
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001
1919

PAPER Special Section on Digital Signal Processing

ECG Data Compression by Matching Pursuits

with Multiscale Atoms
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SUMMARY In this paper, we propose an ECG waveform
compression technique based on the matching pursuit. The
matching pursuit is an iterative non-orthogonal signal expan-
sion technique. A signal is decomposed to atoms in a function
dictionary. The constraint to the dictionary is only the over-
completeness to signals. The function dictionary can be defined
to be best match to the structure of the ECG waveform. In this
paper, we introduce the multiscale analysis to the implementa-
tion of inner product computations between signals and atoms in
the matching pursuit iteration. The computational cost can be
reduced by utilization of the filter bank of the multiscale anal-
ysis. We show the waveform approximation capability of the
matching pursuit with multiscale analysis. We show that a sim-
ple 4-tap integer filter bank is enough to the approximation and
compression of ECG waveforms. In ECG waveform compression,
we apply the error feed-back procedure to the matching pursuit
iteration to reduce the norm of the approximation error. Finally,
actual ECG waveform compression by the proposed method are
demonstrated. The proposed method achieve the compression by
the factor 10 to 30. The compression ratio given by the proposed
method is higher than the orthogonal wavelet transform coding
in the range of the reconstruction precision lower than 9% in
PRD.
key words: multiscale analysis, matching pursuits, data com-

pression, electrocardiogram, bio-medical signal processing

1. Introduction

Electrocardiogram (ECG) is generated by the ambula-
tory measurement for the medical diagnosis of heart
diseases. In ambulatory measurement, record sam-
ples are more than 10 millions a day. The amount of
ECG data is so large that data compression and coding
techniques are required for transmission and storage.
Many ECG data compression techniques are proposed
to record the huge size of ECG waveforms.

Previous ECG data compression techniques can be
divided into two groups: direct methods and transform
methods [1]. Direct methods are realized by irregu-
lar sampling and quantization of original waveforms
in the time-domain. Transform methods are based on
orthogonal transforms such as Fourier, KL, DCT [1]
or wavelets [2]–[5]. Recently, the orthogonal wavelet
transform is employed to ECG data compression. The
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wavelet transform can achieve high compression ratio
by its time-frequency localization capability.

By the way, the matching pursuit that is a non-
orthogonal signal expansion technique has been pro-
posed [7]. A signal is decomposed to atoms that are
included in a function dictionary. For matching pur-
suit signal decomposition, it is not necessary that each
atom is orthogonal to others. The dictionary hence
can be defined to best match the signal structure. It
is expected that the frequency and time localization
capability of the matching pursuit can be superior to
orthogonal transforms. By this property, the match-
ing pursuit has been already applied to low-bit rate
video coding [9] and coding of prediction error in video
coding [10]. In this paper, we applied the matching
pursuit to ECG waveform compression and coding. In
ECG waveform, a few sharp peaks appear during one
heart-beat period. It is expected that a small number
of atoms can approximate the ECG waveforms. More-
over, the matching pursuit algorithm includes both the
signal expansion and reconstruction procedure. Hence,
the iterative procedure guarantees the desired signal
quality. Since the decoded signal can be obtained in
the encoding process, we can get the coding residual
between the decoded signal and the original signal. So,
it is expected that the lossless compression can be easily
achieved by the coding of residual signals.

The matching pursuit is realized by iterative pro-
cedures. An operation of the iteration consists of three
steps: (1) Computation of inner products between the
signal and all of atoms in the dictionary, (2) Search of
the best atom that minimizes approximation error and
(3) Computation of the approximation residual signal
for the next iteration. The computation of inner prod-
ucts between all of the atoms in the dictionary is always
required for every iteration. The computational cost of
the matching pursuit hence is larger than orthogonal
transforms. In this paper, we introduce the multiscale
analysis and its filter bank structure to the computa-
tion of inner products to reduce the computational cost.
The multiscale analysis can be implemented by the fil-
ter bank structure. The computational cost for inner
products and approximation of the original signal for
an iteration corresponds to a pair of analysis and re-
construction filtering.

In the next section, we give a brief explanation
about previous works of the ECG data compression.
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In Sect. 3, we explain the matching pursuit signal de-
composition. Multiscale analysis is also introduced to
the computation of the matching pursuit. We employ a
4-tap filter for the multiscale analysis for ECG approxi-
mation. The approximation of ECG waveforms will be
also shown. In Sect. 5, the iteration of the matching
pursuit for ECG waveform compression is discussed.
In coding application, the coefficients of each atom are
quantized. So, we introduce the error feed-back to
the matching pursuit for reduction in the quantization
error. Finally, the coding experiments for MIT/BIH
database will be demonstrated.

