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Efficient Prefiltering for FIR Digital Filters

Hisakazu KIKUCHI!, Yoshito ABEf, Hiromichi WATANABET
and Takeshi YANAGISAWATT, Members

SUMMARY This paper presents three types of prefiltering
for FIR digital filters to decrease the number of multipliers
required. The first type is based on cyclotomic polynomials. It can
be applied to any types of band-selective filters. The second is a
mirror-image quadratic polynomial to make a passband shaping.
Both types of the prefilters are used with the interpolation tech-
nique, and this improves each primitive characteristic in terms of
the sharp transition. In the prefilter-equalizer design approach,
these prefilterings bring about the reduction of the number of
multipliers required in hardware implementation. The prefiltering
efficiency is demonstrated by a few examples.

1. Introduction

Recently there have been reported a number of
methods for designing FIR digital filters efficiently™~®.
Adams and Willson have presented the prefilter-equal-
izer design approach™®. The overall filter consists of
the multiplierless prefilter cascaded with an amplitude
equalizer. The efficiency of this scheme depends on not
only the chracteristics of prefilters but also the matching
between given specifications and the prefilters used.
Owing to this fact, many kinds of prefilters have been
proposed.

A prototype prefilter has the Recursive Running
Sum (RRS) structure. It is very efficient because it
requires only two adders, regardless of its order. In
addition, the modified Kaiser-Hamming prefiltering is
presented to improve the stopband attenuation. All of
these types of prefilters are very efficient to lowpass and
highpass filters, but it is impossible to apply to bandpass
filters.

An extension to design bandpass filters has been
done, based on the concept of matched filters®. Since the
design concepts differ in the cases of lowpass/highpass
filters and bandpass filters, it is difficult to get a unified
design approach.

Vaidyanathan and Beitman have also proposed the
efficient prefilter based on Dolph-Chebyshev functions®.
Its amplitude response shows the equiripple attenuation
and the prefilter alleviates the approximating burden on
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an equalizer. Yet it seems to give rather complicated
implementations, because the prefilter consists of many
substructures involving a multiplier.

The interpolated FIR filter presented by Neuvo,
Dong, and Mitra® has the completely different origin
from the prefilter-equalizer design. The difference leads
to the distinct design method and the resulting prop-
erties will be also dissimilar. Nevertheless it can
contribute to increase the variety of the class of prefilter-
equalizer structures.

In this paper we are primarily concerned with three
types of prefiltering within the prefilter-equalizer design.
The first type is based on the cyclotomic polynomials. It
essentially requires no multipliers. To improve the
amplitude response around the passband edge, the other
is led from the investigation of zeros of an optimal FIR
filter. Finally the interpolation concept is combined with
those prefilters. By resort to the prefilterings it is pos-
sible to increase the potential of the prefilter-equalizer
design.

2. Preliminaries

In tradition designing digital filters involves two
steps : approximation for a transfer function and reali-
zation of the transfer function. On one hand the approxi-
mation minimizes the approximation error. On the other
hand the realization tends to minimize the hardware
complexity or the computational complexity. Neverthe-
less, it is of course better to implement the digital filter
so that it minimizes the computational complexity as
long as the relevant approximation error stays within a
tolerance limit given in advance.

The fact that these two aspects relates to each
other in a finite wordlength implementation has been
pointed out by several authors™” Y  Adams and
Willson have pointed out as follows: The conventional
approach™ to designing FIR digital filters minimizes
the length of the impulse response, but dose not neces-
sarily minimize the computational complexity. Thus we
have a question which is a better way to implement a
digital filter. There is not yet a unified approach to solve
the question. Instead, at present, the problem in the
prefilter-equalizer design approach is to find a variety of
efficient prefilters.

In the prefilter-equalizer design for FIR digital
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Fig. 1 The RRS structure with length L.

filters, a structure of the prefilters is very simple and
usually has no multipliers. The entire FIR filter consists
of the prefilter cascaded with an equalizer that equalizes
the amplitude response of the prefilter to be matched
with the desired response. It has been demonstrated that
this approach can provide benefits in three areas:
reduced computational complexity, reduced sensitivity
to coefficient quantization, and reduced roundoff noise®.

