), that is,

dé(z
yla) = 28, (1s)
T
then wavelet transforms, le and sz, can be written in
the form of

wew =20, @) 16)
and
wey=PCDg, ). (1)

Since the wavelet transforms approximate the first-order
derivative of the j-th scale smoothed image, the root of
the squared sum of two-directional wavelet transforms

M; f(w,y) = (W} F2,9))2 + (WRf(z,9)? (18)
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approximates the gradient of j-th scale smoothed im-
age. The surface defined by M, f(z,y) can be refered
to as a multi-scale gradient plane. The ratio between
Wi (z,y) and W7 (z,y) is lost in the multi-scale gradi-
ent planes. To get a complete image representation, the
gradient direction planes described by

lef(l', y)
W2 f(z,y)
is defined. Sif(z) can be represented as a collection

of multi-scale gradient planes and gradient direction
planes as

{Ssf, (M;figica, (A hgicat- (20)

The multiscale behavior of M, f(z,y) is analyzed
in terms of the Lipshitz exponent « [4]—[7] that satisfies

| (o, 90) — f(z1,91)]
éo\/(%*ﬂﬂl)g‘F(yo—yl)za- 21

If there exists a constant, C' around (zo,yg), « is refered
to as the Lipshitz exponents. If n < ag < n + 1, then
f(z,y) is n times differentiable at (xo,v0). If a wavelet
function is continuous and differentiable, then the mul-
tiscale gradients depend on the Lipshitz exponent as

M; f(z,y) < C(2)". (22)

A;f(z,y) =tan™" (19)

Especially, the left hand side of (22) approximates
to the right hand of (22) at the edegs on the image con-
tours [4]. If the edge is discontinuous, then @ = 0 on
the edge. On a smoother edge, o increases with diffiren-
tiabilty of the edge.

The contour geometry in Fig.1(b) is detected by
the maxima of the multiscale gradient at scale j = 2.
The figure displays the positions where the amplitude
of the multiscale gardient is greater than 1/8 of the
maximum of the gradient plane at scale j = 2. Con-
tours which represent the shape of objects in the image
is well detected in the figure. The distribution of the
multiscale gradient amplitude at contour positions dis-
played in Fig.1(b) is shown in Fig.2, where, the rela-
tion of multiscale gradient between adjasent scales are
plotted. There exist strong correlations between scales
at the image contours.

An image can be approximated by the multiscale
gradient planes which is sampled at the contour po-
sitions and can be recoverd by a coarse-to-fine recov-
ery procedure[9]. The difference between given multi-
scale gradient planes and the gradient planes of a re-
covered image is decreased by a successive iteration of
a coarse-to-fine recovery algorithm. The algorithm is
briefly given in Appendix. A recovered image from the
multiscale gradient planes and the coarsest component
Ssf(Fig.1(c)) is shown in Fig.1(d). The texture and
fine details which consist of the low-intensity changes
are removed by a thresholding operation, but object
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Fig. 1, (a) Original image, (b) contours detected from the
wavelet maxima, (c) the coarsest approximation of (a), (b) re-
covered image from (c¢) and multiscale gradients of (b).
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Fig. 2 Distribution of multiscale gradients on contours in
Fig. 1 (b).

contours are still observed. Since multiscale gradient
planes represent the Lipshitz exponents at contours, a



NAKASHIZUKA et al: IMAGE CONTOUR CLUSTERING ON MULTISCALE GRADIENT PLANES

recovered image keeps not only the intensity gradient
but also the smoothness of intensity variation around
contour positions.

3. Contour Clustering by Vector Quantization

Suppose that C is a set of significant contour positions,
and

Aze,ye) € C. (23)

A multiscale gradient vector is defined by

?(azc;yc) = [le(xm yc)7 crey MJf(xca yc)]T (24)

on every contour position (z., y.).
After vector quantization is applied to the vector,
we obtain the quantized vector

?k = Q[?Ccc:yc)} (25)

where k indicates the vector index of representative vec-
tors in a code book. Every vector is replaced with a
closest representative vector in the code book. Contour
positions (z.,y.) are classified in terms of representa-
tive vectors. Usually, a representative vector is selected
to minimize the squared sum of quantization errors. For
contour analysis with respect to Lipshitz exponents, we
employ a shape-gain vector quatizer [8].

