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SUMMARY The checkerboard effect is caused by the peri-
odic time-variant property of multirate filters which consist of
up-samplers and digital filters. Although the conditions for some
one-dimensional (1D) multirate systems to avoid the checker-
board effect have been shown, the conditions for Multidimen-
sional (MD) multirate systems have not been considered. In this
paper, some theorems about the conditions for MD multirate fil-
ters without checkerboard effect are derived. In addition, we also
consider MD multirate filter banks without checkerboard effect.
Simulation examples show that the checkerboard effect can be
avoided by using the proposed conditions.
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1. Introduction

Multirate signal processing is widely used in subband
coding, and adaptive signal processing, etc.[11]. Re-
cently Multidimensional (MD) multirate signal process-
ing is expected in sampling format conversion, and in
many other applications of digital video processing.

The checkerboard effect is caused by the periodic
time-variant property of the multirate filters which con-
sist of up-samplers and digital filters. The conditions for
some one-dimensional (1D) multirate systems to avoid
the checkerboard effect have been shown[l]-[7]. In
[1], the checkerboard effect for 1D multirate filter banks
was pointed out. In [2],[4], the checkerboard effect was
considered and some theorems about the conditions to
avoid the checkerboard effect were derived. In [3],[5]-
[7], the conditions for 1D multirate filter banks were
considered and some design methods were given. How-
ever, the conditions for MD multirate systems without
checkerboard effect have not been considered.

In this paper, some theorems about the conditions
for MD multirate filters to avoid the checkerboard effect
are derived. We also consider MD multirate filter banks
without checkerboard effect. Simulation examples show
that the checkerboard effect can be avoided by using the
proposed conditions.

All through this work, we use the following nota-
tions for D-dimensional systems and signals[11].

z: the z denotes the D X 1 vector
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z = [2021---zp_1]". (1)

zMD: the zM) s the D x 1 vector whose kth compo-
nent is obtained as

(Z(M))k _ Zé\/fo,kziwl,k ”.ZI\D/IiJl—Lk 2)
where M is a D x D nonsingular integer matrix, and
My, ; denotes the k, [th element of M.

LAT(M): LAT(M) is the set of integer vectors p de-
fined by

p:Mn,'nEN, 3)

where N is the set of D x 1 integer vectors and n is a
D x 1 integer vector [ng,ny,---,np_1]7. The subscript
T on the vector denotes the transposition.

FPD(M): FPD(M) is the set of vectors defined by

FPD(M) = {Mx|x € [0,1)7}, 4)

where [0,1) denotes the set of D x 1 vectors x so that
all elements of x satisfy 0 < z; < 1, =0,---,D — 1.
N(M): N (M) is the set of integer vectors in FPD(M).

2. MD Multirate Filter without Checkerboard Ef-
fect

In this section, some theorems about the conditions for
MD multirate filters to avoid the checkerboard effect are
shown.

2.1 MD Multirate Filter

Figure 1 shows an MD multirate filter, where T My,
and | Mp denote an up-sampler with the factor My,
and a down-sampler with the factor Mp respectively.
My and Mp are D x D non singular integer matrices
and they are mutually prime matrices which mean that
LAT(My)CLAT(Mp) and LAT(Mp)C LAT(My)
are not satisfled[12]. F(z) is the transfer function of
an MD FIR filter given as

F(z)= > fm)z™™, (5)

neN

x(n) Z(n) ¥(n)
—{tm{F () F—{imo}—

Fig. 1 MD multirate filter.
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Fig. 2 Polyphase structure.

where f(n) denotes the impulse response of F(z).

The MD multirate filter in Fig.1 can be equiva-
lently represented as shown in Fig. 2, where Ry (z) is a
type-II polyphase filter of the filter F'(z) and defined as

M—1 N
F(z)= Y s8Ry (M) (6)
=0
where k; is a D x 1 integer vector defined as N (My ) [11]
and M is the absolute determinant of My;.