2. Previous Works on the ECG Waveform
Compression

A typical ECG waveform is shown in Fig. 1. One period
of ECG waveform includes five transient waves that are
called as P, Q, R, S and T wave. Sharp changes of the
amplitude appear mainly around R waves. By con-
trast, P and T waves tend to appear as slow changes
in amplitude. A few sharp peaks occur during a heart
beat. The main problem of the ECG compression is to
preserve the sharp amplitude variation that is impor-
tant for the medical diagnosis while maintaining a high
compression ratio.

ECG waveform compression methods that have
been proposed can be divided into two categories, di-
rect methods and the transform methods [1]. In di-
rect methods, data reduction is achieved in the time
domain. Classical direct methods are based on the
adaptive sampling and quantization of the ECG sam-
ples. Recently, the improvement in DSP and computer
systems allow more complex ECG compression tech-
niques. Transform methods that are widely applied to
image compression are also developed for ECG com-
pression. Orthogonal transforms which are adopted to
the image compression are also applied to ECG data
compression. Recently, Orthogonal and biorthogonal
wavelet transforms are mainly employed to ECG data
compression [2]–[5]. In wavelet transform coding, the

Fig. 1 Typical ECG waveform.

entire ECG waveform is divided to segments consisting
of thousands samples. The orthogonal or biorthogonal
wavelet transform is applied to each segment. After
the transform, transform coefficients are quantized by
the bit-allocation techniques to minimize the bit bud-
gets [3]–[5]. The quantization of transform coefficients
causes distortions which can appear in the form of ir-
regular overdamped oscillation around discontinuities
such as turning points that include peaks, start and
stop points of the five transient waves that are impor-
tant for medical diagnosis. One of the issues involved
with the wavelet transform coding is better selection of
the wavelet basis to reduce the distortions.

In many studies of ECG compression, PRD (Per-
cent Root Distance) has been employed as the measure
of the reconstruction quality [1]. PRD is given by

PRD =

√√√√√√√√√√

N−1∑
n=0

(x(n)− y(n))2

N−1∑
n=0

x(n)2
(1)

where x(n) and y(n) indicate the original and recon-
structed signal, respectively. N denotes the number
of samples. PRD corresponds to the ratio between the
squared sum of the reconstruction error and the squared
sum of the original samples. In this paper, we also em-
ploy the measure to evaluate the quality of decoded
waveforms.

3. Matching Pursuits with Multiscale Analysis

3.1 Matching Pursuits

In matching pursuits [7], a discrete signal f(n) is
approximated by the linear combination of atoms
{qγ(n)}γ∈Γ in a set of functions D that is referred to
as the dictionary. γ denotes the index of atoms, and
consists of a set of integers. Each integer specifies the
properties of an atom, for example, scale, frequency or
position. Γ denotes the entire set of indices in a dictio-
nary. The squared norm of an atom in the dictionary
is normalized to unity.

An original signal f(n) is approximated by those
atoms as

fM (n) =
M−1∑
i=0

P (i)qγi
(n) (2)

where fM (n) is the approximation. M is the number of
atoms. γi is the index for the atom that is selected to
approximate the original waveform. Atoms are selected
by the following iterations. The initial approximation
residual R(0)(n) is set as the original signal itself. At
i-th iteration, inner products between all of atoms in a
dictionary
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P (i)
γ = 〈R(i)(n), qγ(n)〉 (3)

are computed. The inner product which has the largest
absolute is recorded as P (i) and its index of the atom
γ is recorded as γi. The approximation residual for the
next iteration is defined by

R(i+1)(n) = R(i)(n)− P (i)qγi
(n). (4)

By the definition, the approximation residual R(i+1)(n)
is orthogonal to the i-th atom γi(n). By this iteration,
a sequence of atoms that minimize the squared norm
of successive residual |R(i)(n)| are selected. After M
iterations, the signal f(n) is represented by a sequence
of indices of atoms {γi}0≤i<M and a sequence of coeffi-
cients {Pi}0≤i<M . Just a single constraint for a dictio-
nary is that the dictionary is defined as over-complete
basis to signals. If an original signal consists of N sam-
ples, the number of atoms has to be larger than N .
The dictionary has to involve set of N atoms of which
each atom is linearly independent to the other N − 1
atoms. Thank to the freedom in selecting atoms, atoms
can be chosen to best match the signal structure. If the
dictionary is defined appropriately for an input signal,
small M is enough to its approximation. In matching
pursuit iteration, the computation of inner products is
required for all atoms that are not selected. The com-
putational cost increases with the number of atoms in
the dictionary. To reduce the computational cost for
inner products, we introduce the multiscale analysis to
generate the dictionary and to compute inner products
in matching pursuits.