W (ze,ye) is split into two components: the gain
factor

1/2
7 /

G(#e,ye) = | > (M f (e, ye))? (26)

i=1
and the normalized shape vector

le($c, yc)
C;’1 (wcv yc) ’

—

e = |

MJf(xm yc>:| T
GJ(wcayc) ’
(27)

Contour positions are hence separated into G and v°.

.
Ovbiously, the shape vector v°(z.,y.) depends only on
the ratio of multiscale gradient amplitudes along the
scales. Contour positions are hence classified with re-
spects to the Lpishitz exponent of the shape vector. The

—
representative vector for v° and the representative value
for the gain G(z.,y.)are obtained by minmizing the
squared sum of the quantization error[8]. As a result,
every contour position is classified in terms of shape
vectors and gains.

The clustering results for contour positions in
Fig.1(b) are shown in Figs.3 and 4. In this cluster-
ing, the number of the representative shape vectors is
specified as 2 and the number of representative gains
is specified as 4. Figure 3 displays four kinds of po-
sitions classified by the magnitude of gains as well as

Representative Amplitude

Index of the representative gains

Fig. 3 Contour clustering by the gain of multiscale gradient
vectors.
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Fig. 4 Contour clustering by the shape of multiscale gradient
vectors.

the classification result. Contours are simply classfied
according to the intensity contrast across the contours.
Positions of two representative shape vectors and clus-
tering results are shown in Figs.4(a) and (b). Two bar
graphs show the amplitude of each shape vector compo-
nent. The amplitudes in Fig. 4 (a) are almost the same
over three scales. This observation implies that Lipshitz
exponents of the contour positions shown in Fig. 4 (a) is
approximately equal to zero, and the contours of which
edges are discontinuous are classified into this category.
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The most of contours around objects which exist on
the camera focus are classified into the discontinuous
conours as shown in Fig.4(a). In contrast, the con-
tours in Fig. 4 (b) are classified in smoother edges. The
amplitude of the representative shape vector decreases as
the scale decreases. Lipshitz exponents of those contour
positions shown in Fig. 4 (b) are larger than zero. These
contours are smoother than those in Fig. 4 (a). The most
of contours in the background and out-focusing regions
are involved with Fig. 4 (b).

Next, we examine how many representative vectors
are needed to approximate an original image. Now, we
assume that the sum of the number of bits to represent
the indices for gain and shape is constant. If N bits
are allocated to a single contour position and n bits are
allocated to represent the index of shape vectors, then
the N — n bits are spent for the index of representative
gains. By this bit allocation, if the number of the rep-
resentative shape in a code book is 2", then the number
of the representative gains is 2V ~". In Fig. 5, every con-
nected plot belongs to the same bit budget given to a
single contour pixel. The horizontal axis is measured
in the bit budget for a representative shape vector.

Obviously, if the Lipshitz exponent can be approxi-
mated by a constant, none of bits is needed for the shape
vector. As long as the total bit budget exeeds 2bits
per contour pixel, the best performance is obtained on
n = 1. This means that just two kinds of representa-
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n, Number of bits for representative shape vectors
(b/cp = bits/contour pixel)

Fig. 5 Relation between the number of bits for a representative
vector and the reconstruction precision.

(a) (b) (c)

(a) A part of the original image, (b) image recovered
with a single representative shape vector, and (c) image recov-
ered with two representative shape vectors.

Fig. 6
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tive shape vectors are found in the code book. Every
contour is hence classified into one of two categories
that are defined by whether the behavior of the Lipshitz
exponent is constant or is decreasing.

A part of recovered images after the quantization
is shown in Fig.6. These images are recovered from
the coarsest approximation and the multiscale gradient
planes at the contour shown in Fig. 1 (b). Three bits are
allocated to a single contour pixel for representing the
multiscale gradient vector. All of contours that appear
in the recovered image (b) from a single representative
shape vector are approximated as discontinuous edges.
In the image of (c), two kinds of shape vectors are used,
and smoother edges are well recovered.