In Fig. 2, the input signal z(n) is expanded by the
up-sampler T My and the digital filter so that the ex-
panded signal z(n) is given as

Z Ty, (m)z(n+ko — m)
menN
n= Myt —kg

Z Tk, (m)z(n +k; —m)
menN :
n= MUt — kl (7)

Z Tk, ,(m)zm+ky 1 —m)
menN

n= MUt - kM—l

where ). (n) denotes the impulse response of Ry (z)
and t is a D x 1 arbitrary integer vector. Then, the
signal z(n) is decimated by the down-sampler | M p as

y(n) = z(Mpn). (8)

In 1D multirate systems, it is known that the
checkerboard effect is caused by the periodic time-
variant property of multirate filters which consist of up-
samplers and digital filters[1]-[7]. In the following,
we consider the checkerboard effect in the MD multi-
rate filter by using the above expression.

2.2 Periodicity of Step Response

In Fig. 1, when the input signal z(n) is the unit step
signal (u(n) = 1, n € [0,00)”) and the components
ng, Ny, --,np_1 of the vector n are large enough, the
signal z(n) becomes the steady state value sy (n) as

Rko(1)7 n = MUt - ko

Rkl (1), n=Myt —k;
sk(n = . 3

RkM—1(1)7 n=Myt—ky_1

®
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where Ry (1) is given as

Ry (1)
= Rkl

Jjwo Liwi .. LjwDp—1
(e €T, , € )I“JOawl,"'wa—l:O’

(10)

and denotes the DC gain of the polyphase filter Ry, (z).
Thus the output signal y(n) is reduced to ss(n) as

ss(n) = 5. (Mpn), 11

From Eq. (9), s (n) is not constant and has the pe-
riod My. As a result, ss(n) also has the period My .
Note that M p does not cause the checkerboard effect.
Thus, we can see that the multirate systems which in-
clude up-samplers and digital filters have the periodic
step response. The periodic artifact caused by this peri-
odic step response is called the checkerboard effect.

2.3 The Conditions for MD Multirate Filter without
Checkerboard Effect

We derive some theorems about the conditions for MD
multirate filters without checkerboard effect.

Theorem 1: A necessary and sufficient condition for
MD multirate filters to avoid the checkerboard effect is
given as

Ry (1)=-=Ry  (1). (12)

Proof: As shown in the previous subsection, the
checkerboard effect is caused by the periodicity of the
step response. Therefore, to avoid the checkerboard ef-
fect, the steady state values of the step response must be
constant. From Eq.(9), it is clear that this condition is
equal to Eq. (12). O
Theorem 2: If F(z) is represented as Eq.(13), the
checkerboard effect is not caused. Equation (13) is a
sufficient condition for MD multirate filters to avoid
the checkerboard effect, although it is a necessary and
sufficient condition for 1D multirate filters [4].

M-—1
Fz)=P(z) } 2k (13)
=0
where
k; € N(Mpy). (14)

Proof: First, let us show that Eq.(13) is a sufficient
condition for MD multirate filters. If F'(z) can be fac-
torized as Eq. (13), then Fig. 1 can be expressed as Fig. 3.
In Fig. 3, when the input signal z(n) is the unit step sig-
nal u(n) and the components of the vector n are enough
large, the signal z’(n) becomes the steady state value

sp(n)
1, n = Mgt + kg
1, n =Myt +k;
sp(n) = : (15)

1, n=Mypyt+kp_;.
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Fig. 3 MD multirate filter satisfying Eq. (14).

From Eq. (15), we can see that s,(n) is constant. More-
over, since P(z) is a linear time-invariant filter and
1 Mp does not cause the checkerboard effect, the out-
put signal y(n) is also constant and does not have any
periodcity. Therefore, under Eq. (13), the checkerboard
effect is not caused.