The prefilter structure in the original design® is of
the Recursive Running Sum (RRS) as shwon in Fig.l.
The RRS is very simple and it requires only two adders,
regardless of its length. The frequency response of an
RRS with length L is given by

P<ej27rf>: SSIIIH(ZZ;{;)) e—jn’f(L—l), (1)
and it looks like a lowpass filter. The first null occurs at
the frequency 1/L.

“Given the stopband edge 7 of a lowpass filter, the
first step of the design procedure starts with the possible
choices of the lengh as an integer slightly less than 1/f.
The second step is to design an amplitude equalizer with
minimum length for each prefilter candidate so that the
product of the prefilter and equalizer frequency response
will meet the overall specifications.

In addition to the basic RRS structure, the cascaded
RRS structure and modified Kaiser-Hamming structure
have been also presented on the basis of the filter sharp-
ening concept®. This approach is very efficient to nar-
row band lowpass/highpass filters. However it is
difficult to apply those prefilters to bandpass/bandstop
filters, because of the lack of suitable prefilter candi-
dates.

3. Prefilters Based on Cyclotomic Polynomials

The RRS with length L has its roots at all of the
equi-spaced points on the unit circle but unity. It is thus
possible to factor the RRS into a product of the
cyclotomic polynomials. To improve the facility of the
RRS and to keep the efficiency on the level as it is, the
RRS structure is extended, based on the cyclotomic
polynomials.

The cyclotomic polynomial Ck(z) arises from a
factorization for the polynomial z¥—1 as a product of
irreducible polynomials with rational coefficients®*®.

ZK_l:;H{ Cu(2), (2)
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Fig. 2 Amplitude response of Cis(z).

where £|K denotes that % is a divisor of K.

There is one Cx(2) for each divisor £ of K, including
k=1 and k=K. The roots of Ci(z) are the primitive
k th roots of unity. The number of such roots is given by
the Euler’s function @(£). @(k) is equal to the number of
positive integers smaller than £ which are prime to 4.
Therefore the degree of Cu(z) is @(k). Ci(z) is defined
by

Ck(z):(i};)[:l (z_e—jZm‘lk), ( 3 )

where (7,£)=1 denotes that ;7 and £ are mutually prime.

The cyclotomic polynomials Ck(z) have a salient
property : If £ has no more than two distinct odd prime
factors, Ci(z) has coefficients from the set {0,1, —1}.
The smallest integer £ with three odd prime factors is £
=105. Remember that even if % is greater than 105, there
are infinitely a great number of cyclotomic polynomials
of which coefficients pertain to 0, 1, and —1. For exam-
ple, see the case for £=128. As long as % is a composite
number without more than two odd prime factors, the
coefficients of the cyclotomic polynomials are 0, 1, and
-1

From Eq.(2), the mathematical form of the RRS
with length L, P(z; L), is now factored as

P(z; L)=]I Cu(2)z™"*. (4)

kR>1

This equivalent decomoposition also requires no multi-
plications. Moreover, this factorization suggests that a
product of appropriate cyclotomic polynomials can be a
prefilter for every types of band-selective filters, if the
appropriate set of cyclotomic polynomials is obtained by
removing unwanted zeros of equi-spaced zeros on the
unit circle.

Unlike the RRS, the amplitude responses of the
cyclotomic polynomials have their peaks at various
frequencies in addition to the special frequencies, 0 and
0.5. For example, Fig.2 shows the amplitude response
of Cis(z). Since the spectra of cyclotomic polynomials
exhibit a variety of shapes, how to wuse those
polynomials is not as easy as the case for the RRS.

