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SUMMARY This paper describes a design method of linear
phase recursive FIR digital filters. The basic structure consists of
a transversal part cascaded with a cyclotomic resonator, which is
characterized by cyclotomic polynomials and has no multipliers.
The digital filters implemented by this method require the short
wordlength both for multiplier coefficients and for signals in their
transversal part. By introducing integer arithmetic, the filtering
operation proceeds fast and exactly, As a bonus, it is possible to
employ a multiplier-less implementation in most practical applica-
tions. While the stability of this type of structure requires an
integer-valued impulse response, a satisfactory procedure assures
the requirement. A parameter to control the approximation error
is found somewhat predictively rather than tentatively.

1. Introduction

In practice a linear phase FIR digital filter requires
many multipliers, especially when narrow-band charac-
teristics are realized. Thus it is left an open problem to
achieve improvement with respect to cost, size and
speed. One way to solve this problem is to rely on a
programmable signal processor™®. Another way is to
implement the digital filter efficiently as a special-
purpose hardware. In the latter case it is necessary to
decrease the number of multipliers and the wordlengths
of both multiplier coefficients and signals in the digital
filter. This paper is prepared as an approach along this
line.

Since it is easy to implement an FIR digital filter in
some well-known structures® ®, there has been devoted
to a transfer function approximation in the field of
designing FIR digital filters. On the other hand, Quach et
al.”” have pointed out : the approximation and the reali-
zation will be related to each other in the implementa-
tion with a finite wordlength. Thus an optimal imple-
mentation may be searched to yield a better approxima-
tion depending on the structure used. Saramiki®® has
also stated the similar idea regarding to IIR digital
filters, but his concentration is still directed toward
approximation.

Yet attempts from a viewpoint of structure to solve
the above mentioned problem are rare. The difference
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routing digital filter'” originally presented by van Ger-
wen et al. occupies a pioneering position. Although its
structure offers several advantages, the design facility is
limited. The main reasons are twofold. The first is due
to the shortage of a detailed examination of the struc-
ture”~®, The other is that available resonators are
small in number™® or are constructed with the sacrifice
of efficiency® to some extent.

This paper first discusses a recursive structure of
FIR digital filters consisting of a transversal part cas-
caded with a resonator. The discussion leads to a guide-
line to arrive at an efficient design. Secondly a family of
cyclotomic resonators is introduced from the viewpoint
of efficient structure. This is a systematic extension of
conventional resonators, and the family of cyclotomic
resonators contributes the structural improvement. The
choice of cyclotomic resonators used depends on the
combination of the center frequency and the passband
width of a desired FIR digital filter, according to the
guideline derived.

This method leads to the substantial reduction of
multiplier coefficient wordlength as well as signal word-
length in the transversal part. Moreover in the case of
narrow-band FIR digital filters, reduction of the net
number of multipliers results as well. Finally a few
examples of designed filters are given to illustrate the
effectiveness of the proposed method.

2. Effect of Resonators

The frequency response of a linear phase FIR digi-
tal filter with symmetrical impulse response is expressed
as®

H(eﬂu):H*(ejw)e—jw(N—l)IZ ( 1 )

where H*(e’) is a continuous real function and N is the
impulse response duration. Let the passband of the filter
be (w1, wz). Then the magnitude of the impulse response
n(n) is evaluated as

()| [ do, #=01-N=1 (2)

This equation means that the magnitude of the impulse
response does not exceed the spectrum area of the filter.
Note that H*(e™) has the constant sign in the passband.
Otherwise zero-crossing happens at a sign changing
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point, and this zero will give rise to a contradiction to
the definition of a passband. Hence

L rsedo=| L [ i) o) (3)

holds. Furthermore, when N is odd, the right-hand side
of Eq.(3) really finds a particular sample among the
impulse response as

WOT el

Thus the peak value of the impulse response /max is of
the form

hmé)(:% A ") do. (5)