Next, we show that Eq. (13) is not a necessary con-
diton. As an example, let us consider that dimension
D =2 and the following My and Mp

2 0
MU:|:O 1:|7

From the above result, if F(z) is shown as Eq. (17), the
checkerboard effect is not caused.

MD:[O 1]. (16)

F(z,21) = (1+ 257 )P(20, 1) a7
Let us consider another 2D filter F'(zy, 21)
F'(z0,21) = (1+2zal—|—21—1). (18)

It is easily shown that this filter can not be represented
as Eq.(17), and the polyphase filters are given as

F(z0,21) = Ry _ (23,21) + ZoRy (28, 21) (19)
Ry (20,21) = (1+21") (20
Ry (z0,21) = 225" 2D

Since Egs. (20) and (21) satisfy Eq. (12), the filter F’(z)
does not cause the checkerboard effect. From this ex-
ample, the Eq.(13) is not a necessary condition. O
Theorem 3: A necessary and sufficient condition for
MD filters to avoid the checkerboard effect is given as

F(e@™)=0 at w=2rM;"¥,, (22)
where

K, e N(ME), ¥;+o0, (23)

where F(e’™) is the frequency response of F(z) and
w is the column vector of angular frequencies, that is
w = [w07 e 7wD—l]T-

Proof:  First, let us show that Eq.(22) is a necessary
condition. By substituting z = ejwlwzszaTk,l into
F(z), we have

M-1
F(€j2ﬂ'MU_Tk’i) — E Rk (1)ej27'rk/iTMU_lkl.
1
=
(24)
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Please note that zMU|Z_ejw w=2xM-Tk, = 1. If the
—esW w=2-Mj

checkerboard effect is not caused, all polyphase filters
have the same DC gain. In that case, Eq.(24) can be
rewritten as

M-1
F(ejQﬂ'MU Tk'i) — Rko(l) Z ejZWk’iTMU lkz.

=0
(25)

From [11], the following property is satisfied.

Mol

Y erzks Mok g, (26)

1=0
By substituting Eq. (26) into Eq. (25), we obtain

F(e MoKy g 27)

Thus, Eq. (22) is a necessary condition.

Next, let us show that Eq. (22) is a sufficient condi-
tion. When Eq. (22) is satisfied, Eq. (24) can be rewrit-
ten as

Ry (1) F(1)
By, (1) 0
Mewp X . = ) (28)
RkM—1 (1) 0
where
Memp
1 e 1

ei2nk’s "My Ttk ei2rk’s TMy ~tkas -1

. T —1
ej?‘lrk’M_l MU k]v]—].

ej27rk'M—1TMU*1k0 e

F(1) is the DC gain of F(z) and corresponds to the
case of k'y = 0 in Eq. (24). Using the Cramer’s rule to
Eq.(28), Ry (1) is given by

(=17 F(1)
By (1) = ~———
k] |Memp|
eR(1,0) .. ok(1,5-1) ek(1,2+1) ek(1,M—1)
X : . . : . . s
e (M—1,0)  k(M—1,j=1) J(M—1,5+1) . h(M—1,M—1)
(29)

where |A| is the determinant of the matrix A and for the
convenience, we use e*(49) instead of 327K "My Tk
By substituting Eq. (26) into the first column of Eq. (29),
subtracting the other columns from the first column and
permuting the columns to make the order of index num-
ber be from 1 to M — 1, Eq.(29) can be arranged as

F(LD) k(1M 1)

! [(Mezy| GF(M=1,1) || k(M—1,M~1)

(30)
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(see also Appendix A). Since the right-hand side of
Eq. (30) does not depend on the index j, all polyphase
filters Rkj (z), 7=0,---,M—1 have the same DC gain.
Therefore, Eq. (22) is a sufficient condition for MD mul-
tirate filters without checkerboard effect. m|

From the above considerations, we have the follow-
ing conclusions.

e To design all classes of MD multirate filters with-
out checkerboard effect, we can utilize the condi-
tion Eq.(12) or the condition Eq.(22).

e From Theorem 2, we may design MD multirate fil-
ters without checkerboard effect by the condition
Eq.(13). This condition shows that the checker-
board effect can be avoided by Oth order interpola-
tion for arbitrary My . Equation (13) allows us to
use the standard method for designing F'(z). From
Eq.(13), the design of F(z) is reduced to P(z)
which is done without considering the checker-
board effect.

e From Theorem 2, we can. perfectly avoid the
checkerboard effect by using the cascade form stru-
cure of the Oth order interpolation and any digital
filter, even if the filter has finite word length.