Let us now review the design with the cyclotomic
resonators”. In the design, the basic structure consists
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Name Normalized Frequency Deg No. of
Adders
0 o1 0.2 0.3 0. 4 0.5
C | Quamasm———— 1 1
Co ————C 1 1
Gy e — 2 1
C3 2 2
Cg 2 2
Cs ———— ——C— 4 1
Clp ————eC— ~—Qp——— 4 2
Cs ~——— G —— 1} 4
Gy —Clp—— ——— 4 4
Cg i —— ~—Q—— 6 2
Clg —semlw— O 6 2
Cq ~ —— —————Q—— 6 6
Cff ———eeml ————— —~O 6 6
C16 ~o ~O ~O ~O 8 1
Cpy —=Q ~O——— -~ 8 2
Cop ——Qe— O~ ~- O 8 4
Cff ——emQ—— ~0 o~ 3 6
Cgp —=0r ~ ~O——— 8 6
Cn 1% < ~gr—  Or— —ee— 10 10
Cpp Qe G~ ~ < 10 10
C3p ~Or o ~— ~— 12 2
Cop —=Qp— ~Qr O o o —~g— 12 6
Cop GO ~C——r Q o 12 8
Cap ~& Q e Qe 12 8
0 0.1 Q.2 0.3 0. 4 0.5

Fig. 3 Frequency ranges smaller than unity and root locations
. of 24 cyclotomic polynomials.

of an FIR part cascaded with cyclotomic resonators.
The design is conducted so that the resulting spectrum
area of the FIR part may be reduced by successive
multiplication of cyclotomic polynomials to the desired
frequency response. In other words, the cyclotomic
resonator works in place of a principal part of the
desired response. The resonator corresponds to a
prefilter in the prefilter-equalizer scheme.

In addition, the design completes when a number of
almost the same sizes of spectral peaks have come up at
almost everywhere over the response of the FIR part®.
Such a spectrum equivalently means a periodic sequence
of a white noise with a finite interval in the time domain.

For this fact, while the degree of the FIR part
slightly increases, the actual range of coefficients in the
FIR part will decrease. This leads to an easier imple-
mentation in practical uses. Namely, as the response of
a cyclotomic resonator approaches to the desired
response, the burden on an FIR part will be relaxed.

This discussion with emphasis on a spectrum shows
the truth of the following observation : If the spectrum
of a prefilter resembles the desired one as close as
possible; the burden of approximating an equalizer is
most reduced.

By resort to this observation as a guideline, it is
possible to proceed the design using a new family of
prefilters based on the cyclotomic polynomials. If a

cyclotomic polynomial has its roots at the stopband
region of interest rather than the passband region, it is
a candidate for a suitable prefilter. Selection among the
candidates is performed with the aids of computer
graphics and the selecting chart shown in Fig. 3. The
number of cyclotomic polynomials in the figure is lim-
ited in only 24, but every other polynomial is still a
possible candidate for a prefilter. The possibility
depends on individual specifications.

Heavy segments in Fig. 3 represent the frequency
ranges on which the amplitude response of each
cyclotomic polynomial is smaller than unity. The light
dots indicate the root locations. The roots of the
polynomial z*—1 lie on the equi-spaced points on the
unit circle, and its frequency response is as same as a
comb filter. A cyclotomic polynomial is formed from
those roots by removing some of them. Thus the fre-
quency response of a cyclotomic polynomial rises higher
than unity at those removed zeros. The highest peak
takes place at the frequency which is far from the
adjacent zeros pertaining to the polynomial.

A product of appropriate cyclotomic polynomials
will contain the cascaded RRS structure®, and will
provide a useful family of prefilters that is applicable to
all types of band-selective filters.

4. Passhand-Shaping Prefilters

Based on the cyclotomic polynomials, the basic
RRS has been extended to the prefilters for bandpass/
bandstop filters. The frequency response of such a
prefilter contributes to the desired prefiltering at a
certain peak. The shape of the peak is simple and single.
Its roll-off rate is basically controlled over by a single
vacancy of a equi-spaced zero on the unit circle. Hence
it is difficult to make a sharp cut-off.