Consider that a digital transfer function H(z) com-
prises a transversal part D(z) and a resonator 1/R(2) as
shown in Fig. 1. H(z) is then described by

H(z)=D(2)/R(z2). (6)

Obviously, the peak value dmax of the impulse response
of the transversal part is evaluated as

duar == [ | H() |[R(e™) o, (7)

Regarding to the frequency response of R(z), if we
assume

[R(e™)|<1, for ;< w<w: (8)

then from the comparison between Eqgs. (5) and (7), it
follows that

deX< hmax- ( 9 )

As a consequence, if we use such a resonator consistent
with Eq.( 8 ) in the configuration of Fig. 1, the maximum
magnitude of multiplier coefficients of the transversal
part is smaller than that of the overall filter in a well-
known direct or canonic form.

When N is even or when 4(#) is antisymmetrical, it
is difficult to show the precise equation corresponding to
Eq.(4). Nevertheless in such a wide-sense that a
differentiator and a Hilbert-transformer are of interest
as well as a band-selective digital filter, it seems fact :
the impulse response of a linear phase FIR digital filter
has its peaks around the center of its duration and that
peak value is not so smaller than the value given by the
left-hand side of Eq.(3). This observation has been
demonstrated by a number of computer simulations.

Hence the implication stated with regard to the function

) H(z)

R(z)

— D(z)

TRANSVERSAL PART RESONATOR

Fig. 1 A recursive FIR structure.
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of resonators will be true in general.

In other words, one of the salient effects of a useful
resonator in the form shown in Fig. 1 is to suppress the
spectrum area of the overall FIR digital filter. This will
be a guideline®V to reduce the coefficient wordlength
of an FIR digital filter by means of resonators.

Similarly the magnitude-sum of the transversal
coefficients

Zld(m)l=2 ’Ln[uwzH (e™)R(e’)e™ dw (10)

estimates the signal wordlength required for the trans-
versal part. Thus the use of appropriate resonators will
also yield a reduction in signal wordlength of the trans-
versal part.

3. Realization with Cyclotomic Resonators

Before cyclotomic resonators are introduced from
the viewpoint of efficient structure, a brief preparation is
given.

Cyclotomic polynomials Cx(z) arise from a factor-
ization for the polynomial z¥ —1 as a product of irreduc-
ible polynomials with integer coefficients®®~“¥, There is
one Cx(z) for each divisor % of K, including 2=1 and £
=K. The roots of Ci(2) are the primitive £th roots of
unity. The number of such roots is given by ¢(%), Euler’s
function. p(£) is equal to the number of positive integers
smaller than £ and prime to k. Therefore, the degree of
Cu(2) is @(k). Cu(2) is defined by

Ck(z)=(iyl;)[=1(z—e‘j2”i”‘) (11)

where (7,k£)=1 denotes that 7 and £ are mutually prime.

The important property for our aim is as follows:
If £ has no more than two distinct odd prime factors, the
coefficients of Cx(z) will be 1, —1 or 0. The smallest
integer £ with three prime factors is £=105=3-5-7.
Hence, to get multiplierless resonators, we define a
cyclotomic resonator by

1/R(2)=1/Cx(2)z~"". (12)

Each cyclotomic resonator is composed of shift registers
and adders/subtracters. The structure is inherently free
from multiplications. In addition, it is feasible with the
modern silicon technology to efficiently implement those
resonators in LSI/VLSL

Now Fig. 2 indicates two basic structures of an FIR
digital filter. The first structure has serial delay ele-
ments. The other structure is derived from the first one
by interchanging the FIR and IIR parts in the transpose.
In the latter structure, every delay element is inter-
rupted by an adder. Yet every group of multiplications is
addressed by a single signal such as the input or the
output. Each structure consists of a transversal part
cascaded with a cyclotomic resonator. The overall
impulse response 4(#%) is of the form
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Fig. 2 The basic structures of an FIR digital filter with a
cyclotomic resonator. (a) serial delay form, (b) inter-
rupted delay form.

