
938
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

PAPER

Simple Bitplane Coding and Its Application to Multi-Functional
Image Compression

Hisakazu KIKUCHI†a), Fellow, Ryosuke ABE†, Nonmember, and Shogo MURAMATSU†, Member

SUMMARY A simple image compression scheme is presented for vari-
ous types of images, which include color/grayscale images, color-quantized
images, and bilevel images such as document and digital halftone images.
It is a bitplane coding composed of a new context modeling and adaptive
binary arithmetic coding. A target bit to be encoded is conditioned by the
estimates of the neighboring pixels including non-causal locations. Several
functionalities are also integrated. They are arbitrary shaped ROI transmis-
sion, selective tile partitioning, accuracy scalability, and others. The pro-
posed bitplane codec is competitive with JPEG-LS in lossless compression
of 8-bit grayscale and 24-bit color images. The proposed codec is close to
JBIG2 in bilevel image compression. It outperforms the existing standards
in compression of 8-bit color-quantized images.
key words: image compression, image coding, context model

1. Introduction

Image and video transmission is the most traffic over com-
munication channels. Imaging modalities and resolutions
continue to grow. High-reality image communications are
also emerging. Multiple components [1], high resolution
[2]–[5], high dynamic range [6], and high speed [7] are keys
for improving the reality of imaging and rendering. They
increase the data rates of digital images. To cope with the
increased information, data-partitioning of the image con-
tent and partial access to it are now recognized as a desirable
functionality for image compression systems.

Although the rendering quality of received images is
desired as high as possible, a user may want different qual-
ity levels in decoding even in a single download transaction.
Progressive transmission and decoding is one of the solu-
tions. These backgrounds are driving forces for a lossy-to-
lossless codec that works for various types of images.

The purpose of this paper is to present a simple pro-
totype codec that tries to answer the relevant issues. An
immediate benchmark performance is assumed as follows.

1) The complexity is lower than JPEG2000 [8], [9].
2) It performs as well as JPEG-LS [10], [11] for lossless

compression of color/grayscale images.
3) It performs better than GIF for lossless compression of

color-quantized images.
4) It performs as well as JBIG/JBIG2 [12], [13] and is eas-

ier to use than JBIG2 for lossless compression of bilevel

Manuscript received September 27, 2011.
Manuscript revised January 6, 2012.
†The authors are with the Department of Electrical and Elec-

tronic Engineering, Niigata University, Niigata-shi, 950-2181
Japan.

a) E-mail: kikuchi@eng.niigata-u.ac.jp
DOI: 10.1587/transfun.E95.A.938

images.
5) Some functionalities are equipped with it as many as

JPEG2000. For example, multiple components are ad-
missible, bit depth is variable and a region-of-interest
(ROI) is accurate.

The rest of the paper is organized as follows. The
method of the proposed bitplane coding is presented in
Sect. 2, where the context model is created by a scheme of
bit modeling by pixel values. Brief notes for compression of
various types of images are given in Sect. 3. Experimental
results are given in Sect. 4 in comparison with some standard
systems on compression performances and demonstrations
on enhanced functionality. Conclusions follow in Sect. 5.

2. Simple Bitplane Coding

2.1 Underlying Guidelines

The compression performance is a significant concern on
various types of image contents. On the other hand, the sim-
plicity of a codec system is another criterion both for low-
power dissipation and for simple developments of various
functionalities on the core of the codec system. It is rea-
sonable to choose adaptive arithmetic coding [14]–[17] for
compatibility between high performance and generic appli-
cability.

Bitplane coding is natural for a simple way to data par-
titioning. It is advantageous with respect to a fast estimation
of probabilities and the immunity against context dilutions
[18]–[21]. Assume that an 8-bit image is scanned on adap-
tive arithmetic encoding. Only two symbols of zero and one
appear in bitplane coding. It is enough to estimate either
one of their probabilities. In contrast, 256 symbols are in-
volved in pixel-value coding. When the same number of
pixels are visited in both types of coding, there are much
more chances in updating the frequency counts of individ-
ual symbols in the bitplane coding than in the pixel-value
coding. As the number of visited pixels increases, a faster
probability estimation is possible in the bitplane coding.

The small alphabet size is also advantageous to prevent
from excessively degrading the coding efficiency, which can
be caused by an insufficient number of samples. It is valid,
even if the original image may be partitioned into multiple
pieces. It is also hopeful to make a locally adaptive esti-
mation of the sample distribution in an image. In addition,
the alphabet size of bitplane coding is the smallest. As far

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
939

as context-based coding is concerned, the average number
of samples in individual models is inversely proportional to
a product of the number of context models and the alphabet
size. Hence, if the alphabet size is small, the context dilution
is likely to be suppressed.

The above mentioned two elements, that is, adaptive
arithmetic coding and bitplane coding, are combined into a
system as a context-based adaptive binary arithmetic cod-
ing of separate bitplanes. Additional functionalities are also
desirable to meet the requirements on data-partitioning and
partial access including tiling, ROI and progressive trans-
mission. The profiles of the proposed codec are summarized
in Table A· 1 in Appendix A in comparison with some stan-
dard codecs.

2.2 Bit Modeling by the Pixel Value Estimates

The pixel value at location (i, j) in a given image to be en-
coded is written by x(i, j). Its decoded value is written by
y(i, j). Since the location indexes are trivial, they are omit-
ted in the later description. The raster scanning order is used
for visiting pixels.

As the process of the bitplane coding proceeds to lower
bitplanes, the decoded value, y, of the target pixel ap-
proaches the true pixel value, x = (x8 x7 x6 · · · x1), where
xn denotes the nth bit of x in the case of an 8-bit grayscale
image†.

In the proposed bitplane coding, every bit to be en-
coded is modeled by two sorts of contexts. The contexts
are built by the estimates of partially-decoded pixels.

2.2.1 Neighborhood Context

The pixel location of a target bit, xn where n ∈ {1, 2, · · · , 8},
to be encoded is labeled by 0 on the 9-pixel template shown
in Fig. 1. The neighborhood context bit is generated as fol-
lows.

qi =

⎧⎪⎪⎨⎪⎪⎩
1, for yi > y

0, otherwise
(1)

where i ∈ {1, 2, · · · , 9} denotes the spatial location on the
template. yi and y represent the latest estimates of the neigh-
boring pixels and the target pixel, respectively.

There exist two basic sorts of context modeling in im-
age coding and are listed in the top two rows in Table 1.
The most significant feature of the proposed bitplane cod-
ing is found in the context modeling, which is explained as
follows.

In typical predictive coding [10], [11], [18]–[25], pixel
values or prediction errors are used for generating contexts,
because pixel values are strongly correlated. It is referred to
as pixel modeling by pixel values. However, since the alpha-
bet size is large, the context modeling with a large template
suffers from the context dilution problem.

On the other hand, the neighboring bit patterns on the
present bitplane used to be applied to the context model-
ing in many sorts of bitplane coding [8], [9], [12], [13], [26]–

8
5 2 6 9

7 1 0 3
4

Fig. 1 Nine-pixel template for the neighborhood context.

Table 1 Approaches in context modeling.

Purpose Method

pixel-encoding pixel modeling by pixel values
bit-encoding bit modeling by bit patterns
bit-encoding bit modeling by pixel values
bit-encoding bit modeling by bitplane connectivity

[29]. It is a scheme of bit modeling by bit patterns. How-
ever, since the correlation among neighboring bits on a bit-
plane is weak in natural grayscale images, it is hopeless to
use a large template.