An optimal linear-phase FIR filter designed by the
computer program“® has some zeros off the unit circle
but within the passband region. If a prefilter has such a
zero, it will improve the cut-off characteristic around
the passband edge. As a bonus, it will relax tight require-
ments for the amplitude equalizer from making a sharp
transition from the passband to the stopband.

The simplest candidate for such a passband shaping
prefilter is a real quadratic polynomial. Its two roots lie
on the real axis with the mirror-image symmetry. When
the root is on the positive real axis, the amplitude
response of the associated polynomial will display the
rising and then falling behavior that is different from a
monotonic decreasing fashion. The rising part will com-
pensate the droop of the RRS and the prefilters based on
the cyclotomic polynomials.

Of course, the quadratic polynomial must not have
any actual multipliers. Otherwise, the efficiency will be
disappeared. The coefficients of the polynomial have
been thus restricted to a sum of two powers of 2. The
quadratic polynomial for the passband shaping must be
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of the form

P2)=1—(2+2")z""+z7%, for M=1. (5)

Empirically, the lower bound for an integer M enough to
give an effective shaping is —5. When one uses this to a
highpass filter, switch over the negative sign of the
second term.

To get more effective shaping prefilters, one can
consider a mirror-image quartic polynomial. Such a
polynomial, however, cannot have the desired symmetry
within rational coefficients. Hence, it is impossible to
implement the real circuit based on it. A very excep-
tional case happens, when the four roots of the
polynomial are on the imaginary axis. The root
configuration for this case is obtained by folding a pair
of the roots of Eq.(5) with respect to the imaginary
axis and then rotating them by z/ 2 radian. The corre-
sponding polynomial can be simply obtained by replac-
ing z in Eq.(5) with —2%

5. Interpolated Prefilters

The primitive prefilters presented in the preceding
sections is efficient to the design of FIR digital filters
except for too wide passband applications. In the
prefilters based on the cyclotomic polynomials, a single
vacancy among the equi-spaced zeros on the unit circle
controls over the transitional characteristic from a
passband to a stopband. If a multipe use of the same
prefilters or a cascaded structure of some different
prefilters are employed, the transitional behavior around
the passband edge tends to be like a straight line. Thus
these schemes are effective to the applications with
narrow passbands but not too narrow transition bands.

The interpolation technique with zero-valued sam-
ples can be used to get a prefilter with more rapid
transitional characteristic. The technique will convert a
primitive prefilter into the interpolated prefilters. The
original idea has come from the interpolated FIR (IFIR)
filters presented by Neuvo et al®®,

An IFIR digital filter consists of a model filter
interpolated by replacing each delay with several delays,
cascaded with an interpolator to suppress the unwanted
replicas of the model filter. The main reason for the
efficiency arises from the two facts as follows. First, a
wide transition band of the model filter can be shortened
by inserting zero-valued samples between the original
impulse response of the model filter. On the other hand,
it is well known that the impulse response duration of an
FIR digital filter is inversely proportional to the transi-
tion band width. Therefore it is sufficient to design the
model filter with a shorter length of impulse response
duration.

The same idea is useful to our primitive prefilters. If
a 1 to N interpolation with N—1 zero-valued samples
each is applied to the primitive prefilter based on the
cyclotomic polynomials, the primitive transition band
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width is decreased by a factor N. The interpolated
prefilter is simply obtained by replacing each delay with
N delays.

The interpolation concept can provide a further
scope to make a great deal of prefilters from some basic
cyclotomic polynomials. The simplest cyclotomic
polynomials are Cx(z) and Cs(z). The common property
among them is that each has only a single zero over the
real frequencies. Although Ci(z) has the same property
as those, it is readily obtainable by the 1 to 2 interpola-
tion for Cu(z). Ci(z) and Cs(z) are complementary to
Cx(2) and Cs(z), respectively. The former behaves like a
highpass filter, and the latter like a lowpass filter. They
are convertible by replacing z with —z, neglecting a
trivial sign.