Transversal part

Name Normalized Frequency Deg No. of
0 0.1 02 0.3 0.4 0.5 Adders
C | Quep——— 1 1
Ca ———— 1 1
Cy —Cl——— 2 1
C3 2 2
Cg 2 2
Cg ———p— e 4 1
G2 ———a— —~———— 4} 2
Cs ~——— —————— 44
G ———mppm—— ——C— 4 4
Cg i —————g ~Qp— 6 2
Clg ———eaQ— —~——————— 6 2
Cq ~ ~—p— ——— 6
Clf ———Q—— ~o 6 6
Cip ~ - ~O- ~ 8 1
Coy - ~ g - 8 2
Cof ———alQu— ~O ~o— —~—— 8 4
Gl e m—C—— ~ ~— 8 6
Cgp —e 5 e Oe————— 8 6
Gt < < ~o—  —Oe— —— 10 10
Cpp Qe -G~ -~ < 10 10
Cgs —O 0 o ©— 12 2
Cog ——mQwe—  —~Op- < L4 -~ ~p— 12 6
Cpl ————aQemmanQe— ~aQ—p Q o 12 8
Crz ~Qr Q R ® o O 12 8
o] 0.1 a2 0.3 0.4 Q.5
Fig. 3 Suppression bands and root locations of 24 cyclotomic
polynomials.
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Wm)=d(n)+ 3 culin—F) (13)
d(n)= 2 dud(n—m) (14)

where each c¢x is a coefficient of the cyclotomic
resonator, pertaining to 1, —1, and 0. If the sequence
W(n) is given as a set of integers, the sequence d(#)
turns out to be integers from Eq.(13). Thereby, if
overflow is prevented by scaling of the input signal, the
filtering proceeds under integer arithmetic without round-
off errors nor limit cycle oscillations. How to approxi-
mate %(») as integers is deferred until the Sect. 5.

On the other hand, according to the guideline given
in the previous section, cyclotomic resonators can afford
to reduce the wordlength for the transversal coefficients.
Since there are infinitely a great number of cyclotomic
polynomials, it is impossible to list all of the responses.
Instead, for a practical use, we select 24 of cyclotomic
polynomials, and they are included in the Appendix.
Among this set, every implementation of the useful
resonators has no more complexity than ten adders and
twelve delay elements. Heavy segments in Fig. 3 show
the frequency ranges on which the magnitude of each
cyclotomic polynomial is less than unity, and for conve-
nience we will refer to those ranges as suppression
bands throughout this paper. Light dots indicate the root
locations of each polynomial. The figure will enable us
to select effective cyclotomic polynomials to meet given
specifications.

Figure 4 illustrates how the spectrum area of H(z)
be reduced to that of D(z) by multiplying R(z). The
frequency responses of H(z) and R(z) are drawn in solid
lines. The resulting spectrum area of D(z) is shaded.

The suppression bands of a few kinds of cyclotomic
polynomials may possibly cover the passband of a par-
ticular filter, as is the case with wide passband applica-
tions. One polynomial may have a zero close to the
center frequency of the filter, as shown in Fig.5(a) by
a broken line. By contrast, another may have a zero far
from it, but its amplitude can be smaller over the whole
passhand. This case is drawn by a solid line in the same
figure. In this situation, by paying much attention to a
passband width rather than a center frequency, it is

3
D(z) =H(z) R(=)
R(z)=1-z" 14272
o 2
O
s |
=
g w7
=
0 et
0] 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

Fig. 4 Illustration of spectrum area suppression.
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Fig. 5 Difference of spectrum area suppression depending on
the specifications. (a) for wide band filtering, (b) for
narrow-band filtering.
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Fig. 6 Resonator cascade form.

better to employ the cyclotomic polynomial with wider
suppression band. The resulting spectrum area from the
application of such a polynomial is shaded in the figure.

On the contrary, for narrow-band applications the
more effective choice will be to use a cyclotomic
polynomial with zeros near the center frequency of the
filter. Figure 5(b) illustrates such a case.