3.2 Atom Generation by the Multiscale Analysis

If the inner products computation of the matching pur-
suit is implemented by the direct convolution such as
FIR filters, the computational cost is too huge to im-
plement real time signal processing. By the way, the
cascade connection of discrete filters, well known as fil-
ter banks can implement the convolution between var-
ious types of impulse responses and signals in simple
structures. In this subsection, we employ a filter bank
structure for the inner product computation between
residual signals R(i)(n) and atoms. Figure 2 shows the
basic filter bank structure which produces inner prod-
ucts between two types of the atoms and the input sig-
nal simultaneously.

In Fig. 2, H(z) and G(z) denote the Z-transform
of the impulse responses h(n) and g(n) of two discrete-
time filters. The filter bank gives the inner products

W
(i)
(m) =

〈
1
a
h(m)(n), R(i)(n)

〉
(5)

and

S
(i)
(m) =

〈
1
b
g(m)(n), R(i)(n)

〉
(6)

Fig. 2 Basic structure of a two-band filter bank.

where a and b are constants for normalization of norm
of atoms. The atoms h(m)(n) and g(m)(n) are the
translation of h(−n) and g(−n) by m and are iden-
tical to h(−n+m) and g(−n+m), respectively. In this
case, we get a dictionary which consists of translation
of atoms g(−n) or h(−n). So, atoms are defined as
q(m,1)(n) = 1

ah(m)(n) and q(m,2)(n) = 1
bg(m)(n). The

index γ consists of two parameters, translation m and
an integer that specifies the filter. Inner products are
also defined as P

(i)
(m,1) = W

(i)
(m) and P

(i)
(m,2) = S

(i)
(m). The

filter output which has maximum absolute value is de-
fined as the i-th coefficient for the matching pursuit
approximation in Eq. (2). The dictionary implemented
by Fig. 2(a) contains those atoms of which number is
equal to twice the number of the signal samples.

Obviously, if there exists any sequences k(n) and
l(n) of which Z-transforms K(z) and L(z) satisfy fol-
lowing equation:

H(z)K(z) +G(z)L(z) = 1 (7)

then the dictionary satisfies the completeness condition.
Usually, two-sequences K(z) and L(z) are defined in a
synthesis filter bank. However, the matching pursuit
requires only the conjugate filter H∗(z) and G∗(z) of
which impulse responses are h(−n) and g(−n) are re-
quired for reconstruction. The existence of K(z) and
L(z) is only required for the guarantee of the complete-
ness of a dictionary. Figure 2(b) shows the filter bank
structure for computation of the approximation resid-
ual for the next iteration. In Fig. 2(b), the filter in-
puts are defined as sequences that consist of impulses
of which amplitude and positions are specified by the
coefficients and indices.

Next, the cascade connection of filter banks is ap-
plied to get various length of atoms. In this paper, we
apply the following two constraints to the set of atoms
for approximation of ECG.

1) All atoms are symmetric and have a single peak
with a small number of zero-crossings.

2) All atoms are generated by scaling and translation
of a basic atom.
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Fig. 3 (a) Filter bank structure for computating inner prod-
ucts and (b) inverse filter bank for the approximation residual.

Each transient wave that compose ECG waveforms
can be approximated by a function that has only one
peak. We applied above the first constraint to approx-
imate an individual transient wave by a single or a few
number of atoms without the irregular fluctuations of
the amplitude around peaks in reconstructed signals.
Moreover, duration of Q, R and S waves is short and
will be approximated by atoms at smaller scales. Con-
trary, duration of T and P waves is long and will be
match to the atoms at larger scales. So, we define the
entire dictionary by scaling and translation.

To satisfy the above two conditions, we apply the
filter bank structure for multiscale analysis [6] which is
shown in Fig. 3(a). Figure 3(b) shows a filter bank for
the computation of the residual for next iteration. By
this filter bank structure, we have two inner products

W
(i)
(j,m) =

〈
1
aj

hj(−n+m), R(i)(n)
〉

(8)

and

S
(i)
(j,m) =

〈
1
bj

gj(−n+m), R(i)(n)
〉

(9)

where j denotes the scale index and is smaller than or
equal to J . J is the number of cascade connections
of the filter. The constants aj and bj are required for
normalization of atoms. Atoms which are given from
the filter bank output are computed as

hj+1(n) =
∑

k

h(k)hj(n− 2jk) (10)

and

gj+1(n) =
∑

k

g(k)hj(n− 2jk) (11)

from h0(n) that is identical to a discrete-time delta
function. The atoms are now defined as q(j,m,1)(n) =
1
aj

hj(−n + m) and q(j,m,2)(n) = 1
bj

gj(−n + m). The
index γ consists three parameters, scale j, transla-
tion m and an integer that specifies the filter. In-
ner products are also defined as P

(i)
(j,m,1) = W

(i)
(j,m) and

P
(i)
(j,m,2) = S

(i)
(j,m).