Suppose each of Cx(z) and Cs(z) as a model filter.
To yield an effective prefilter, one replica of the inter-
polated model filter must resemble the desired filter in
terms of the band width and the position. The band
width criterion specifies the maximum interpolation
factor Nmax in such a way that the interval from the dc
frequency to the null of the model filter can be mapped
into the band width between the center frequency and
the stopband edge. In general, the replicas occur at the
frequencies of integral multiples of 1/Nmax. One of the
replicas should be placed around the center frequency of
the desired filter as close as possible. By using a particu-
lar integer K, if K/Nmax can approximate the center
frequency of interest, Nmax turns out to be the desired
interpolation factor. If K and Nmax have a greatest
common divisor, one can obtain the smaller interpola-
tion factor as the quotient factored away from Nmax.

If K/Nmax cannot approach to the desired center
frequency for any K, choosing an integer N smaller than
Nmax and checking with this integer may be done as
before. The above procedure to get interpolated
prefilters is used with any primitive wide band prefilters.

Remember that we can achieve the same effect
without noticing such an idea, if we understand the
properties of the cyclotomic polynomials themselves. In
fact we have had done so at first. The alternative
method is described below, because it allows us to find
such a primitive prefilter set simultaneously without
using interactive steps.

The essence for the method can be found from Egs.
(2) and (3), by paying attention to which numbers
specify the divisors of K and the integers prime to the
index 4. That is as follows.

At first, let us select a cyclotomic polynomial Cx(z)
that has a root close to the center frequency of a desired
filter. K specifies a set {£|K} of which members are the
divisors of K.

K and Nnax then allow us to choose an integer N
that is a multiple of K and smaller than Npax. Of course
N is preferable to be highly composite. N determines a
set {#|N} that consists of the divisors of N. The
cyclotomic polynomials specified by this set have in total
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N equi-spaced zeros on the unit circle. The roots of
Ck(z) are duplicate for some of those roots, because K
is a divisor of N.

Therefore, if one removes the former set from the
latter, the remaining members will specify a primitive
set of cyclotomic polynomials suitable for attenuating
unwanted replicas. When K is a prime number or its
double, K is suitable for generating a primitive prefilter
set. Otherwise, undesired peaks in the amplitude
response must be attenuated by other polynomials. It is
as same as the case when a single set of cyclotomic
polynomials cannot exceed a sufficient attenuation.
Another set may be found by either methods as de-
scribed before.

It should be noted that there is the possibility to
simplify the primitive set of cyclotomic polynomials as
the interpolator G(z), based on the properties of the
cyclotomic polynomials. One of them summarized by
McClellan and Rader™® is cited as follows: If p is
prime, and if p dose not divide m,

CPM(Z) Cm(z) = Cm(zp)- (6)

Since N is a highly composite number, this property
often finds useful applications in practice.

There are several ways to provide interpolated
prefilters, but how to get the best is beyond our scope at
present.

As for the quadratic shaping prefilters, the behavior
caused by interpolation is as same as the case for
cyclotomic polynomial based prefilters. An interpolation
by a factor N causes the original spectrum to be packed
N times in a back-to-back manner. The interpolation
brings about an /N times reduction of the frequency axis.
Hence, if a 1 to N interpolation by replacing each delay
with N delays is applied to the primitive shaping
polynomial as it follows that

P(zN)=1—Q+2")z ¥+ 2z for —5=M=1
(7)

then it is possible to enhance the changing rate of the
primitive spectrum by a factor N.

6. Design Examples

Two design examples are compared to the conven-

tional optimal FIR digital filters *®, The amplitude -

equalizers have been designed by the computer pro-
gram“® with slight modifications. The design problem
is formulated in the same way as found in Ref.(1).

The first example is a lowpass filter, and the
specifications are listed in Table 1, where the frequency
is normalized by a sampling frequency. To the
specifications, the first type of the prefilters has been
made of a set of the cyclotomic polynomials Ci(z),
Cs(2), C«2), Cs(2), C2), Cis(2). The second prefilter
has been specified by M= —4.

Table 1 Specifications for the examples.