The guideline allows us to use cyclotomic
resonators depending on the combination of the pass-
band width and the center frequency of a desired filter.
There is nothing but to suppress the spectrum area of
the filter of interest. Thus it is natural to use cyclotomic
resonators in a cascade configuration as shown in Fig. 6
to achieve a better performance.

4. Discussion
4.1 Zero-Pole Cancellation

In general the spectrum of an impulse response
represents the distribution of the frequency components

in a steady-state response. Let us consider a particular
structure that consists of a transversal part cascaded
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with a resonator. Suppose that the filter is excited by a
frequency component coincident with an in-band zero of
the transversal part. Its steady-state output is then
nothing. One may thus wonder that the non-vanishing
response appears at the total output of the filter.

On the contrary, we can take another filter struc-
ture that comprises a resonator followed by a transver-
sal part. Applying a sinusoidal excitation which coin-
cides with the frequency of the resonator pole on the
unit circle, the resonator shows the undamped sinusoidal
oscillation. One may again suppose that it is strange for
the total filter response to vanish within a finite dura-
tion.

The way to the solution is to consider the transient
behavior or the complex frequency variable in terms of
the Z transform. This is evident from the fact that the
complete description of the system dynamics requires an
initial condition. In the Z domain, the reason for the
finite duration response is due to zero-pole cancellation
under an appropriate initial condition.

Alternately the answer is interpreted in the time
domain. Let us consider a simple example of the form

H(z)=Di(z)[R\(2),
where

Di(z)=1—-2z"% Riz)=1+z"'+z72

The impulse response of Di(z) is a unit pulse at #=0,
followed by a negative unit pulse at »=3. On the other
hand, the impulse response of the resonator is represent-
ed by

n(n)= 3[6(n—3m)— 6(n—3m—1)]
= U(ﬁ)%sinz%(n+l),

where U(x) denotes the unit step function. The envelope
of 7(n) is completely sinusoidal. ‘For simplicity we
assume that all of the internal states are zero-at »=0.
As illustrated in Fig. 7, the leading pulse of the transver-
sal part drives the cascaded resonator, and the resonator
starts its proper oscillation. The final pulse of the trans-
versal part again excites the resonator in anti-phase to
the earlier excitation. Because of superposition of the
two opposite phase responses, the output of the total
filter shows the time limited sinusoidal response.

4.2 Some Aspects on the Implementations

In practice the transversal part involves a number
of symmetric or anti-symmetric pulse pairs. Thereby in
order for the resonator to yield the desired finite-
duration response, all of the initial states must be zero.

According to system theory™®, the basic structures
shown in Fig. 2 are uncontrollable, owing to zero-pole
cancellation. This fact is, however, not fatal to our
purpose of shift-invariant filtering. In fact -there is no
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(a) the response of the transversal part,
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Fig. 7

) the first response of the resonator,
) the second response of the resonator,
) the total output.

need to control or monitor the internal states by remote
control through the input or by remote sensing through
the output. It is enough to set the zero initial condition
by any means. The need arises on the actual activation
of a digital filter, that is at the instance of power-on.

The internal states of a digital filter are directly and
independently accessible by digital integration technol-
ogy. Therefore the internal states can be vanished at
once, as desired.

As for a special implementation of the set of delay
elements, the situations may be slightly complicated.
This is a fact, if the set is devoid of some direct paths
from the outside to an arbitrary inner position. Thereby,
it is impossible to do instantaneous elimination of the
internal states. Moreover, since the system is uncontrol-
lable, no means are available to reset the internal states.
Nevertheless, if the structure is torn by inserting a
multiplexer into the common feedback loop, the result-
ing system recovers controllability. As a result, the
internal states of the system can be cleared after a finite
set-up time.

To ensure the perfect zero-pole cancellation, the
implementation invokes the following two conditions.
The first is an input scaling to avoid overflow, and the
other is integer arithmetic to prevent from accumulat-
ing quantization errors. These conditions guarantees the
external stability of the total system. Owing to those
facts, it is possible to continue neither transient nor
steady-state oscillations.