In the proposed bitplane coding, the inter-bit correla-
tion on a bitplane is not used. Instead, for modeling a target
bit, we use the pixel value estimates of which more signif-
icant bits have been already available at the decoder. The
method is referred to as bit modeling by pixel values. The
pixel value estimates are used instead of unknown true val-
ues at the decoder. Since the decoded pixel values are spa-
tially correlated to each other as significantly high as true
pixel values, it makes sense to apply a large template. At the
same time, since the alphabet size is only two, it is highly
probable to avoid the context dilution. Furthermore, the 9-
pixel template in Fig. 1 covers a few non-causal locations
with respect to the scanning order of pixels. Since context
bits are defined by using the estimates of pixel values, it is
possible to make a reference to the pixels at non-causal lo-
cations. This type of reference is impossible in any scheme
of bit modeling by bit patterns or pixel modeling by pixel
values.

2.2.2 Related Works

A similar but earlier study by Yoo et al. [30], [31] listed in
Table 1 was informed by a reviewer of this paper. In order to
make the differences clear, a brief explanation is developed
below.

At first, their objective is to encode a simple image
rather than a natural image. According to their definition,
a simple image means the image which is represented by a
sparse subset of the available intensity values.

Secondly, their context is made of bitplane connectiv-
ity for the pixel pairs on the 8-connective neighborhood. On
encoding the n-th bitplane, the connectivity value is 1, if a
pair of pixels of which values are truncated at the nth sig-
nificant bit have the same value, and 0 if different. This
point is an important difference between their modeling and
the proposed one. In their method, the probability of the
coincidence in the comparison is expected to be quite low.
Hence their modeling is effective for simple images rather

†Note that it does not matter how high the bit depth is.

940
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

than natural images. In contrast, our comparison whether
it is larger or not directly depends on the local correlation
among neighboring pixel values.

Thirdly, their neighborhood template is smaller than
ours especially toward the northern and western directions.
A related but minor issue is on the southeast and southwest
pixels. They use them, but we do not. According to our in-
vestigations, the context bits generated by those pixels were
less helpful in our modeling, and therefore those locations
were omitted from the template.

The fourth difference is their complex and special mod-
eling for encoding the MSB. The detail is omitted here, since
the method is complicated and is combined with an addi-
tional device referred to as a matching indicator.

Besides the above mentioned points, they introduces
scalable bitplane reduction which is a sort of histogram
compaction to improve the performance up to a competitive
level to JPEG-LS.

In summary, both the method by Yoo et al. and the
proposed one exploit the more significant bits. The context
is generated by the coincidence between the MSBs in their
method, whereas, in this work, it is generated by the value
comparison between pixel values rather than a bit pattern
along the bit depth.

2.2.3 Estimation of Pixel Values

Suppose that the nth bitplane is being encoded at present.
For every pixel, the higher bits up to the (n + 1)th bitplane
have been known at the decoder. The other lower n bits are
unknown. The value of the unknown part distributes over
the interval of [0, 2n−1]. We assume that zero and one occur
with the equal probability in the unknown less significant n
bits. Under this assumption, the pixel value estimate of the
target pixel is expressed by

y(n) =
⌊ y
2n

⌋
2n + 2n−1 − 1 (2)

at the nth bit-plane encoding and decoding, where y is the
latest decoded value and �·� denotes truncation. The first
term in the right-hand side of Eq. (2) represents the decoded
bits that are exactly equal to the significant bits in x. The
other part is the expectation value of the unknown part under
the assumption of an equal distribution of unknown binary
symbols. Although the expectation value for the unknown
LSBs affects nothing for making the context bits, the pixel
value representation by Eq. (2) is advantageous in develop-
ing several functionalities. The binary representation of the
pixel value estimate is given in Fig. 2 in the case of n = 4.
When the initial value, y(8), is computed by Eq. (2), y can be
arbitrary, as long as it is an 8-bit integer. Actually the value
of y affects nothing for setting the initial value.

After the target bit, xn, has been encoded/decoded, the
target pixel value estimate, y, is immediately updated by a
simple bit operation: the nth and (n − 1)th bits of y are re-
placed with xn and 0, respectively. It is expressed by the
following substitution.

y(4) = x8 x7 x6 x5 0 1 1 1

Fig. 2 Binary representation of a pixel value estimate in the case of n =
4.

y← y + xn2n−1 − �2n−2�. (3)

The pixel value estimate is used in a coming chance of ref-
erence and will be the decoded pixel value, when decoding
is stopped.

2.2.4 Control of the Template Size

The non-causal pixels are useless in encoding the most sig-
nificant bitplane. They are skipped in such a case.

The inter-pixel correlation decreases at lower bitplanes
in most natural images where the bit depth is usually eight.
The number of template pixels are hence gradually de-
creased as 8, 7, 6, and 5 for encoding four less significant
bitplanes, respectively. If the numbers on the template in
Fig. 1 are not larger than the present number of template pix-
els, the numbered locations are active for context modeling.

2.2.5 Self Context

Highlight areas and shadow areas in an image are probable
to represent different objects, respectively. According to this
observation, a target bit being encoded is conditioned by the
magnitude of the estimate y of the target pixel. When K-
bit conditioning is used, the excursion of the tone scale is
divided into 2K successive intervals. The K-bit self context
for D-bit grayscale images is hence defined by

q0 = i, for 2D−Ki ≤ y < 2D−K(i + 1), (4)

where i ∈ {0, 1, · · · , 2K − 1}. The self context is empirically
helpful in precise estimation of the statistical bias in the dis-
tribution of pixel values.

2.2.6 Context Model

The context model of a target bit is defined by a sequence of
the neighborhood context bits followed by the self context
bits. The context model is expressed by a binary number,
which is a simple concatenation of the context bits as fol-
lows.

q = (q1, · · · , qJ, q01, · · · , q0K) , (5)

where qi and q0k stand for the neighborhood context bits and
the self context bits, respectively. J denotes the number of
reference pixels on the template for the neighborhood con-
text.

J = 9 and K = 3 are default values for the pixel bit
depth of D = 8. As a result, at most 2J+K = 4096 context
models are created for conditioning a target bit in binary
arithmetic coding. One may wonder if the number of con-
texts is extraordinarily many. However, it is a fact as will be
demonstrated in Sub-sect. 2.4 and it is one of the features of

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
941

� �
n← the bit depth
Set the pixel value estimates by Eq. (2)
While n > 0 {

// Input the code bit-stream
Initialize the frequency counts
for all pixels {

Neighborhood context by Eq. (1)
Self context by Eq. (4)
Define the model q by Eq. (5)
Binary arithmetic encoding of xn by q
Update the pixel value estimate by Eq. (3)

}
Output the code bit-stream
n← n − 1

}
� �
Fig. 3 Pseudo code of the encoding algorithm. A double-slush implies a
comment and no operation is executed. To get the pseudo code of decoding,
activate it, instead, comment out the output line and change encoding to
decoding.

the proposed bitplane coding.

2.3 Encoding and Decoding Procedures

The most significant bitplane is selected for encoding at first.
Every bit on a bitplane is modeled by the previously de-
scribed contexts. It is sent to an adaptive binary arithmetic
encoder as well as its model of Eq. (5).

The frequency counts are initialized in the adaptive bi-
nary arithmetic encoder†, when the bitplane changes. All
the initial probabilities are set to be equal. The arithmetic
encoder encodes an input bit, and updates the cumulative
frequency counts. Once the present bitplane has been en-
coded, the encoder outputs a sequence of code bits. The en-
coding bitplane is switched to the next lower bitplane, and
the procedure is repeated. The pseudo code of the encoding
algorithm is given in Fig. 3. One will see that it is simple.