3. MD Multirate Filter Banks without Checker-
board Effect

In this section, we consider the conditions for MD max-
imally decimated filter banks.

3.1 MD Multirate Filter Banks[11]

Figure 4 shows an MD maximally decimated filter bank
with a factor M, where M is a D x D nonsingular in-
teger matrix. In Fig.4, H,,(z) and F,,(z) denote an
analysis filter and a synthesis filter respectively. M is
the absolute determinant of M and the channel number
m = 0 corresponds to the lowpass channel.

The MD filter bank in Fig.4 can be equivalently
represented as shown in Fig.5, where E(z) and R(z)
are the M x M type-l and type-1I polyphase matrices
respectively and are defined as

Eoo(z) Eo,m1-1(2)
E(z) = | : ol (31
Ey_10(2) En—1,m-1(27)
Ry 0(z) Ro,m-1(2)
R(z) = : - ; ,
Rar—1,0(2) Ryr—1,m-1(2)

(32)

where F; (zM) and R;, j(zM) are the simplified expres-
sions of the E ) (ZM) and the Ry ,j(zM) which are
given by
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Fig. 4 MD multirate filter bank.

z(—kz)Em K, (Z(M)) (33)

28Ry (zMD) (34)

k; € N(M)

By using the polyphase matrices, the perfect recon-
struction (PR) condition for MD filter banks is given
as

R(z)E(z) =z~ I, (35)

where ¢ is a 1 x D arbitrary integer vector and I is the
M x M identity matrix. When an MD filter bank satis-
fies Eq. (35), it is called the MD perfect reconstruction
(PR) filter bank.

3.2 Checkerboard Effect in MD Multirate Filter Banks

As shown in Fig. 4, MD filter banks consist of analyzer
and synthesizer. The analyzer divides the input signal
z(n) into M subband signals z,,,(n) and the synthesizer
combines z,,, (n) into the output signal y(n). Here, each
channel of the synthesizer includes an up-sampler and a
digital filter. Therefore, the checkerboard effect in MD
filter banks is caused by the synthesizer.

Next, let us consider the steady state value of the
step response as well as the case of MD multirate filters.
In Fig. 5, when the input signal z(n) is the unit step sig-
nal u(n) and the components of the vector n are large
enough, the subband signal z,,(n) becomes the steady
state value a,,(n)

am(n) = Hp, (1), (36)
and the signal y,,,(n) for the mth channel in the synthe-
sizer becomes the steady state value s,,(n)

$m (1)

= am(n) x Z rim(v), n=Mt-k;
VeN
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Ry (1), n= Mt —kg
= Hm(l) X 5
Ry_1m(1), n=Mt—ky ,
(37)

where 7, ,,,(n) denotes the impulse response of the
Rl,m(z).

From Eq.(37), sm(n) is not constant and has the
period M. If the PR condition Eq. (35) is satisfied, the
periodicity of s, (n) is able to be canceled each other
and thus the output signal y(n) is constant. However,
even if an MD filter bank is designed under the PR
condition, it is broken in some practical applications
such as subband coding. In this case, the periodicity of
$m(n) can not be canceled each other. As a result, y(n)
is not constant and the checkerboard effect is generated.

3.3 Conditions for MD Multirate Filter Banks with-
out Checkerboard Effect

As shown in the previous subsection, the checkerboard
effect is caused by the synthesizer. Therefore, to avoid
the checkerboard effect, we have to consider the synthe-
sis filters or the subband signals z,,(n).