To satisfy above two condition, we apply the con-
dition of the multiscale analysis to the sequence h(n).
The multiscale analysis [6] is defined by the inner prod-
ucts between the signal f(x) and the scaling function
φj(x) as:

Sjf(x) = 〈φj(t− x), f(t)〉 (12)

where φj(x) denotes the scaling function at scale 2j and
is given by the dilation from the scaling function φ(x)
as

φj(x) =
1
2j

ψ
( x

2j

)
. (13)

So, the multiscale analysis realizes the inner products
between a signal and a set of similar functions. Usually,
the scaling function is defined as a smoothing function.
The multiscale analysis hence gives a set of smoothed
signals in various scales. However, a discrete signal is
defined on discrete points. So, a relationship between a
continuous signal and a given discrete signal is assumed
to exist. The assumption is such that a given discrete
signal is the sampled smoothed signal at j = 0. The
discrete signal is thus defined by Sf0(n). Moreover, let
us assume that the scaling function φ(x) satisfies the
two-scale relation as follows:

φ1(x) =
∑

k

h(k)φ0(x− k). (14)

By this assumption, the scaling function at scale index
j + 1 can be defined by the linear combination of the
scaling function at j-th scale as

φi+1(x) =
∑

k

h(k)φi(x− 2ik). (15)

By the assumptions with respect to the scaling func-
tion, the smoothed signal at scale index j + 1 is repre-
sented by

Sfj+1(n) =
∑

k

h(k)Sfj(n− 2jk). (16)

We define the filter in Fig. 2(a) to satisfy the condition
Eq. (14) for any scaling function. So, outputs of the
filter bank correspond to the inner products between
the signal and scaling functions at various scales. The
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Table 1 Filter coefficients for filter banks.

filter coefficients h(n) that satisfy for any scaling func-
tion gives almost similar-looking atoms at any scale j.
gj(n) is defined as a linear combination of hj−1(n−m).
Set of gj(n) are also similar.

Next, approximation examples by the matching
pursuit with filter banks are now demonstrated. The
sequence of coefficients h(n) that is employed to ECG
approximation is shown in Table 1. This sequence is
selected from the class of scaling functions which are
obtained by cardinal B-spline [8]. The matching pur-
suit requires many number of iterations. So, we se-
lect a symmetric scaling function for cardinal B-spline
wavelet which can be implemented with integer arith-
metic computations. The order of the cardinal B-spline
function is selected as second-order by experiments that
are discussed in Appendix. To examine the signal ap-
proximation by only multiscale analysis, the sequence
g(n) is set as the discrete delta function. So, the inner
products W

(i)
(j,m) corresponds to S

(i)
(j−1,m). The dictio-

nary includes translated discrete-time delta functions
and scaling functions. The number of cascade connec-
tions of the basic filter is set as seven. The total number
of atoms in the dictionary is 8 times as the number of
the original samples.

Example of the ECG waveform approximation in
M=1, 16 and 32 are shown in Fig. 4, where M is the
number of atoms. In the approximation by a single
atom, only the R wave that is most significant is re-
constructed. The reconstruction quality increases as
the number of atoms increases. Other transient waves
of which amplitude is usually smaller than the R wave
are reconstructed with 16 atoms. Fine details and the
location of turning points are well preserved by using 32
atoms. The entire 512-sample waveform is well approx-
imated with several atoms of which number is about
1/16 of the original samples with the signal precision
in PRD 5%. The distribution of the atoms in the index
plane is shown in Fig. 5. In this figure, the locations
and heights of vertical bars indicates the position of
the atoms and amplitude of the coefficients of those
atoms. The position indices of atoms exactly indicate
the positions of peaks of five kinds of transient waves of
which correct positions are explicitly given in the entire
waveform.