Decoding shares the same algorithm with encoding. As
noted in the legend of Fig. 3, the input operation is activated
instead of the output operation, and encoding is replaced
with decoding.

2.4 Experimental Evidence That Supports the Proposed
Context Modeling

In the proposed context-based bitplane coding, every bit
being encoded is modeled by the pixel value estimates of
which pixels are located at its immediate neighborhood.
This is a key in the combination of bitplane coding and adap-
tive binary arithmetic coding [33], [34].

In this subsection, a supplementary experiment is con-
ducted to demonstrate the superiority over the conventional
scheme of bit modeling by bit patterns. In Table 2, three ex-
treme cases are compared with the proposed scheme of bit
modeling by pixel values (in short, modeling by values in
the table), which is listed in the rightmost column. The first
of them is a scheme of context-free model where no context

Table 2 Effects of bit modeling onto bit rate reduction.

Bit rates in bits per pixel
Test image context- self context modeling modeling

free only by bits by values

airplane 7.010 6.459 4.835 3.896
baboon 7.938 7.268 6.616 6.028
balloon 7.657 7.102 4.136 2.984
bank 7.721 7.505 5.470 4.645
barb 7.851 7.443 5.707 4.795
barb2 7.879 7.351 5.615 4.735
camera 7.218 6.782 5.164 4.282
couple 6.373 6.352 4.651 3.798
goldhill 7.440 7.061 5.480 4.536
lena 7.803 7.509 5.639 4.645
lennagrey 7.958 7.370 5.345 4.283
noisesquare 5.779 5.608 5.126 5.110
peppers 7.923 7.463 5.465 4.522
shapes 7.076 6.653 1.725 1.239
us021 6.933 6.615 5.751 5.379
us092 6.450 6.018 5.270 4.744

Average 7.313 6.910 5.125 4.351

modeling is applied. The second is the case where only the
self context modeling is applied and the neighborhood con-
text is completely suppressed in the algorithm in Fig. 3. The
third is a combination of the self context and bit modeling
by bit patterns, where the neighborhood context is devel-
oped by the causal bits on the present encoding bitplane in
use of the template in Fig. 1 because the non-causal bits are
unavailable in this method.

At first as seen in Table 2, the self context evidently
works well. As for the neighborhood context, it is verified
that the context modeling is very effective in the combina-
tion of adaptive binary arithmetic coding and bitplane cod-
ing. In the experiment of actual compression of grayscale
images, two types of context modeling resulted in bit rate
saving of 1.785 and 2.559 bpp on average over the neigh-
borhood context-free compression. Their difference is 0.774
bpp and is significantly large. It is, hence, evident that the
scheme of bit modeling by pixel values is superior to that of
bit modeling by bit patterns on the bitplanes.

2.5 Distortion Estimates in Decoding

In the proposed bitplane coding, encoding and decoding can
be ceased at any bitplane. The average distortion of pixels
in a decoded image is known before decoding or encoding.
The distortion estimate of a decoded 8-bit grayscale image
is given by

d � 6� + 9 (6)

in terms of of PSNR in dB, where � is the number of de-
coded bitplanes. It gives a rough lower bound of PSNR of a
decoded image. The proof is given in Appendix B.

†The adaptive binary arithmetic codec in our prototype is the
range coder [32].

942
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

3. Compression of Various Images and Some Function-
ality Extensions

The simple bitplane coding presented in the previous section
is applied to compression of various types of images. They
are color images, color-quantized images, and bilevel im-
ages including digital halftone images by ordered dithering
and error diffusion. Additional adaptations to those image
contents are described in this section as well as the imple-
mentations of some functionality extensions.

3.1 Compression of Color Images

Color image compression is performed by applying the bit-
plane coding to individual color components after a color
component transform [35]–[37]. It is defined by

⎛⎜⎜⎜⎜⎜⎜⎜⎝
E
M
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
3

1
3

1
3

1 −1 0
0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
R
G
B

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (7)

where R, G, and B are red, green, and blue components,
respectively. It is reversible in the strict sense of integer
pixel values, if it is implemented in a lifting form as follows.

M ← R −G
N ← B −G

E ← G +
⌊M + N

3

⌋

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(8)

where a single fixed-point multiplication suffices. The
chroma components, M and N, are represented in signed-
magnitude integers. The sign bit information is encoded in-
dependently of the magnitude information.

Multi-component images comprising four or more pri-
maries can be efficiently compressed by an application of
an effective component transform. Once a specific multi-
component color space is given, it is possible to find a qual-
ified and reversible component transform in the form of lift-
ing [37].

Even after the decorrelation by the component trans-
form, there exist weak dependencies among color compo-
nents. For example, a considerable level of noisy behavior
of pixel values is often observed over shadow areas in an
image. Similarly, the color tends to saturate or to converge
to achromatic colors in highlight areas. In order to exploit
these dependencies, an additional one-bit shade context is
defined as follows.

qs(c) =

⎧⎪⎪⎨⎪⎪⎩
1, for y(E) < s or y(E) + s ≥ 2D

0, otherwise
(9)

where c denotes anyone of E, M and N in Eq. (8) and y(E)
denotes the estimate of the luma, respectively. s is a thresh-
old value and is given by 2D−k, where D and k are the bit
depth of the luma and the number of the present self context
bits, respectively. To implement the shade context, the luma
component is encoded earlier than the chroma components.

Fig. 4 Palette index images. (a) before sorting, and (b) after sorting.

3.2 Compression of Color-Quantized Images

Eight-bit color-quantized images are one of categories of
color images as used in the GIF format. A color table (color
palette) is used to map true 24-bit color values onto 8-bit
color indexes. Note that labeling methods for color indexes
are independent of color value mapping. Consequently,
when the color index values are used as substitute for tone
values, a resulting image displayed in grayscale looks ab-
normal in appearance, as shown in Fig. 4(a).

A preprocessing is hence introduced so that a processed
image may show visually natural appearance. From a color
value triplet of (R,G, B) in a given color table, a wide-sense
luma [38]

L = R +G + B (10)

is defined, and the color table is re-indexed by sorting the
256 entries in ascending order of the luma. The proposed
technique is a kind of palette reordering [39] and is the sim-
plest among many methods†.

As observed in part (b) of Fig. 4, the new indexes work
as if the resultant image were a grayscale image so that a
generic bitplane coding works well in compression.

3.3 Compression of Bilevel Images

Bilevel images are often produced in a variety of cate-
gories for their own purposes such as found in printing,
facsimile transmission, segmentation and document archiv-
ing. Typical categories of bilevel images include error dif-
fusion halftones, clustered-dot dither halftones, character-
based documents, and line/drawing artworks.

As a consequence, neighboring pixel values are proba-
ble to correlate to each other. The statistical nature of bilevel
images is different from that of less significant bitplanes of
natural scene images. Since the bitplane to be encoded is
single, both non-causal pixels and self contexts are helpless
and are thus dropped. Instead, an extended 15-pixel tem-
plate is defined for the neighborhood context as shown in
Fig. 5.

†Much better methods are available, if the computational time
is not significant [39], but a simpler system is the concern in this
work.

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
943

14
9 10 6 11 12
8 2 3 4 7 15

13 5 1 0

Fig. 5 Fifteen-pixel template for bilevel image compression.

It is worth to mention that the proposed bitplane cod-
ing is option-free unlike JBIG2 and is thus easy-to-use for
generic users. This point is significantly different from
JBIG2, where there are many coding engines including
JBIG [12], halftone [13], MMR†, SPM†† [29] and others†††.

3.4 Functionality Extensions

Three major functionality extensions are described in this
subsection.