Our purpose in this section is the contour cluster-
ing in terms of Lipshitz exponents. The Lipshitz expo-
nents are wll represented by the shape vector defined in
Eq. (27), and hence we employ the shape-gain VQ. On
the other hand, Fig.7 shows the result of the conven-
tional VQ with eight representative vectors. Comparing
with Fig. 4, the shape-gain VQ clearly classifies contours
in terms of smoothness of edges more than the conven-
tional VQ. Obviously, the conventional VQ is superior
to shape-gain VQ for reducing the quantization error.
So, the conventional VQ will be more qualified for im-
age coding and is applied to image coding in the next
section. Coding result by the shape-gain VQ is also
shown.

1000
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(=]
o

Amplitude

“, i

1 2 3 4 5 6 7 8

Index of representative vectors B Scale j=1
M Scale j=2
(b) O Scale j=3

Fig. 7 (a) Contour clustering by the conventional vector quan-
tization and (b) its representative vectors.
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4. Application to Sketch-Based Image Coding

In this section, we apply the proposed contour cluster-
ing by VQ to sketch-based image coding. An image is
going to be represented by three kinds of information:
significant contour position C, the multiscale gradient
vector v (., y.), and the coarsest approximation of the
wavelet transform S;f. The contour positions are en-
coded by a chain coding. Chains of contour positions
are coded by recording the position of the first point
of a chain and then coding the increments between two
successive positions. In this coding, those successive are
encoded by an entropy coding. The vector v (z.,¥y.) is
quantized with a code book that is designed by the LBG
algorithm to minimize the quantization error for each
image. Hence every image is coded by its own different
code book. Vector indexes are recorded along contours.
Since the pixel intensity changes slowly along contours,
just a single vector index that is dominant among con-
secutive three contour pixels is recorded.

A sequence of vector indexes are coded by run-
length coding. The coarsest approximation S;f is
down-sampled by 27 and quantized into 6bits. The
quantized coarsest-approximation is encoded by a pre-
dictive coding with entropy coding.

To achieve high compression, contours that repre-
sent the shape of objects are selected. The contours are
detected from the multiscale gradient maxima at scale
j = 2 to avoid undesirable influences of maxima that
occur because of textures and noises. Since Lipshitz
exponent is positive values at image contours, the max-
ima points z, y where the multiscale gradient planes that
satisfy

MBf(may) < MZf(x7y) (28)

are removed. Moreover, to eliminate small details that
is insignificant for human perception, we set the thresh-
old on the basis of length and gradient to contours.
Figure 8 (a) is the reproduction with respect to the
contour coding of Fig.1(a). The thresold for the con-
tour length is set at 5. The threshold value for the gra-
dient plane at sclae j = 2 is 1/8 of the gradient max-
imum at scale 7 = 2. The contours of which length is
shorter than 5 pixels or of which gradient amplitude is
smaller than the threshold are removed. The maximum
scale of the discrete dyadic wavelet transform is given as
J = 3. The number of the representative vector in the
code book is set to 8. Each component of the represet-
ntaive vector is quantized to 8 bits. Since the multiscale
gradients is obtained for 3 scales, the amount of code for
the code book is 192 bits. Table 1 shows the amounts of
coded data for the coarsest approximation, the contour
positions, code-book and vector indexes. Almost half
of the entire data is spent for the contour positions.
Figure 8 shows both the images coded by the pro-
posed method and base-line JPEG images coded at the
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(a) (b)

Fig. 8 (a) Image coded by the proposed method (0.28 bpp) and
(b) image coded by JPEG.

Table 1 Data amount of code for each component in Fig. 8 (a).
Components Amount of code (in bytes)
Coarsest approximation image 871
Contour positions 1049
Code-book of VQ 24
x(?:tittizorr:ndex allocated to each contour 307

(a) (b)

{c) (d)
Fig. 9 (a) Original image, (b) JPEG coded image, (c) detected
contours, and (d) image coded by the proposed method.

same data rate. Other examples are shown in Fig. 9 and
Fig.10. The coarse-to-fine recovery algorithm[9] is ap-
plied for decoding. All of those images cosist of 256-by-
256 pixels. The error in encoded images and the total
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@) )

Fig. 10  (a) Original image, (b) JPEG coded image, (c) detected
contours, and (d) image coded by the proposed method.

Table 2 Coding results for test images.