In this experiments, atoms are defined for all pos-
sible positions. Hence, the decomposition result has

Fig. 4 Approximation results by translation-invariant dictio-
nary. (a) Original waveform, (b) approximation with a single
atom, (c) 16 atoms and (d) 32 atoms.

translation invariant property. If the signal is trans-
lated in the time domain, the positions of atoms that
are to be used for representing the translated signal are
also translated. So, this dictionary can be referred as
a translation-invariant dictionary. The computational
cost for all atoms is equal in all scales. In larger scales,
a short distance translation of signal causes just a little
change in coefficient amplitude. So, we apply the deci-
mation to the filter bank in Fig. 2(a) to reduce the num-
ber of atoms for signal decomposition. Figure 6 shows
the filter bank structure with decimation. The dictio-
nary is referred as a decimated dictionary. In Fig. 6, the
number of atoms at j-th scale is decimated by factor
2j−1. So, the number of atoms is

ND = N +
J∑

j=1

2−j+1N (17)

where N is the number of input samples and is now
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Fig. 5 Location and amplitude of the multiscale in the
scale-translation index plane.

Fig. 6 Filter bank structure for multiscale atoms with
decimation. (J = 3)

supposed to the power of two. J is set as an integer
which satisfies 2J−1 ≤ N . So, ND is smaller than triple
as many as input samples. In the translation-invariant
dictionary with the filter coefficients in Table 1, the
number of atoms is

NT = (J + 1)N. (18)

In the experiments, the number of atoms in translation-
invariant dictionary is 4,096 atoms for 512 input sam-
ples. The decimated dictionary consists of 1,528 atoms.
The approximation results by the decimated dictionary
are shown in Fig. 7. The approximation precision is
slightly lower than the translation-invariant dictionary.
The approximation precision is shown in Fig. 8 for two
dictionaries. Obviously, the translation-invariant dic-
tionary that contains a larger number of atoms achieves
higher approximation precision. The decimated dictio-
nary requires more atoms to achieve the same approx-
imation precision obtained by the translation-invariant
dictionary.

Fig. 7 Approximation results by decimated dictionary. (a)
Original waveform, (b) approximation with a single atom, (c)
16 atoms and (d) 32 atoms.

Fig. 8 Approximation precision in PRD.

4. Iterative Procedure for Waveform Com-
pression

The signal waveform is represented by two sequences



NAKASHIZUKA et al.: ECG DATA COMPRESSION BY MATCHING PURSUITS
1925

of indices and coefficients of atoms. In actual coding
systems, the inner products have to be quantized. In
addition, the signal reconstruction process can be in-
cluded in the decomposition process in the matching
pursuit iteration. So, the quantization error can be
acounted into the approximation residual that is the
target waveform in the next approximation step. The
computational of residual in Eq. (4) is represented by:

R(i+1)(n) = f(n)−
i∑

k=1

P (k)qγk
(n). (19)

The individual second term of the right side-hand cor-
responds to a signal reconstruction from the indices and
inner products. If the signal reconstruction process in
Eq. (19) includes the quantization, R(i+1)(n) includes
both of the approximation residual and the quantiza-
tion error. The i + 1-th iteration decreases the both
the approximation residual and the quantization error
that causes at i-th iteration. Now, the quantization
of the coefficients is denoted as Q[·]. By inserting the
quantization to Eq. (19), we can get

R(i+1)(n) = f(n)−
i∑

k=1

Q[P (k)]qγk
(n). (20)

The approximation residual converges when Q[P (i)]
shrinks to zero. If the quantization is realized by round-
ing with the uniform quantization step δ, the iteration
converges when the all inner products are smaller than
the δ/2. In the case of the atoms that are generated
from the filter coefficients in Table 1, the approximation
residual

|R(i+1)(n)| < δ/2 (21)

when the iteration converges. So, the upper bound of
the squared norm of the residual Ri(n) depends on the
quantizing step δ and is estimated as Nδ2/4 where N is
the number of samples of the original signal. Figure 9
shows the relationship between the number of iterations
and the approximation error in terms of root of mean
squared error. The upper bound of the error is given by
a half of δ. Figure 9 shows that RMSE at convergence
decreases as δ.

Next, we explain the iteration process. In actual
ECG coding, only finite number of iteration can be im-
plemented. We suppose that the desired precision of
the reconstructed signal and initial quantizing step δ
are given before encoding. At first, the ECG wave-
forms are divided to the segment containing N sam-
ples. The matching pursuit is applied to each segment
individually. In the initial condition, the initial ap-
proximation residual R(0)(n) is set as the original ECG
samples. The coefficients table for atoms are described
as sj,m and wj,m. All elements in sj,m and wj,m are set
as zero. The total number of elements sj,m and wj,m

corresponds to the number of atoms. Integers j and

Fig. 9 Relationship between quantization steps and approxi-
mation error. (Part(b) is the same with (a), but is magnified in
the vertical scale)

m indicate the scale and translation position of atoms,
respectively. δ is the initial quantization step. The
desired reconstruction precision is given in PRD. The
matching pursuit iteration stops, when the reconstruc-
tion precision becomes lower than a given desired level.
After the above initial conditions have been defined,
the following iteration begins from i = 0.