In the following, we derive the conditions for MD
maximally decimated PR filter banks.
Theorem 4: A necessary and sufficient condition for
MD maximally decimated PR filter banks to avoid the
checkerboard effect is given as

Roo(1)=--- = Ru-1,0(1), (38)

where R, o(z) denotes the DC gain of a polyphase filter
of the lowpass filter Fy(z) in the synthesizer.
In addition, the condition Eq. (38) is equal to

M—1
Hp(1)= > Epg(1)=0, m=1,,M -1,
=0

(39)

where H,,(1) denotes the DC gain of the analysis filters
except for the lowpass channel.

Proof: First, let us show that Eq. (38) is a necessary
and sufficient condition.

In general, the DC component of z(n) is not zero.
Thus, for the lowpass channel (m = 0), Eq. (38) is a nec-
essary and sufficient condition, because Eq.(38) is the
condition given by Theorem 1. Therefore, it is clear that
Eq.(38) is a necessary condition for MD filter banks
without the checkerboard effect.

Next, let us show that Eq. (38) is a sufficient condi-
tion. Substituting z = €|, o ... o, _,—0 into Eq.(35)
yields

R(1E(1) = I,. (40)

Since E(1) and R(1) are M x M square matrices,
Eq. (40) can be represented as

1611

E(1)R(1) =1y 4n
From Eq. (41), we obtain

M-—1
Z Enmi(1)Rip(1) =0, m=1,---,M—1. (42)
=0

When Eq. (38) is satisfied, Eq. (42) can be rewritten as

M-1
Roo(1) >  Ena(1)=0,

(43)
Since Rg (1) #+ 0 from Eq. (41), Eq. (43) is reduced to

N Eg(1) = Ho(1) =0, m=1,-M 1.

(44)

This means the subband signal a,,(n) =0, m=1,---,
M —1. That is, the DC component of z,,(n) in Fig. 4 is
zero value. By substituting Eq. (44) into Eq. (37), s,,(n)
except for m = 0 becomes

Sm(n)=0, m=1,---,M —1. (45)

Thus, s,,(n) except for the lowpass channel has zero
value. Therefore, Eq. (38) is a sufficient condition.
Next, we show that the condition Eq.(39) is equal
to Eq.(38).
From the above consideration, it is clear that if
Eq. (38) is satisfied, Eq.(39) is done. Therefore, let us
show that if Eq. (39) is satisfied, Eq. (38) is done.
From Eq. (41), we have the following equation

Eoo(1) Eoar-1(1) Ry (1)
EM7.1,0(1) EM—l,]'\/I—l(l) RM—.l,O(l)
—[10 - 0] (46)

Using the Cramer’s rule to the Eq. (46), R; (1) is given
by

Rin(1)
1
E(1)]
Eoo -+ Eoi—1 1 Eoupi Eo,m—1
Eio -+ Eii-1 0 Ei41 By a1
X . . .

Epyo10  Eym—1i-10Em_1401 Epm—1,m—1

E1o -+ Eii1 Ey v

X . . . : . R

E1it1

Epy—10 Epm-1i-1Em—1441Ev—1,mM1

(47)
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where for the convenience, we use F;; instead of
E; ;(1). By substituting Eq.(39) into Eq.(47), Eq. (47)
can be arranged as

Ein o Eryaa

O T )] :
En—1,m-1

(48)

Since the right-hand side of Eq. (48) does not depend on
the index 1, all polyphase filters R; o(z),z =0,---, M —1
for the lowpass channel have the same DC gain. There-
fore, when Eq. (39) is satisfied, Eq. (38) is also satisfied.
Thus, Eq. (38) is equal to Eq.(39). |

In the case of 2D orthogonal filter banks, please
note that the condition Eq.(38) is equal to the con-
dition of Oth vanishing moment for 2D orthogonal
wavelet [ 14].