Hence the three facts are crucial to our implementa-
tion of the digital filter : That is the initial reset of the
internal states, an input scaling and integer arithmetic.
These rules assure the desired behavior, in spite of the
absence of controllability or observability as well as the

lack of internal stability.

Finally additional comment is given about the con-
necting order among the transversal part and the
resonators. As estimated by Eq.(10), the signal wordlen-
gth of the transversal part can be reduced than that of
the original impulse response. To take this advantage,
the resonator must follow the transversal part, as de-
picted in Fig. 2. In practice several resonators are used
as shown in Fig. 6, according to the spectrum suppres-
sion guideline. The best order to cascade them is deter-
mined by the amount of their spectrum suppressing
effects. That is to place more effective resonator closer
to the total filter output.

5. Design Procedure

An ideal impulse response for a given task is obtain-
able by resort to several approximation methods, for
instance the discrete Fourier transform, windowing
techniques and the equiripple design®®® QOne can
suppose that such a response has been already available
at the outset of the filter design. From the ideal impulse
response h.(%), the integer-valued impulse response
#(n) is calculated by

1) =INT[ hw(%) P/hwmax)

where INT[ ] stands for rounding into an integer,
Jwmax is the peak value of %.,(7), and P is a certain integer.

The integer P in Eq.(15) is determined somewhat
predictively rather than tentatively from the minimum
stopband attenuation required. The reason is explained
below.

The approximated impulse response 4(#) given by
Eq.(15) is a sum of %w(%)P/hwmax and the error due to
quantization. The sequence of the quantization error
will be statistically independent and has a uniform
probability distribution with the probability density P in
the range from —1/2P to 1/2P, because the peak value
of #{(n) becomes P. Thus the root-mean-square of the
error will be v1/12P%* As a matter of fact the error
spectrum is not completely flat. Then, if the spectrum
shape is assumed to be sinusoidal, its peaks will be
greater by 3dB than the average value. Those peaks
will be almost uniformly distributed and so they will
determine the minimum stopband attenuation Amn.
Therefore a simple calculation yields

(15)

P=10A="T18)/2, (16)

Figure 8 shows considerable agreement between Eq.
(16) and computer simulations for the raised-cosine
roll-off characteristics. Figure 9 illustrates the charac-
teristic, where fc and f» are the center frequency and the
bandwidth between the center and a half amplitude
frequencies, respectively. a denotes the roll-off factor. It
should be noted that a single parameter P controls over
both the passband and stopband ripples through Eq.(15).

By the way.the most difficult issue in our design is
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to assess the efficiency or the effectiveness. For the sake
of only convenience, we here introduce a figure of assess-
ment defined by

(the total number of transversal taps)
times (the coefficient wordlength required).

We consider that the smaller the figure, the more
efficient will be the realization. The total number of
transversal taps may be different from that of multi-
pliers depending on particular implementations. For
example, it is the case, if there are the same multiplier
coefficients, and if the multiplication follows the summa-
tions. In such a case, the figure of assessment will
overestimate the amount of a hardware complexity.
Exploiting this figure as a measure of complexity,
we can provide a rather systematic procedure to design

FIR digital filters, as follows.

(Step 1) To get the integer-valued impulse response
(%), quantize an ideal impulse response /#.(#%)
through Eq.(15). The quantization effects are
checked by computing the frequency response. If the
quantization error stays within a given tolerance
limit, proceed to the next step. Otherwise after
increasing the integer P, repeat Step 1.

(Step 2) According to the guideline of spectrum area
suppression, select an appropriate cyclotomic
resonator. It is effective to use Fig. 3 as a selecting
chart. Let 7 refer to the stage number of selection.
When the 7 th cyclotomic resonator has been cho-

O £=1/4, £,=1/24

A g =0, £=1/48

6 1 2 3 4 5 6 7 8 9 10 11 12
LogyP
Fig. 8 Dependence of Amn on P. fc center frequency, f» band-
width between f; and a half-amplitude frequency.