Step 1 Compute inner products of R(i)(n) by the filter
bank given in Table 1.

Step 2 Find the index (j,m) that maximize the in-
ner products. The found index is written by
(jmax,mmax).

Step 3 If the maximum inner product that is found in
Step 2 is W

(i)
(jmax,mmax)

, then update the table as

wjmax,mmax
←wjmax,mmax

+Q[W (i)
(jmax,mmax)

].

(22)

If the maximum inner product is S
(i)
(jmax,mmax)

,
then update the table as

sjmax,mmax
←sjmax,mmax

+Q[S(i)(jmax,mmax)
].

(23)
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Table 2 Compression results for MIT103.

where Q[·] denotes the quantization with step δ.
Step 4 Reconstruct signal from s(j,n) and w(j,n) by the

inverse filter bank and compute the approxima-
tion residual Ri+1(n). If approximation residual
is lower than the desired precision, then stop the
iteration. If the approximation precision is equal at
the previous iteration, then δ is update to halved.

Step 5 Go to Step 1.

In the above iteration, the maximum of the inner
products is smaller than a given temporary quantiza-
tion step, the approximation process will complete. If
the approximation precision converges before the preci-
sion does not reach to the desired precision, the quan-
tizing step is update to the half of the temporary quan-
tization step. After the iteration, the segment of wave-
form is represented in the coefficients table sj,m and
wj,m which involve non-zero elements of which number
is equal to the number of the iteration.

Now let us discuss computational costs for the
matching pursuit decomposition with the filter bank.
F is denoted as the number of the filter taps for H(z)
and G(z). At first, the computational cost for an iter-
ation of the matching pursuit is estimated. The pair of
the analysis and synthesis filterbanks requires 4JFN
and 2F (ND −N) times pairs of multiplication and ad-
diction for the translation-invariant dictionary in Fig. 3
and decimated dictionary in Fig. 6, respectively. For
both dictionaries, the normalization operation requires
multiplications as many as the number of atoms. To
find the maximum amplitude atom, comparison op-
erations are also required as many as the number of
atoms. Moreover, N -times additions and subtractions
are required for the computation of PRD for an itera-
tion. The entire computational cost until convergence
is equal to the product of the computational cost for
an iteration by the number of iterations M .

Let suppose that the orthogonal wavelet filter bank
is implemented by the pair of two F -tap filters to com-
pare with the matching pursuit. J-th scale orthogo-
nal wavelet transform requires 2F

∑J−1
j=0 2

−jN times
pairs of multiplication and addition that is less than
4FN . The computational cost of the matching pursuit
is about more than JM and M times of the orthogonal
wavelet transform for the translation-invariant and the
decimated dictionary, respectively. The disadvantage of
the matching pursuit signal decomposition is that the
redundant bases and the iteration requires huge amount

of computational costs.

5. ECG Waveform Coding

Some coding examples by the matching pursuit with
filter banks are now demonstrated. The filter coeffi-
cients that are shown in Table 1 are employed for sig-
nal decomposition. By these filter coefficients, {w1,m}
and {sj,m}1≤j<J comprise the atom elements table. We
tested two types of ECG signals that include different
features in MIT-BIH Arrhythmia Database. First is
MIT200 tested in Ref. [5] for comparison between the
orthogonal wavelet transform coding method that is
proposed in Ref. [5]. The other is MIT103 that contains
almost normal heart beats without heavy noises. Each
record contains 216,000 samples produced by 360Hz
sampling in 11-bit resolution.

The entire record is divided into coding segments
contains N = 1, 024 samples. A coding segment is ap-
proximated by the matching pursuit with the filter bank
individually. The maximum scale index of the filter
bank is set as seven. The number of atom pairs are
8, 192 for a translation-invariant dictionary and 3, 056
for a decimated dictionary.

By the iterative procedure in the previous section,
each ECG segment is represented in the coefficients ta-
ble. Only the indices (j, n) that are selected during
the iteration have non-zero coefficients. For coding the
coefficients and indices, each index of the non-zero co-
efficient is converted to a single position index that is
defined as j ×Nj +m for sj,m and m for w1,m. Nj de-
notes the number of atoms at j-th scale. The differences
between two consecutive position indices are coded to
record indices of atoms. Values of coefficients are also
recorded along the position indices increases. The po-
sition differences and the value of coefficients that are
given from all segments are encoded by the Huffman
coding. The other components, the quantizing steps
for each segments are also coded by the Huffman cod-
ing.