From Theorem 4, to design MD maximally deci-
mated PR filter banks without checkerboard effect, we
have to base on Eq. (38) for synthesis filter or Eq. (39)
for analysis filter. We have shown that the MD maxi-
mally decimated PR filter banks can be easily designed
by applying the conditions{9].

Ey_11

4. Examples

In order to verify the significance of the derived theo-
rems, we show some examples. Although the following
examples are in 2D, the theorems are applicable to any
dimension.

Example 1: In this example, let us show how the con-
ditions are given for

1 3
MU - I: 1 1 :| ’
From Theorem 1, the condition can be derived
as follows. Figure 6 shows the impulse response of
F(z9,z1). M = |My| =2 and from Eq. (14), the vector
k; is given as

koz[g], klz[ﬂ. (50)

By substituting Eq.(50) into Eq.(6), the impulse re-
sponse in Fig.6 can be decomposed to the two
polyphase filters denoted by black and white dots in
Fig. 7 (a). Please note that this decomposition does not
depend on Mp. From Theorem 1, if all polyphase fil-
ters have the same DC gain, the checkerboard effect is
not caused. In Fig.7 (a), it means that each summation
of the values in black and in white dots is equal.

We can derive another condition as follows. From
Theorem 3, if F'(zg,2;) has no gain at the frequency
point given by Eq.(24), the checkerboard effect is not
caused. In this example, from Eq. (23), k/; is given as

k'1=[§]. (51)

MD:H (1’] (49)

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 8§ AUGUST 1998

Ny

—t————s>

Fig. 6 Impulse response of F(zg, z1).
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(a) Spatial domain (b) Frequency domain

Fig. 7 Conditions to avoid the checkerboard effects.

and the frequency point is derived as

WZ{”}. (52)

™

Thus, if F(zg, z1) has no gain at the frequency point in
Fig.7 (b), the checkerboard effect is not generated.

Moreover, from Theorem 2, if a 2D filter F'(zg, 21)
is shown as Eq.(53), the checkerboard effect is not
caused.

Flz,21) = (1 + 25 27 %) P(20, 21) (53)

Note that Eq. (53) is clearly non separable filter. Let us
consider another 2D filter F/(2q, z1) given as Eq.(54)

F'(zo,21) = (1+25Y). (54)

From Eq.(54), F'(z0,71) can not be represented as
Eq. (53), but the polyphase filters are given as

F'(Zo, Zl) — Rko (ZMU) + Z(:)[Z%Rkl (zMu) (55)
Rko (20, 2’1) =1 (56)
Ry (z0,21) = 25 ° (57)

and we can see that F'(zp,z1) satisfies the condition
Eq.(12) to avoid the checkerboard effect. Note that
Eq.(55) is a separable filter and it is superior in the
sense of simplicity.

Example 2: As processing examples, we convert the res-
olution of the image in Fig.8 (a) by the 2D multirate
filter, where My and Mp are

MU=[§§} MD=[§2] (59)
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(b) (c)

Fig. 8 Processed image.

This means that the size of image is expanded by factor
3/2 in vertical and horizontal directions respectively.
The used F(zg,z21)s have 5 x 5 taps and they are op-
timized by minimizing the stopband attenuation. The
stopband and the passband are
passband: wy < 7/2 and wy < 7/2
stopband: 27/3 < wp and 27/3 < wy

The processed images are shown in Figs. 8 (b), (c).
Figure 8 (b) is converted by the filter which does not
satisfy Eq. (12) and Fig. 8 (c) is done by the filter which
satisfies Eq. (12).