1.0

fX
<f,% a= — X100
fp

0.5

Amplitude

«——cosine

e roll—-off

0.0

fo~fp fo fotfy

Frequency
Fig. 9 Raised cosine a% roll-off characteristic.
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sen, compute the associated transversal part to get
its multiplier coefficients. At the same time the
computation also yields the figure of assessment
associated with that choice.

(Step 3) If the figure of assessment at the current stage
of the design is less than the last one, try to cascade
another cyclotomic resonator : go to step 2. Other-
wise stop the design procedure. Note that the design
itself has been already obtained as the result of the
last design stage.

The design procedure can be well performed with
the aid of computer graphics in a man-machine inter-
active mode.

6. Design Examples

Three examples of linear phase FIR digital filters
are included to demonstrate the efficiency of the method
described in the preceding sections. All of them have the
raised cosine @% roll-off characteristics and are
designed by the discrete Fourier transform.

(Example 1) Let us consider a 100 % roll-off bandpass
filter with the specifications

fe=11/256, fo=1/48, Amn=45(dB).

The integer P is chosen as 64 for this exarhple from Eq.
(16). Figure 10(a) shows the overall impulse response.
The impulse response of the transversal part depicted in
Fig. 10(b) results from the use of the type A resonator®®.
This choice has been exclusively suggested by the near-
ness of the center frequency to a pole of a resonator. By
contrast, Fig.10(c¢) comes of the use of triple
cyclotomic resonators defined by Ci(z) so as to suppress
the spectrum area.

8
wllil, it

s ,.nllﬁ..,““,. ST

(b)

()
Fig. 10 Example 1. Impulse responses of (@) the overall filter,
(b) the transversal part for A used, (¢ ) the transver- -
sal part for a triple of C: used.
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The degree of Ci(z) is one but that of type Ai is 13
according to Ref.( 9 ). The coefficient wordlength in Fig.
10( ¢ ) is a half of that in Fig. 10( b ). Hence it is efficient
to rely on the design method presented in this paper,
even though only conventional resonators are available.
This demonstrates the design improvement.

(Example 2) The specifications of a 50% roll-off band-
pass filter are now as follows.

fc=03, fb=005, Amjn=50(dB)

As can be found in Fig. 8, with increase of Amn, P given

Amplitude in dB

Normalized Frequency

Fig. 11 Example 2. Responses of (solid) the filter and (dotted)
the quantization error.

1.
o.
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=
LT A SRR I S
0.
o.
o. 1 ; :
O. i : :
o1 0,2 0.3 0. 4 0.5
Normalized Frequency
(a)
1.0
0.9
0.8
@ 0.7
=)
.‘? 0.6 |-
é 0.5
< 0.4
0.3
0.2
0.1
0.0

0 0. 1 0.2 0.3 0.4 0.5
Normalized Frequency
(b)
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by Eq.(16) will be less satisfactory. So while the equa-
tion suggests taking P as 129, we set it as 1024. The
resulting response of the digital filter is shown in Fig. 11,
and it clears the required attenuation.

Using cyclotomic resonators defined by Cs, Ci, Cs,
Cs and Cis, the degree in the implementation increases
by 10 % from 150 to 164. On the contrary the net number
of multipliers decreases from 26 to 12. The wordlength
of multiplier coefficients decreases from 10 bits to 4 bits,
excluding the sign bit. Furthermore the signal wordlen-
gth in the transversal part reduces to 1/13. This proves
the structural improvement.
(Example 3) To give a demonstration of the behavior in
the successive spectrum area suppression, a 25 % roll-off
bandpass filter is considered. The specifications are

fe=0.1, f6=0.03125, Amn=>55(dB).

Selecting P as 1024, the amplitude response of Fig.
12(a) is obtained. The remainder of the figure illus-
trates how the spectrum area subsequently decreases.
For the overall response (@), the successive application
of Cun, Cis, Ci2 and Cs produces each response of the
relevant transversal parts, (b)-(d), respectively.