In coding experiments, we set the desired signal
quality as 15, 13, 11, 9 and 7% in PRD. In Tables 2
and 3 show the compression ratio between the original
and the compressed data. In compression results for
MIT200, a wavelet transform coding reported in Ref. [5]
is also referred. The wavelet transform coding results
are given by the orthogonal wavelet of the Daubechies
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Table 3 Compression results for MIT200.

Fig. 10 Reconstructed waveforms of MIT-BIH arrhythmia
record 103 with translation-invariant atoms: (a) orginal ECG
(b) reconstructed at PRD=7%, compression ratio 15.9:1 and (c)
PRD=12.9%, compression ratio 30.0:1.

Fig. 11 Reconstructed waveforms of MIT-BIH arrhythmia
record 103 with decimated atoms: (a) reconstructed at
PRD=7.0%, compression ratio 18.2:1 and (b) PRD=13.0%, com-
pression ratio 31.9:1.

10-tap coefficients and an adaptive quantizer [5]. Com-
parison between the wavelet transform coding [5] and
the proposed method with the decimated dictionary
shows higher compression ratios beyond 9% in PRD.
Obviously, code words for indices are not required for
the transform coding. So, the matching pursuit is su-
perior to the transform coding when a small number of
atoms are enough for compression. In matching pur-
suits, the overhead of the index codes increases along
the number of atoms increases. So, the compression
ratio is slightly lower than the orthogonal transform in
high quality compression.

The reconstructed waveforms are shown in Figs. 10
to 13. Figures 10 and 12 are the results by the
translation-invariant dictionary. Figures 11 and 13 are
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Fig. 12 Reconstructed waveforms of MIT-BIH arrhythmia
record 200 from translation-invariant atoms: (a) orginal ECG
(b) reconstructed at PRD=7%, compression ratio 10.4:1 and (c)
PRD=12.9%, compression ratio 21.3:1.

the results by the decimated dictionary. Figure 14
shows reconstructed waveforms from the wavelet trans-
form coding with the Daubechies 10-tap coefficients
and an adaptive quantizer [5]. Distortions and irreg-
ular oscillations appear around sharp variation points
in the reconstruction waveform from the wavelet trans-
form coding in Fig. 14. In contrast to the wavelet trans-
form coding, artifacts do not occur in the reconstructed
waveform by the proposed method. This reason is that
the atoms of the proposed method correspond to the
simple smoothing functions with no zero-crossings and
are located to the positions of peaks of the transient
waves. This property will be desirable for better diag-
nosis and precise measurement of time period around
transient waves.

In Table 4, the average number of atoms for com-

Fig. 13 Reconstructed waveforms of MIT-BIH arrhythmia
record 200 from decimated atoms: (a) reconstructed at
PRD=7.0%, compression ratio 12.2: and (b) PRD=12.9%, com-
pression ratio 24.1:1.

pression in each segment is shown. The decimated
dictionary requires a larger number of atoms than the
translation-invariant dictionary. About 30 to 50 atoms
are required to a rough approximation. 70 or more
atoms are required for a precise approximation. Ta-
ble 5 shows the code amount for indices and coefficients
of atoms for coding of MIT200. In the every compres-
sion results, 60% to 70% of the entire codes are spent
for the recording indices of atoms. Since the number of
atoms in the translation-invariant dictionary is larger
than the decimated dictionary, the code amount for the
indices of atoms that are required for the decimated dic-
tionary is smaller than the translation-invariant dictio-
nary. By contrast, the decimated dictionary requires
lager number of atoms than the translation-invariant
dictionary. So, the data amount for the coefficients of
the decimated dictionary is larger than the translation-
invariant dictionary.

Another demonstration is shown in Fig. 15. In this
experiment, the noise reduction property of the pro-
posed method and the wavelet transform coding are
compared. One of major problems in ambulatory mea-
surement of ECG is the presence of noises. Reference
[7] reports that matching pursuits can achieve well noise
reduction by its time-frequency localization capability.
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Fig. 14 Reconstructed waveforms of MIT-BIH arrhythmia
record 200 from orthogonal wavelet transform method (a)
PRD=7% and (b) PRD=13%.

Table 4 Average number of atoms in a coding segment.

Table 5 Data amount of each component for MIT200.