" . Mean Mean
Image Coder Sizein | bits/ | abcoiite | Squared | PSNR
g bytes | pixel Error Eﬁ'l;? in dB
Proposed 2,271 0.277| 9.32 217.2 248
Fig. 8
Baseline JPEG 2,294 0.280 10.67 224.8 246
Proposed 2,332 | 0.285 8.97 227.9 24.5
Fig. 8
Baseline JPEG 2,448 0.298 9.55 177.6 257
Proposed 1,762 | 0.215 4.77 51.4 31.4
Fig. 10
Baseline JPEG 1,769 | 0.216 6.66 78.1 28.2

amount of coded data are shown in Table 2. We employ
both MAE (Mean Absolute Error) and MSE (Mean
Squared Error) to compare the proposed method with
base-line JPEG. In all of images, the proposed method
is superior to JPEG in MAE. However, MSE of JPEG
is smaller than the proposed method in the coding ex-
ample of Fig.9. The reason to this is that the error that
occurs in small regions with large amplitude is stressed
than the error that occurs in large regions with small
amplitude in MSE. Small details and textures are elim-
inated by the proposed method. Hence large parts of
errors that occur in the encoded image concentrate to
those parts of images. By contrast, the error in decoded
images is spread over the whole image in JPEG. The
lower parts in Fig.8 also show a part of encoded im-
ages. Comparing with JPEG, image textures and small
details have disappeared by the proposed method. How-
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Fig. 11 Image coded by shape/gain vector quantization
(0.294 dpp, p-p SNR 24.4dB).

ever any distortions are not produced. Especially, the
contour is well perceived in the decoded image. More-
over, the coding result of shape-gain VQ is shown in
Fig.11. The p-p SNR of the shape-gain VQ is slightly
lower than the conventional VQ.

5. Conclusions

In this paper, we applied vector quantization to the mul-
tiscale gradient planes to the contour clustering in terms
of the discontinuty of edges. The clustering method
is applied to sketch-based image coding with a coarse-
to-fine recovery algorithm. In contour clustering, the
shape-gain vector quatinzation is applied. The contour
is classified by its gradient and smoothness. The image
recovery from various number of the representative vec-
tors is demonstrated. The multiscale representation by
the vector quantization can represent the smoothness of
edges and is superior in SNR. In compression experi-
ments by the conventional VQ for human facial images
and still objects, eight representative vectors in a code
book is enough for satisfactory recovery.

The compression results in our study are limited
in extremely high compression ratios. Textures and fine
structure of images are almost removed in the encod-
ing process. By encoding the removed components, a
layered image coding will be obtained. The proposed
image coding could play a roll found in the layered
image coding[10] by three components: the smoothed
image, contours and textures. Such a layered image cod-
ing would be a qualified representation for the human
perception and many other image processing tasks. Es-
pecially, contours are the primary information for pat-
tern analysis, object recognition and scene analysis. The
coded data that is obtained by the proposed image cod-
ing contains not only the contour positions but also
information about intensity contrast and smoothness of
edges on the contours. The information about image
contours that is obtained by the proposed clustering
method can be applied to computer vision applications.
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Appendix: Coarse-to-Fine Recovery Algorithm [9)]

The coarse-to-fine recovery alogrithm recover the orig-
inal image from the multiscale gradient. Let f be the
original image and & be recovered image. The error of
M;f and S;f

2
J
Dy, = Z ZMjh(m,n)—Mjf(man)
(m,n)CO Jj=1 '
N—-1M-1
© 3 S (Sham ) — Sy )
n=0 m=0
(A-1)

is reduced along the course of recovery. To avoid the
danger to be trapped into a local minimum, the mini-
mization of the error begins from the coarsest approx-
imation to the finest multiscale gradient. Suppose that
1=0,k=0and j = J+ 1. The following three-step
operation is repeated L times on every scale, the initial
image h° is given by S f

1. Compute the wavelet transform of k' to get the form
of (20).

2. If j = J+1 then replace S;h* with S;f at the con-
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tour positions. If j < J+1 them replace thi with
Syf and replace My, h' ;<< s With Mmfljémgj at
the contour positions.

3. Increment ¢ and k to ¢+ 1 and k + 1 respectively. If
k=1L, then set k as zero and j as j — 1. If 7 = 0,
then stop the iteration. If j > 0, then compute
hl+1) by the inverse wavelet transform and go to
1.
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