A comparison with respect to hardware complexity
is made, in Table 1, between conventional canonic forms

.08
. UT .................
.05

.04 [ ' H
.4

.03

.02 §-r
) S
N :

‘000 0. 1 0.2 0.3 0. 4 0.5
Normalized Freguency
(c)

Amplitude

Amplitude

Normalized Frequency
(d)

Fig. 12 Example 3. Amplitude responses of

(a) the overall filter,

(b) the transversal part produced by the application of Cu,
(c) the transversal part produced by the application of Ci and Cis,
(d) the transversal part produced by the application of Ci, Cis, Ciz, and Cs.
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Table 1 Comparison on hardware complexity.

ExaMPLE 1

CANONIC PROPOSED

ExampLE 3
CANONIC PROPOSED

ExampLE 2
CANONIC PROPOSED

DEGREE 66 69
NO. OF MULTIPLIERS 21017) - 7(3)
NO. OF TAPS 59 54
MAX. OF COEFFICIENTS 64 4
MAGNITUDE-SUM* 998 88

150 164 400 420
31(26) 20012) 59(51)  8(4)
97 151 263 297

1024 13 1024 5
8766 656 17044 496

() DENOTES THE NUMBER WHEN THE DISTINCT SIGNS ARE IGNORED.
* DENOTES REGARDING TO THE TRANSVERSAL COEFFICIENTS.

and the proposed forms. As can be seen from Table 1,
the net number of multipliers is decreased in addition to
the reduction of the maximum value of coefficients and
the magnitude-sum of the transversal tap gains.

7. Concluding Remarks

In order to reduce the coefficient wordlength of a
linear phase FIR digital filter, it is efficient to suppress
the spectrum area by means of appropriate resonators.
On the other hand, cyclotomic resonators defined in this
paper have simple structures and efficient implementa-
tions are feasible within the modern silicon technology.

The above two facts are combined to yield an
efficient implementation of FIR digital filters. As a
consequence, they achieve not only the structural but
also design improvements. In spite of its recursive struc-
ture, the filtering operation proceeds fast and exactly.
When the coefficient wordiength is very small, the imple-
mentation requires no multipliers, and this happens
sometimes in practice.

A portion of these features is supported by a suit-
able approximation: the impulse response having inte-
ger values is obtained rather predictively from the
prescribed specifications.

To take the full advantage of this structure, a
special type of hardware implementations may be found.
One of the promising applications will be the video-band
filtering.
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Appendix

The explicit formulae of the 24 cyclotomic
polynomials are listed for a practical use.
C1(2)=Z —1
Co2)=2+1
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Clz)=2+1

Ciz)=2*+2z+1

Coz)=2"—z+1

Ce(z)=z"'+1

Ci(z)=z"~2*+1

Ci(z)=z"+2*+ 22+ 2+1
Cilz)=z"'—2+z"—z+1

Co(z)=25+2"+1

Ci(z)=28—2*+1
Ciz)=2+2"+ 2+ 22+ 2+ 2+1
Ciz)=2"—2"+2*— 2+ 22—2+1
Cis(z)=2+1

Cou(2)=2"—2*+1
Col2)=2"— 2P+ 24~ 2*+1
Cs(z)=22—2+2— 2+ 22—2+1
Co(2)=22+ 27— 22— 2*—2+2z+1
Cilz)=z2"+2+ 2+ 2"+ 2+ 2+ 2+ L2+ 22+ z+1
Col2)=2"—2+ 22—+ 22—+ 2L+ 22— z+1
Cs(z)=2"—2z+1
Cu(z)=2"%— 2"+ 28—+ 2t — 2% +1
Cz1(2)2212_211+ZB_ZS+ZGH‘Z4+23_Z+1

Ci(2)=2"%+ 2" -2 — P+ 2 — 2 — 2+ 2+1
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