3.4.1 Progressive Transmission

Since the data partitioning capability with respect to bit-
planes and color components is inherently equipped with
the proposed bitplane coding, the functionality of progres-
sive transmission requires none of additional processing. It
is implemented by transmitting the separate code streams of
different bitplanes as individual data.

Progressive decoding is just a result of a successive de-
coding of separate bitplanes for rendering a decoded image
at a desired level of bit depth. The pixel accuracy is incre-
mentally refined bitplane by bitplane. The average distor-
tion estimate over a decoded image is available in Eq. (6)
prior to encoding. This benefits a wide range of users, be-
cause it is easy to use.

3.4.2 Arbitrarily Shaped Region-of-Interest

The shape of an ROI is arbitrary. It does not matter, even
if the ROI may be a collection of disjointed dots and pieces
of a jigsaw puzzle as illustrated in Fig. 6. Since none of
spatial transforms are involved with the proposed coding, a
blur-free ROI is decoded.

The ROI information is a binary map of one-bit depth.
It is stacked on top of the most significant bitplane of an
image being encoded. Hence the ROI information and the
image bitplanes are concatenated along the bit depth, as if
the bit depth of the image is extended. When an RGB color
image is encoded, the binary ROI map is basically stacked
on every component. If different ROI maps are applied to
individual color components, they are stacked on respective
components. In this way, the ROI information is embedded
into the image content.

In addition to the ROI-embedded data form, a separate
data form of an ROI and an image content is allowed as an
option.

An ROI-embedded image is encoded in one of two
ways. The first is to skip the non-ROI areas, as if the back-
ground of the ROI were occupied by a pixel value of a uni-
form intensity. The other is to encode the entire area includ-

Fig. 6 An example of a decoded image by an arbitrarily shaped ROI.

ing the non-ROI areas. In this case, the foreground and the
background of an ROI are decodable in different accuracies,
as long as the bit depth for the foreground is longer than or
equal to that for the background. Progressive decoding of
ROI areas is also possible.

3.4.3 Selective Tile Partitioning

Tile partitioning is implemented, if all ROIs are defined to
cover the whole image without overlaps, where the shape of
a unit tile is arbitrary. The tiling pattern is specified by a tile
unit and its offset. The horizontal and vertical offset values
are set to define the left-top position where the tiled region
begins.

When tile partitioning is applied, tiled areas are sepa-
rately and independently encoded. Tiles are fully or partially
selectable for encoding and decoding.

Owing to the arbitrary shape of ROI and selective
tiling, coding units can be defined object by object in an
image so that the object scalability would be developed as
an advanced functionality.

4. Experimental Results

The performances of the proposed bitplane coding in loss-
less compression of six categories of images are investigated
in comparison with existing standard systems. Demonstra-
tions on some functionality extensions are also presented.

4.1 Lossless Compression Performances

4.1.1 An Overview

A brief overview on the average bit rates in lossless com-
pression of six categories of images are presented in Table 3
for comparing the proposed codec with existing standards.

†modified modified READ
††soft pattern matching
†††A user of JBIG2 is requested to specify various options to get

the best fit to image contents to be encoded. Depending on the
contents located at different areas in an image, qualified coding
algorithms are applied to the different areas after their segmenta-
tions. If the default settings are chosen, the potential of JBIG2 is
hardly exploited.

944
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

Table 3 Average bit rates in lossless compression.

Category of Bit rates in bpp/c1 Reference
test images Proposed Reference codec

24-bit color 4.229 4.352 JPEG-LS
8-bit grayscale 4.351 4.413 JPEG-LS

8-bit color (gif)2 4.931 5.430 JPEG-LS

bilevel halftone3 0.470 0.475 JBIG2

bilevel halftone4 0.309 0.303 JBIG2

bilevel document5 0.054 0.043 JBIG2
1 Bit rates are in bits/pixel per component for 24-bit color

and color bilevel halftone images.
2 The average bit rate of GIF files is 5.899 bpp including

header information which is equivalent to 0.025 bpp for
the set of 14 test images.

3 Floyd-Steinberg error diffusion
4 Ordered dither by the 40-dot/18◦ CMY orthogonal screen set
5 CCITT fax test set (200 dpi)

Detailed data for respective image categories will be pre-
sented after the overview. Note that the reference codec
stands for the best performing codec among JPEG2000 [40],
JPEG-LS [41], JBIG [42], and JBIG2† in respective image
categories.

As for JBIG2, it should be noticed that any verifica-
tion models are unavailable to the public and the parameter
setting of options depends on image contents. Hence com-
parisons to JBIG2 were carefully conducted on the basis of
literature, if the literature and test images are available.

Table 3 summarizes the lossless compression results
for various types of images, while the separate data for indi-
vidual image categories are presented in the following sub-
sections. As seen in Table 3, the proposed codec is com-
petitive to every standard codec that performs best for each
category of images.

4.1.2 Grayscale Images

The lossless compression performance of the proposed
method on grayscale images is listed in Table 4, where ac-
companied are the bit rates of JPEG-LS that is the best per-
forming standard codec. Most of 16 test images are the pop-
ular USC set††. As seen in the table, the performances of the
proposed method and JPEG-LS are competitive in lossless
compression of grayscale images.

4.1.3 24-Bit Color Images

The lossless compression performance of the proposed
method on 24-bit color images is listed in Table 5, where
bit rates of JPEG-LS, which is the best performing standard
codec, are also given. Twenty-two test images mainly com-
prise of the USC set, ISO/JIS-SCID [43] and Sony sRGB
standard images [44]. Reversible color component trans-
forms used are EMN of Eq. (8) for the proposed bitplane
coding and GMN††† for JPEG-LS, respectively, since GMN
is recommended in the standardization [11]. Again, the
proposed method and JPEG-LS are competitive in lossless

Table 4 Bit rates in grayscale image compression.

Bit rates in bpp
Test image Resolution Proposed JPEG-LS

airplane 512×512 3.896 3.817
baboon 512×512 6.028 6.036
balloon 720×576 2.984 2.904
bank 256×256 4.645 4.812
barb 720×576 4.795 4.691
barb2 720×576 4.735 4.686
camera 256×256 4.282 4.314
couple 256×256 3.798 3.699
goldhill 720×576 4.536 4.477
lena 512×512 4.645 4.607
lennagrey 512×512 4.283 4.238
noisesquare 256×256 5.110 5.683
peppers 512×512 4.522 4.513
shapes 512×512 1.239 1.214
us021 640×480 5.379 5.897
us092 640×480 4.744 5.024

Average – 4.351 4.413

Table 5 Bit rates in color image compression.

Bit rates in bpp/c1

Test image Resolution Proposed JPEG-LS
in EMN in GMN

N1A, woman 1536×1920 4.288 4.424
N2A, cafe 1536×1920 4.978 5.173
N3A, fruits 1920×1536 4.362 4.490
N4A, wine 1920×1536 4.300 4.439
N5A, bike 1536×1920 4.302 4.347
N6A, orchid 1920×1536 3.806 3.971
N7A, musicians 1920×1536 5.460 5.690
N8A, candle 1920×1536 4.900 5.134
Sony party 4x 2048×1536 3.681 3.721
Sony picnic 4x 2048×1536 3.865 3.926
Sony portrait 4x 2048×1536 3.594 3.654
airplane 512×512 3.768 3.772
baboon 512×512 5.955 6.071
barbara 720×576 3.388 3.571
boats 720×576 2.955 3.184
couple 256×256 3.894 3.900
girl 256×256 4.510 4.470
goldhill 720×576 3.299 3.596
lena 512×512 4.466 4.583
peppers 512×512 4.810 4.925

Average – 4.229 4.352
1 Bit rates are in bits/pixel per component.

compression of color images.