From Fig. 8, we see that the checkerboard effect can
be avoided by using the proposed condition.
Example 3: In this example, we show the design ex-
amples of MD maximally decimated filter banks which
are designed to satisfiy the condition given in Theorem
4 and not to do it. For the design examples shown
here, we use the design method of MD linear-phase Pa-
raunitary filter banks with a lattice structure[13] and
the object function of the optimization is chosen as the
minimum stoppband attenuation.

conditions
o filter tap: 6 X 6
e stopbannd for each channels
Folzo,21) :3m/4d <wo <7, 3m/d<w; <m
Fi(20,21) 1 0 <wo < 7/4, 0 <wy < 7/4
Fy(20,21) : 0 <wg <7/4, 3n/d<w; <7
F3(z0,21) : 3m/4 <wo <, 0 <wy < w/4

SR
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Ampiitude [dB]

AR 4
AR
WY

channel 2

(b) Steady state value of the step response

Fig. 9 A design example of 2D filter bank which does not sat-
isfy Eq. (38).

The amplitude response and the steady state value
of the step response for each channels are shown in
Figs.9 and 10.

From Fig.9, we see that the checkerboard effect is
caused, when the condition in Theorem 4 is not satis-
fied. On the other hand, from Fig. 10, we see that the
checkerboard effect can be avoided by using the pro-
posed condition in Theorem 4.

5. Conclusion

In this work, we considered the checkerboard effect in
MD multirate filters and filter banks. Some theorems
about the conditions for the MD multirate filters to
avoid the checkerboard effect. In addition, the condi-
tions for MD multirate filter banks to avoid the checker-
board effect are shown. Simulation examples show that
the checkerboard effect can be avoided by using the pro-
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Ampiitude [dB]

channel 2
(b) Steady state valuae of the step response

channel 3

Fig. 10 A design example of 2D filter bank which satisfies
Eq. (38).

posed conditions. All though we show simulation ex-
amples in the case of 2D, the theorems in this paper are
applicable to any dimensional applications (c.g. 3D fil-
ter bank, video standards conversion). In future, we will
consider such 3D applications without checkerboard ef-
fect.
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Appendix A: Deriving Eq. (30)

Let us derive Eq. (30) from Eq. (29). In this appendix,

although we show the case of M = 4 and j = 2, the

derivation can be easily generalized to any M and j.
For M =4 and j = 2, Eq. (29) is given by

k(1,0) gk(1,1) gh(1,3)

2
Ry (1) = (-1)°F(1) | k(2:0) ok(2,1) ok(2,3)
2 Mep| k(3.0) k(1) Gk(3,3)
(A-1)
From Eqg. (26), the following equation is given.
F(E0) _(ek(i,l) 4 eki2) +ek(z’,3)) (A-2)

By substituting Eq.(A-2) into the first column of
Eq.(A-1) and eliminating the minus sign of the first
column, we have

Ry, (1)
(—1)*F(1)
|Mezp|



HARADA et al: MULTIDIMENSIONAL MULTIRATE FILTER AND FILTER BANK WITHOUT CHECKERBOARD EFFECT

(eF(LD) 4 gk(12) 4 ok(1,3)) h(1,1) ¢h(1,3)
X | (eF@D) 4 ek(2:2) 4 gh(2:3)) gh(21) (k(2:3)
(P31 4 ek(3:2) + ek(3:3)) h(3,1) ¢k(3,3)
(A-3)
By subtracting the second column and the third one
from the first one, Eq. (A- 3) is rewritten as
eF(1,2) h(1,1) ok(1,3)
eh(2:2) oh(2,1) k(2,3)

ek(3,2) GK(3,1) k(3,3)

(A-4)

(~1*F(1)

Ry (1) = M.,

By permuting the first column and the second one, we
obtain
k(L) ok(1,2) ok(1,3)
X ek(211) ek(272) ek’(sz)
F(31) gk(3,2) k(3,3)

(=D*F(1)

e, (U =",

k(L1) Gh(1,2) h(1,3)
x [ eF(2) oh(22) k(23) || (A.5)
ek(3,1) ok(3:2) ok(3,3)

_ F@)
B [Meij

Therefore, Eq. (30) is derived from Eq. (29).
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