TypPE Banps APPROXIMATION ERROR
P+E Cony.
Ex.1 LPF pass(0.00, 0.021) 0.09 oB 0.10 oB

sTor(0.07, 0.500) -46.2 bpB -46.8 0B

Ex.2 BPF stor(0.000, 0.168) -63.0 oB -59.0 0B
pass(0.189, 0.211) 0.32 bB  0.41 oB
stor(0.232, 0.500) -62.1 bB -59.0 »oB

"P+E"™ AND "CONV." DENOTE THE PREFILTER-EQUALIZER
DESIGN, AND THE CONVENTIONAL OPTIMAL DESIGN,

RESPECTIVELY.'

Figure 4(a) shows the frequency response of the
prefilter. An equiripple design weighted by the prefilter
has produced the amplitude equalizer with length 35, and
the amplitude response is found in Fig.4(b ). As a result,
the overall filter with the prefilter-equalizer design has
the response as shown in Fig.4(c ). The final part of the
Fig. 4(d) illustrates the coefficient quantization effects
with 4-bit fixed point binary representation. Our design
keeps the attenuation level under —40dB. By contrast,
the same quantization causes the significant damage for
the conventional digital filter, as found in Fig.5(b).

Table 2 summarizes the computational complexity
for this design to compare with the conventional opti-
mum FIR digital filter. In the table, prefilter-1 is based
on the cyclotomic polynomials, and prefilter-2 is the
mirror-image quadratic shaping prefilter. The number of
multiplications required in our design is 18. and it
amounts to 2/3 in the conventional design.

In turn, let us take a bandpass filter as the second
example. The specifications listed in Table 1 are as
same as those in Ref.('3). Figure 6 illustrates each part
of our prefilter-equalizer design in parallel to the exam-
ple 1. The computational complexity needed to this case
are also found in Table 2.

The prefilter-1 doubly uses two sets of the
cyclotomic polynomials. One is the cyclotomic
polynomials specified by the divisors of 30 except for
one and five. It should be noted that a special number 30
is the possible upper bound for the interpolation factor
to this example. The other is those specified by the
divisors of 20 also except for one and five. As the
original forms factored with those polynomials require
many additions, they have been converted to the alterna-
tive decimated versions

Ca(Z) CZ(Z3) (8 a)
and
Co(2) Co(2?) (8b)

by using the properties of the cyclotomic polynomials,
before these have been interpolated by replacing each
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™ T Table 2 Comparison on computational complexity.
m 0
© P+E DESieN Conv. Desien
E MoA D M A D
_20.
®
o Ex.1  PREFILTER-1 0o 19 27
=1
* _40 PREFILTER-2 0 3 2
— EQUALIZER 18 34 34
g' TOTAL 18 5 63 21 52 52
< -60
. . . ) Ex.2A PREFILTER-1 0 10 80
0.0 .0.1 0.2 0.3 0. 4 0.5 PREFILTER-2 0 3 10
Normalized Frequency EQUALIZER 0 79 79
TOTAL 40 92 169 61 120 120
o 0 1
o Ex.28 PREFILTER-1 0 19 93
o PREFILTER-2 0 310
—20¢ 1 EQUALIZER 31 60 60
> TOTAL 31 82 163 61 120 120
1
r —act
- M, A, AND D STAND FOR THE NUMBERS OF MULTIPLICA-
g TIONS, ADDITIONS, AND DELAYS, RESPECTIVELY, PER
< _go} ] SAMPLE.
0.0 0.1 ©0.2 0.3 0.4 0.5
Normalized Frequency
m ) 1
-
o o)
. —-20¢1 1
— o
R o
® =]
o I —a0t
3 —
-
- 1 a,
. z
a, -850k
& 60
<L ] . L[l .
0. 0 0.1 0.2 0. 3 0. 4 0.5
1 n 1 - F‘
0.0 o1 0.2 0.3 0. 4 0.5 Normalized requency
Normal ized Frequency
m O 1
m 1 o
=
c
=z " —20¢ 1
1 o
@ o
~ 3
2 ] o —40p
o a
o g
z | < -60 ]
. 1 ‘8 0'4 C. 5 0.0 . 1 0.2 0. 3 0. 4 C. 5
0.0 0.1 0.2 0. ° ° Normalized Frequency
Normalized Frequency
Fig. 4 Example 1. Amplitude responses of (a) the prefilter, Fig. 5 Amplitude responses of the conventional lowpass filter.
(b) the equalizer, (¢) the ideal overall filter, (d) the (a) ideal, (b) degraded by 4-bit coefficient quantiza-