4.1.4 8-Bit Color-Quantized Images

Eight-bit color-quantized test images were generated by a
combination of median cut and error diffusion-quantization
in Jasc Paint Shop Pro. A majority of the 14 test images are

†Reference [42] for halftones and Refs. [29] and [47] for doc-
ument images
††http://sipi.usc.edu/database

†††
⎛⎜⎜⎜⎜⎜⎜⎜⎝
G
M
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 −1 0
0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
R
G
B

⎞⎟⎟⎟⎟⎟⎟⎟⎠

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
945

Table 6 Bit rates in bpp of 8-bit color-quantized image compression.

Test image GIF Proposed JPEG-LS
(GIF) sort-free luma-sort luma-sort

goldengate 6.214 6.257 5.693 6.251
milkdrop 5.013 4.558 4.477 5.122
tiffany 6.504 6.119 5.284 5.769
baboon 8.024 6.836 6.666 6.924
lena 6.782 6.181 5.083 5.485
airplane 5.531 5.684 4.829 5.401
peppers 6.464 6.311 5.082 5.616
boy 5.300 5.058 4.759 5.266
couple 7.181 6.375 5.432 5.844
girl 6.500 5.967 5.436 5.811
goldhill 6.288 6.090 5.161 5.511
portrait 5.477 5.132 4.566 5.040
screenshot 1.677 1.923 1.507 2.498
yacht 5.628 5.883 5.056 5.475

Average 5.899 5.598 4.931 5.430

Table 7 Bit rates of color bilevel error-diffusion halftones.

Bit rates in bpp/c1

Test image Resolution Proposed JBIG JBIG2

N1A, woman 1536×1920 0.487 0.514 0.483
N2A, cafe 1536×1920 0.557 0.582 0.561
N3A, fruits 1920×1536 0.432 0.467 0.437
N4A, wine 1920×1536 0.441 0.465 0.435
N5A, bike 1536×1920 0.429 0.461 0.433
N6A, orchid 1920×1536 0.375 0.431 0.389
N7A, musicians 1920×1536 0.520 0.562 0.533
N8A, candle 1920×1536 0.543 0.572 0.554
Sony party 4x 2048×1536 0.446 0.498 0.447

Average – 0.470 0.506 0.475
1 Bit rates are in bits/pixel per component.

the USC set. The lossless compression bit rates are shown in
Table 6 where the GIF file sizes including header informa-
tion are also shown for the purpose of reference. The pro-
posed codec outperforms all of JPEG2000, JPEG-LS, JBIG,
and JBIG2. Note that the bit rates for JPEG-LS were ob-
tained by preprocessing of color table sort in Sect. 3.2. If
plain GIF images are fed to JPEG-LS, the results are disap-
pointing.

4.1.5 Color Bilevel Halftone Images

As for color bilevel halftones, neither adequate test images
nor reliable compression data are available in the literature.
Hence, color bilevel halftone images have been generated by
two popular methods: Floyd-Steinberg error diffusion [45]
and clustered-dot ordered dithering by the 40-dot/18-degree
Cyan-Magenta-Yellow orthogonal screen set [46]. Nine test
images comprise of ISO/JIS-SCID and party 4x of Sony
sRGB standard images. The JBIG and JBIG2 codecs for the
experiments are Leadtools v.15 [42], where 3-line/13-pixel
and 3-line/16-pixel templates have been applied to error dif-
fusion halftones and clustered-dot ordered dither halftones,
respectively, since those were the best among others with
respect to bit rates.

The experimental results are listed in Table 7 for the

Table 8 Bit rates of color bilevel ordered-dither halftones.

Bit rates in bpp/c1

Test image Resolution Proposed JBIG JBIG2

N1A, woman 1536×1920 0.299 0.372 0.293
N2A, cafe 1536×1920 0.406 0.440 0.409
N3A, fruits 1920×1536 0.279 0.315 0.261
N4A, wine 1920×1536 0.278 0.315 0.266
N5A, bike 1536×1920 0.301 0.330 0.293
N6A, orchid 1920×1536 0.229 0.278 0.218
N7A, musicians 1920×1536 0.344 0.398 0.349
N8A, candle 1920×1536 0.404 0.435 0.409
Sony party 4x 2048×1536 0.241 0.312 0.233

Average – 0.309 0.355 0.303
1 Bit rates are in bits/pixel per component.

Table 9 Compression ratios of bilevel document images.

Test image Content Compression ratio
(bilevel) attribute Proposed JBIG JBIG2

f01 200 textual 37.3 38.6 54.3
f02 200 line-art 61.8 61.1 59.9
f03 200 textual 24.6 25.0 31.6
f04 200 textual 10.5 10.3 17.1
f05 200 textual 21.3 21.5 29.5
f06 200 line-art 40.0 42.3 43.0
f07 200 textual 10.2 9.6 13.0
f08 200 line-art 36.7 37.4 36.5
f10 200 mixture 9.1 7.9 9.81

Average ——— 18.5 17.7 23.2
The data of JBIG2 except for f10 owes to Ref. [29].
1 The value is cited from Ref. [47].

error diffusion halftones and in Table 8 for the clustered-
dot ordered dither halftones. As found in the tables, the
proposed method outperforms JBIG in lossless compression
of both types of bilevel halftones. It slightly outperforms
JBIG2 in compression of error-diffusion halftones and is
slightly inferior to JBIG2 in compression of ordered dither
halftones.

4.1.6 Bilevel Document Images

Bilevel document images are finally tested. They are CCITT
facsimile test images [47] at 200 dpi-resolution, among
which f02, f06 and f08 are line-art images, f10 is a mix-
ture of texts and dither halftones, and the others are textual
images.

The compression performances are compared in Ta-
ble 9, where the compression ratios of JBIG were actu-
ally obtained by Leadtools v.15 [42]. Those of JBIG2 are
borrowed from JBIG2 (MQ) [47] for f10 and from JBIG2
(SPM) [29] for the others, respectively†.

As seen in the table, the proposed bitplane coding is
competitive to JBIG in lossless compression of bilevel doc-
ument images. It is inferior to JBIG2 by 20% but is free
from content-dependent intensive computations. The excel-
lence in JBIG2 is found in compression of textual images
that are targeted by the SPM algorithm.

†The data for f10 is unavailable in Ref. [29].

946
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

Fig. 7 Distortion-rate plot in the progressive transmission. kdu refers to
a JPEG2000 codec, Kakadu version 2.2 in [9].

4.2 Progressive Transmission

Progressive transmission is one of the functionality exten-
sions to lossless image compression by bitplane coding.
Figure 7 shows the distortion plot against bit rates† in the
case of progressive transmission. The progression level is
specified by the number of decoded bitplanes. The plots at
the top edge in the figure represent the bit rates at which
lossless decoding is attained and hence the value of PSNR
should be read as infinity. The horizontal lines with each
6dB spacing in PSNR represent the distortion estimates
given by Eq. (6).

As observed in the figure, the distortion-rate plots form
multiple clusters. Each of them distributes on a specific level
of distortion, even if image contents are different. It has been
demonstrated that the before-the-fact estimate of distortion
agrees with the actual distortion after decoding. In addition,
every plot locates at a level higher than its corresponding
distortion estimate. This fact means that the distortion es-
timate before encoding guarantees the worst level of distor-
tion in decoding of a progressively transmitted image.