Fig. 15 (a) ECG waveform corrupted random noise, (b) recon-
structed waveform from matching pursuits at desired PRD=13%
and (c) reconstructed waveform from wavelet transform coding
at desired PRD=13%.
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Table 6 Noise reduction property of each coding method for segments in Fig. 15(a).

We also examine the property of the noise reduction of
the coding method and compare with the transform
coding method. Figure 15(a) shows an ECG wave-
form corrupted with random white noise. MSE(Mean
Squared Error) of the waveform segment in Fig. 15(a) is
205.8. Both the wavelet transform coding and the pro-
posed coding method are applied to the corrupted sig-
nal. The reconstructed signals are shown in Fig. 15(b)
from the proposed method with the decimated dictio-
nary and Fig. 15(c) from the wavelet transform method.
Desired PRD is set as 13% for both coding method.
The approximation and quantization are done to satisfy
that reconstruction error which is defined between the
corrupted input signal and the reconstructed signal is
smaller than the specified PRD. Comparing Fig. 15(b)
to Fig. 15(c), the amplitude of noise in the recon-
structed signal from the proposed method is smaller
than noise in the wavelet transform method. In Ta-
ble 6, MSE of reconstructed signals from both coding
method at PRD 13% and 7% are shown. MSE of re-
constructed signals from the proposed coding method
are smaller than the wavelet transform coding method
at every examples. These results show that the match-
ing pursuit signal approximation has better waveform
preservation property than the wavelet transform cod-
ing method. The matching pursuit isolates the signal
structures that are coherent with respect to a given dic-
tionary. The only main structures of the original signal
can be retained quickly during iterations.

Finally, actual computational time for 30 minutes
ECG records(MIT200) with the translation-invariant
dictionary are shown in Table 7. This table shows
the computational time for signal decomposition by the
matching pursuit and the wavelet transform. The com-
putational time for 30 minutes ECG is about 3 to 9 min-
utes by Pentium 166 MHz processor. Real time ECG
compression will be archived by the proposed method
by such a class of processors. However, the computa-

Table 7 Computation time for 30 minutes ECG record
(running on Pentium 166MHz Processor).

tional time of the proposed method is larger than about
200 times of the wavelet transform coding method.

6. Conclusion

In this paper, an ECG waveform compression based
on the matching pursuits. The filter bank structure
was introduced to the matching pursuits to reduce the
computational costs for the inner products computa-
tion. The error-feed back was introduce to the match-
ing pursuit iteration to reduce the quantization error.
4-tap symmetric integer filter bank system has been
enough to practical ECG compression and gives com-
petitive or higher compression ratios than the orthogo-
nal transform method [5]. The proposed method keeps
primary features of waveforms and does not cause ar-
tifacts that can be caused by the quantization of the
orthogonal transform coefficients. Owing to this prop-
erty, the proposed method is suitable for low-bit rate
ECG compression and transmission. Moreover, the in-
dices of atoms in the translation-invariant dictionary
exactly indicate the peaks of ECG. So, it is expected
that the compressed data is also utilized to the com-
puterized ECG diagnosis, such as feature detection.
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The disadvantage of the proposed method is the
computational cost for the iterative procedure. How-
ever, the compression results have shown that just 4
tap integer filter is enough to actual ECG compression.
Moreover, one stage filter bank can be constructed by
the single low-pass filter. Any bit-allocation technique
is not required to achieve high compression ratio.

The matching pursuits permit any filter to be ap-
plied for signal decomposition, since its decomposition
does not require orthogonal and bi-orthogonal proper-
ties. The optimum filter design for waveform coding
is a future subject. In signal decomposition, the num-
ber of atom depends on a signal. For example, a noisy
signal requires many atoms. While effective noise re-
duction is incorporated in the matching pursuits signal
decomposition process, its optimization is also an open
question.
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Fig.A· 1 (a) Approximation results by zero-order spline func-
tions (PRD: 11.5%), (b) first-order spline functions (PRD: 5.8%)
and (c) third-order spline functions (PRD: 6.4%).

Appendix: Examples of ECG Approximation
by Cardinal B-Spline Scaling Func-
tions

In cardinal B-spline wavelets [8], the order of the spline
function specifies differentiability and regularity of the
scaling function. We show the approximation results
with scaling functions that are zero, first and third or-
der cardinal B-spline function in Fig. A· 1. The number
of atoms for approximation is set as 32. Comparing
with Fig. 4 that is given by the second order cardinal
B-spline, the lower order functions give less approxi-
mation precision or cause discontinuities in waveforms.
The higher order function is too smoother to approxi-
mate sharp variation changes and gives lower approxi-
mation precision than second order function. We hence
select the second order B-spline function for ECG wave-
form approximation and coding.
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