While the proposed codec is inferior to JPEG2000 at
low bit rates, it is satisfactory at high bit rates. The per-
formance plots of the proposed coding and JPEG2000 cross
around PSNR= 43dB. It is reasonable, since lossless com-
pression and high-quality applications are assumed to be the
major target of the proposed codec.

A few decoded samples of a part of a color railway
map†† image are shown in Fig. 8. As seen in the figure,
decoded pictures are blur-free even at the earliest level of
decoding, because no spatial filtering is involved with the
proposed codec. The color balance has been considerably
improved in the 2nd level of decoding as seen in part (b).
The third level decoding presents a satisfactory rendition de-
sired for map information in spite of quite low PSNR.

Fig. 8 Progressive transmission of a part of railmap. The progression
levels, decoding bit rates, and decoding distortions in dB are as follows. (a)
1st level, 0.343 bpp, and 13.64 dB, (b) 2nd level, 0.597 bpp, and 20.05 dB,
(c) 3rd level, 0.936 bpp, and 26.45 dB, and (d) 8th level (lossless decoding),
4.455 bpp, and∞ dB.

†Bit rate of a 24-bit color image stands for bpp per component.
††The Ohio Department of Transportation, http://www2.dot.

state.oh.us/map1/OhioRailMap/

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
947

Fig. 9 Arbitrarily shaped ROI transmission. (a) original, (b) ROI, (c)
ROI-decoded image, and (d) another ROI-decoded image where the ROI
for blue component does not cover the dress region.

4.3 Arbitrarily Shaped ROI Transmission

An example of lossless transmission of an arbitrarily shaped
ROI is given in Fig. 9, where parts (a), (b), and (c) show
the original color image, ROI, and the ROI-decoded image
decoded up to upper 5 bitplanes, respectively. The bit rates
of the original image itself (a), the ROI-embedded image
in progressive transmission, and the progressively decoded
image (c) are 3.766, 3.899, and 0.569 bpp per component,
respectively.

The ROI mask in part (b) has been embedded into three
color components of the original image, and the bit rate
has increased by 0.133 bpp/component. It can be reduced
to 0.026 bpp/component, if the ROI mask is separately en-
coded as a bilevel image and is shared with three compo-
nents.

Additional regions of interest are acceptable to be com-
bined. Part (d) is such an example, where two color compo-
nents of red and green of the dress region have been added as
the second ROI and combined with the first ROI. As a result,
the dress region has been decoded in yellowish color. The
ROI-embedded image with different ROIs on three compo-
nents has been transmitted/decoded up to five more signif-
icant bitplanes, which is shown in part (d). The bit rate is
0.625 bpp per component in total.

4.4 Partitioning into Tiles

As an example, tiling is applied to cmpnd.pgm, a 512× 768-
pixel image. The tile unit is a 384×218-pixel block of which

Fig. 10 A sample of tile partitioning divided into three pieces. The image
has been rotated to save space. The second tile is marked by a red rectangle
to ease the identification of three tiles.

Fig. 11 A sample of selective tile partitioning divided into 6 columns
and 7 rows. Eleven unshaded tiles on the way to Cincinnati from Cleveland
have been selected for encoding and/or decoding.

horizontal and vertical offsets are 64 and 36 pixels, respec-
tively. The tile-partitioned and encoded areas are the central
part of the original image as shown in Fig. 10. They have
been encoded in 1.889 bpp on average over 3 pieces.

If the whole area covered by three tiles is encoded at
once, it is encoded into 1.935 bpp. As visually expected
from the image, the middle area is completely different from
the other letter areas. Since separate encoding of those three
tiles allows the encoder to learn the statistically different
trends in those tiles, tile-partitioned encoding has a chance
of doing efficient compression.

The selective tiling functionality is demonstrated in
Fig. 11. The encoded image is a railway map of 2225×2216-

948
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

Table 10 Near-lossless encoding and decoding cycle effects. JPEG-LS
was operated in near-lossless mode with the maximum allowable error of
2, excepting the fifth data row. The test image is lennagrey.

Max. PSNR Bit rate
Codec of Abs. in in

cycles Error dB bpp

1 2 45.14 2.095
2 4 42.37 2.147

JPEG-LS 3 6 40.79 2.202
4 8 39.64 2.258

JPEG-LS 1 4 40.12 1.533

— 2 46.37 2.361
Proposed — 4 40.74 1.537

— 8 34.67 0.935

pixel resolution. The tiling offset is (55, 186) and the tile
unit is a 352 × 288-pixel CIF-sized block. Eleven unshaded
tiles on the route of Cleveland to Cincinnati have been se-
lected for encoding and/or decoding out of 42 tiles in to-
tal. The progression level for decoding is upper 5 bit-
planes. The average bit rate over 11 selected tiles is 1.985
bpp/component. The decoded data of the selected tiling
amounts to 12.8% of that for lossless compression of the
whole image. The distortion by the progressive decoding
of the selected areas is 38.33dB in terms of PSNR, and fine
visual quality is presented. This type of functionality is use-
ful for the navigation of traffic information and pathological
images.

4.5 Repetition-Resilient Near-Lossless Compression

Simplified near-lossless compression is possible in the bit-
plane coding. The maximum distortion at pixels is simply
described by insignificant bitplanes. It is worth to note that
no degradation will appear any more, even if multiple ap-
plications of near-lossless encoding and decoding may be
repeated with the same or finer accuracy. This is a con-
trast to JPEG-LS, where the repetition of near-lossless en-
coding/decoding causes an increase in distortion.

For example, near-lossless compression of JPEG-LS is
applied to lennagrey.pgm. It is compressed into 2.095 bpp
under the maximum allowable error of 2, and the distortion
is 45.14dB in PSNR, as shown in Table 10. When the de-
compressed image is once again compressed by the same
allowable error, the bit rate, the distortion, and the maxi-
mum error are degraded to 2.147 bpp, 42.37dB in PSNR,
and 4, respectively. As a cycle of encoding and decoding
is repeated, the pixel error increases by the allowable error
limit.

Needless to mention, the first-time compression is fine
in near-lossless JPEG-LS. For reference, the case of maxi-
mum allowable error of 4 is also given in the fifth row of
data in the table. Also, remember that it is impossible for
JPEG-LS to get efficient lossless compression of the data
that has been once compressed in the near-lossless mode.

In the proposed bitplane coding within the error limit of
2, the image is encoded into 2.361 bpp and the distortion is
46.37dB. Although the bit rate is higher than that of JPEG-

LS, no further distortion is generated, even if encoding and
decoding may be repeated.

5. Conclusions

A simple method of context-based bitplane coding has been
presented for lossless image compression as well as for
functionality extensions. Conditioning contexts for encod-
ing and decoding are formed by the estimates of neighboring
pixels instead of bit patterns on relevant bitplanes. While the
algorithm is simple, the proposed method not only results
in good compression performances with respect to various
types of images, but also allows the codec system to gain a
variety of data-partitioning functionality including bitplane
scalability, arbitrary shaped ROI transmission, progressive
transmission, selectable tiling, and others. As for lossless
compression of grayscale and 24-bit color images, presently
the proposed codec is competitive with JPEG-LS. Also, in
compression of color-quantized images, it outperforms the
existing standards.

An improvement in the compression performance and
implementations of more functionality extensions such as
object scalability are promising issues. The applications to
HDR images, SHD images, multi-component images, high-
quality video, and 3-dimensional voxel-based image data
will be hopeful.

Acknowledgments

The first author thanks Professor Masayuki Tanimoto of Na-
goya University for his comment that none of transforms
would be the best to exploit correlations. It was a hidden
driving force to seek for such a simple method. The authors
thank Mr. Kunio Funahashi, Meisei Electric Co. Ltd., who
was involved with the study as a graduate student. They
would like to thank the reviewers for their comments that
were valuable for improving the quality of presentation of
the work.

References

[1] M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-
blue (RGB): Spectrum-based color imaging technology,” J. Imaging
Sci. and Tech., vol.52, no.1, pp.010201-1–15, Jan./Feb. 2008.

[2] S. Ono and N. Ohta, “Super high definition image communica-
tions — A platform for media integration,” IEICE Trans. Commun.,
vol.E76-B, no.6, pp.599–608, June 1993.

[3] S. Ono, N. Ohta, and T. Aoyama, Super-High-Definition Images:
Beyond HDTV, Artech House, Boston, 1995.

[4] Digital Cinema Initiatives (DCI), http://www.dcimovies.com
[5] U. Catalyurek, M.D. Beynon, C. Chang, T. Kurc, A. Sussman, and

J. Saltz, “The virtual microscope,” IEEE Trans. Inf. Tech. Biomed.,
vol.7, no.4, pp.230–248, Dec. 2003.

[6] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic
Range Imaging: Acquisition, Display, and Image-Based Lighting,
Morgan Kaufmann, San Francisco, 2006.

[7] http://www.sony.net/Products/SC-HP/cx news/vol47/featuring.html
[8] D. Taubman, “High performance scalable image compression with

EBCOT,” IEEE Trans. Image Process., vol.9, no.7, pp.1158–1170,
July 2000.

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
949

[9] D.S. Taubman and M.W. Marcellin, JPEG2000, Kluwer Academic,
Boston, 2002.

[10] M.J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: Principles and standardization into
JPEG-LS,” IEEE Trans. Image Process., vol.9, no.8, pp.1309–1324,
Aug. 2000.

[11] ISO/IEC 14495-1, “Information technology — Lossless and near-
lossless compression of continuous-tone still images: Baseline,”
Dec. 1999.

[12] ISO/IEC 11544, Information technology — Coded representation of
picture and audio information — Progressive bi-level image com-
pression, March 1993.

[13] ISO/IEC 14492, Information technology — Coded representation of
picture and audio information — Lossy/lossless coding of bi-level
images, July 1999.

[14] J. Rissanen, “A universal data compression system,” IEEE Trans.
Inf. Theory, vol.29, no.5, pp.656–664, Sept. 1983.

[15] G. Martin, “Range encoding: An algorithm for removing redun-
dancy from a digitised message,” Proc. Video and Data Recording
Conf., pp.24–27, Southampton, March 1979.

[16] I.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol.30, no.6, pp.520–540, 1987.

[17] A. Moffat, R.M. Neal, and I.H. Witten, “Arithmetic coding revis-
ited,” ACM Trans. Inf. Syst., vol.16, no.3, pp.256–294, July 1998.

[18] X. Wu and N. Memon, “Context-based, adaptive, lossless image
coding,” IEEE Trans. Commun., vol.45, no.4, pp.437–444, April
1997.

[19] X. Wu, “Lossless compression of continuous-tone images via con-
text selection, quantization, and modeling,” IEEE Trans. Image Pro-
cess., vol.6, no.5, pp.656–664, May 1997.

[20] N. Memon and X. Wu, “Recent developments in context-based pre-
dictive techniques for lossless image compression,” The Computer
J., vol.40, no.2/3, pp.127–136, 1997.

[21] X. Wu and N. Memon, “Context-based lossless interband
compression-extending CALIC,” IEEE Trans. Image Process., vol.9,
no.6, pp.994–1001, June 2000.

[22] B. Aiazzi, L. Alparone, and S. Baronti, “Context modeling for near-
lossless image coding,” IEEE Signal Process. Lett., vol.9, no.3,
pp.77–80, March 2002.

[23] B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless image com-
pression by relaxation-labelled prediction,” Signal Process., vol.82,
no.10, pp.1619–1631, Oct. 2002.

[24] S. Forchhammer, X. Wu, and J.D. Andersen, “Optimal context quan-
tization in lossless compression of image data sequences,” IEEE
Trans. Image Process., vol.13, no.4, pp.509–517, April 2004.

[25] I. Matsuda, Y. Umezu, N. Ozaki, J. Maeda, and S. Itoh, “A loss-
less coding scheme using adaptive predictors and arithmetic code
optimized for each image,” IEICE Trans. Inf. & Syst. (Japanese Edi-
tion), vol.J88-DII, no.9, pp.1798–1807, Sept. 2005.

[26] A. Said and W.A. Pearlman, “A new fast and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol.6, no.3, pp.243–250, June 1996.

[27] K. Shinoda, H. Kikuchi, and S. Muramatsu, “A lossless-by-lossy
approach to lossless image compression,” ICIP 2006, pp.2265–2268,
Atlanta, Oct. 2006.

[28] K. Shinoda, H. Kikuchi, and S. Muramatsu, “Lossless-by-lossy cod-
ing for scalable lossless image compression,” IEICE Trans. Funda-
mentals, vol.E91-A, no.11, pp.3356–3364, Nov. 2008.

[29] P.G. Howard, “Text image compression using soft pattern matching,”
The Computer J., vol.40, no.2/3, pp.146–156, 1997.

[30] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded image-domain adap-
tive compression of simple images,” Proc. 32nd Asilomar Conf. on
Signals, Syst. & Computers, pp.1256–1260, 1998,

[31] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded image-domain com-
pression using context models,” Proc. ICIP 1999, pp.477–481, Kobe,
Oct. 1999.

[32] M. Lundqvist, http://www.geocities.com/mikaellq/

[33] K. Funahashi, H. Kikuchi, and S. Muramatsu, “Progressive bitplane
coding for lossless image compression,” IEICE Technical Report,
SIP2008-39, June 2008.

[34] K. Funahashi, H. Kikuchi, and S. Muramatsu, “Bitplane coding con-
ditioned by decode pixel values for lossy-to-lossless image compres-
sion,” 23rd Picture Coding Symp. Japan, Izu, pp.17–18, Oct. 2008.

[35] N. Liu, Fractal Imaging, Academic Press, New York, 1997.
[36] H. Kikuchi, J. Hwang, S. Muramatsu, and J. Shin, “Reversible com-

ponent transforms by the LU factorization,” 28th Picture Coding
Symp. (PCS 2010), pp.238–241, Nagoya, Dec. 2010.

[37] J. Hwang, H. Kikuchi, S. Muramatsu, K. Shinoda, and J. Shin, “Re-
versible implementations of irreversible component transforms and
their comparisons in image compression,” IEICE Trans. Fundamen-
tals, vol.E95-A, no.4, pp.824–828, April 2012.

[38] H. Kikuchi, K. Funahashi, and S. Muramatsu, “Generic bitplane
coding based on bit modeling by the decode expectation values of
pixels — Lossless compression of color-quantized and bilevel im-
ages,” 23rd Signal Proc. Symp., pp.409–414, Kanazawa, Nov. 2008.

[39] A.J. Pinho and A.J.R. Neves, “A survey on palette reordering meth-
ods for improving the compression of color-indexed images,” IEEE
Trans. Image Process., vol.13, no.11, pp.1411–1418, Nov. 2004.

[40] http://jj2000.epfl.ch/
[41] http://www.hpl.hp.com/loco/
[42] http://www.leadtools.com/
[43] Graphic Technology — Prepress Digital Data Exchange — Standard

Colour Image Data, ISO/JIS-SCID, JISX9201-1995, Japanese Stan-
dards Association, Tokyo, 1995.

[44] Sony sRGB Standard Images. http://www.colour.org/tc8-04/test
images/Sony/

[45] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial grey
scale,” Proc. Soc. Inf. Display, vol.17, p.75, 1976.

[46] H.R. Kang, Digital Color Halftoning, SPIE Press and IEEE Press,
1999.

[47] http://www.imagepower.com/technology/

Appendix A: Profiles of the Proposed Codec

The profiles of the proposed prototype codec are viewed in
Table A· 1. The following description is a supplement to the
table and the main body of the paper.

The bitplane scalability is a simple consequence of bit-
plane coding where every bitplane is encoded and transmit-
ted separately and independently. The receiver decodes a se-
quence of separate code bit-streams of individual bitplanes
to improve the accuracy of decoded pixels.

Separate coding of bitplanes will result in a sort of
near-lossless functionality where errors in decoded pixels
are bounded by the powers of two that correspond to the
decoded bit depth. The pixel error is created by the sub-
stitution of insignificant bitplanes by a uniform expectation
value. As a consequence, cyclic repetitions of encoding and
decoding will change nothing, once the image has been en-
coded. In contrast, the near-lossless compression in JPEG-
LS is subjected to individual pixel values, and the repetition
resilience is lost.

To implement the resolution scalability, data-partition-
ing corresponding to a specified resolution is necessary.
Since none of spatial transforms are involved with the pro-
posed bitplane coding, any choice of resolution scalability
is optionally possible. For example, the octave scalability
is possible to be introduced by a reversible wavelet trans-

950
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.5 MAY 2012

Table A· 1 Profiles of the proposed bitplane codec compared to existing codecs.

Functionality Extension Proposed JPEG2000 JPEG-LS JBIG2

Complexity in encoding/decoding �©�©�© �©�© �©�©�©�© �©
Compression of grayscale images �©�©�© �©�©�© �©�©�© �©
Compression of color images �©�©�© �©�©�© �©�©�© �©
Compression of color-quantized images �©�©�©�© �© �©�© �©�©
Compression of bilevel documents �©�©�© �© �©�© �©�©�©�©
Compression of bilevel halftones �©�©�© �© �© �©�©�©�©
Near-lossless compression (NLC) Yes N.A. Yes N.A.
NLC repetition resilience Yes N.A. No N.A.
Tile partitioning selectable whole N.A. N.A.
Resolution scalability optional Yes N.A. Yes
Pixel accuracy scalability bit-plane SNR N.A. pseudo-gray
Arbitrary shape of ROI crispy blurry N.A. N.A.
ROI transmission bit-depth Max-Shift1 N.A. N.A.
Progressive transmission coarse fine N.A. coarse
Distortion in progressive decoding known unknown N.A. unknown

1 The scaling option is also available at the expense of strong blurring effect.
�©�©�©�© excellent, �©�©�© good, �©�© fair, �© poor.

form. The FFT and DCT are simple alternatives for the res-
olution scalability with arbitrary scales. The scale of res-
olution scalability depends on applications and image con-
tents. Even if an extra cost in bit rates may be charged by
an optional resolution scalability, it is inexpensive as long
as the scale is around a few octaves. It is the case for high-
resolution images such as SHD images including digital cin-
ema and virtual slides.

As for the computational complexity in encoding and
decoding, it is higher than that of representative predictive
coding such as JPEG-LS, because pixels are scanned bit-
plane by bitplane. The computational complexity required
for scanning bitplanes is considered to be tolerable at the ex-
pense of the enhanced functionalities. Note that the bitplane
scanning in EBCOT [8] is a core of efficient scalable cod-
ing equipped with a variety of functionalities. Nevertheless,
the proposed bitplane coding is of lower complexity than
JPEG2000, since none of spatial transforms are involved.

Appendix B: Proof of Eq. (6)

The pixel distortion in decoding the information of upper
bitplanes is equivalent to the error that is generated by trun-
cating lower bits of a pixel value. As the truncation level
decreases by one bit, PSNR increases by 6 dB. Hence the av-
erage distortion in terms of PSNR is expressed by d = 6�+c,
where � denotes the number of decoded bitplanes and c is a
constant.

Assume that decoding is at the level of � = 7. It is
equivalent to decode all bitplanes excepting the LSB. The
pixel error in the decoded image is either 0 or 1, and a
uniform distribution of the error is assumed in the discrete
sample space. The mean squared error is thus found to be
02 × 0.5 + 12 × 0.5 = 0.5. It means that d = 10 log 2552

0.5 �
10 log 217 � 51. Hence one finds that c = 9 and obtains
Eq. (6).

Appendix C: Test Images

The thumbnail images of the test images used in this work
are shown for traceability. Those of grayscale images,
24-bit color images, 8-bit color-quantized images, color
bilevel halftones, and bilevel document images are shown
in Figs. A· 1–A· 5, respectively.

Fig. A· 1 Grayscale test images.

KIKUCHI et al.: SIMPLE BITPLANE CODING AND ITS APPLICATION TO MULTI-FUNCTIONAL IMAGE COMPRESSION
951

Fig. A· 2 24-bit color test images.

Fig. A· 3 8-bit color-quantized test images (GIF).

Fig. A· 4 Color bilevel halftone test images.

Fig. A· 5 Bilevel document test images.

Hisakazu Kikuchi was born in Niigata,
Japan, in 1952. He received B.E. and M.E. de-
grees from Niigata University, Niigata, in 1974
and 1976, respectively, and Dr. Eng. degree in
electrical and electronic engineering from To-
kyo Institute of Technology, Tokyo, in 1988.
From 1976 to 1979 he worked at Information
Processing Systems Laboratory, Fujitsu Ltd.,
Tokyo. Since 1979, he has been with Niigata
University, where he is a Professor in the De-
partment of Electrical and Electronic Engineer-

ing. During the 1992 academic year, he was a visiting scholar in the Electri-
cal Engineering Department, University of California, Los Angeles, USA.
He holds a visiting professorship at Chongqing University of Posts and
Telecommunications and Nanjing University of Information Science and
Technology, both in China, since 2002 and 2005, respectively. His research
interests include digital signal processing and image processing. He is a
Member of ITE (Institute of Image Information and Television Engineers
of Japan), IIEEJ (Institute of Image Electronics Engineers of Japan), and
IEEE. He served the general co-chair of ITC-CSCC 2011 in Korea, the
chair of Circuits and Systems Group, IEICE, in 2000 and the general chair
of Digital Signal Processing Symposium, IEICE, in 1998 and Karuizawa
Workshop on Circuits and Systems, IEICE, in 1996, respectively.

Ryosuke Abe was born in Tokamachi,
Japan, in 1988. He received B.E. degree in elec-
trical and electronic engineering from Niigata
University, Niigata, in 2010. He studies to ob-
tain M.E. degree. His research interests are in
the field of image/video processing and com-
pression.

Shogo Muramatsu was born in Tokyo,
Japan in 1970. He received B.E., M.E. and
Dr. Eng. degrees in electrical engineering from
Tokyo Metropolitan University, Tokyo, in 1993,
1995 and 1998, respectively. In 1997, He joined
Tokyo Metropolitan University. In 1999, he
joined Niigata University, where he is currently
an Associate Professor in the Department of
Electrical and Electronic Engineering. He was a
Visiting Researcher at MICC & VIP Laboratory,
University of Florence, Italy, during the 2003

academic year. His research interests are in digital signal processing, mul-
tirate systems, image processing and VLSI architecture. He is a Member
of ITE (Institute of Image Information and Television Engineers), IIEEJ
(Institute of Image Electronics Engineers of Japan), IPSJ (Information Pro-
cessing Society of Japan), and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