degraded filter with coefficients quantized to 4-bits. tion.
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m m
= ke
= o
o 1 o
o o
2 =]
+ +
o a
=]
< &
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency Normal ized Frequency
m Or
o [as]
=]
oy
"~ —20} i 5
@
el L13]
3 N ~
ro—aob g i 2
a | -
g o
< —60} ] g
I . . . |
0.0 0.1 0.2 0. 3 0.4 0.5 ;
Normalized Frequency 0.0 0. 1 0. 2 0. 3 0. 4 0.5
Normalized Frequency
Fig. 7 Amplitude responses of the conventional bandpass filter.
@ O 1 (a) ideal, (b) degraded by 8-bit coefficient quantiza-
tion.
o
T —20t
o delay with five delays. These two sets of the prefilters
2 require only five additions in total. The prefilter-2 with
—~ —40r 1 M= —3 is interpolated by a factor 5. Figure 6 shows the
o amplitude response of the individual parts and the over-
E —60 all bandpass filter. This implementation is referred to as
MLIAL L e e et
G A R 5o 55 L 04 0. 5 Table 2 shows that the number of multiplication
" Normalized Frequency required in the example 2a is 40 and amounts to 2/3 for
the conventional design. This is one of the improve-
ments gained by the novel design in this paper. Regard-
m of ing finite wordlengh effects, the comparison between
© Fig.6(d) and Fig.7(b) reveals that it is yet hard to find
‘e admissible improvements. The reason why is that a
o —=20r prefilter derived from interpolation accompanies un-
© wanted replicas of a desired passband. Those replicas
* _aol ] cause the production of sharp attenuation, and this
— ’ makes the equalizer design be difficult.
& ‘ As can be seen from the Fig.6(a ), the response has
< -0} 1 two unwanted passbands around the frequencies 0 and
ﬂ AfW\, MI\ . ﬂm ﬂﬂﬂ Aﬂ , hn 0.4, In order to suppress the unwanted replicas, in the
0.0 C. 1 0.z 0.3 0.4 0.5 example 2b, a minor part of the prefilter-1 composed of
Normalized Frequency Ci(z) and Cu(z) is added to the prefilter used in the
Fig. 6 Example 2a. Amplitude responses of (a) the prefilter, example 2a. The' total prefilter response is displayed in
(b) the equalizer, (¢ ) the ideal overall filter, (d) the Fig.8(a).

overall filter degraded by 8-bit coefficient quantization. The number of multiplications required in the
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Fig. 8 Example 2b. Amplitude responses of (a) the improved
prefilter, (b) the equalizer, (¢ ) the ideal overall filter,
(d) the overall filter with coefficients quantized to
8-bits.
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example 2b is 31. It amounts to a half required for the
conventional design. Furthermore, the required number
of additions is decreased by 30% to 82. Figure 8(d)
shows that the degradation by 8-bit coefficient quatiza-
tion is only 2dB over the stopband. No passband degra-
dation is admissible. On the other hand the same quant-
ization has degraded by 14dB the stopband response of
the conventionally designed filter, as shown in Fig.7(b).

7. Concluding Remarks

This paper has presented three types of the
prefiltering for FIR digital filters to decrease the number
of multipliers requried. The first type is based on the
cyclotomic polynomials to give a sufficient attenuation
desired in the stopband. The prefilters on the basis of the
Recursive Running Sum are mathematically equivalent
to the new prefilters. The latter can be applied to every
type of band-selective filters. Thus the new class of
prefilters extends the facility of the prefilter-equalizer
structure.

The second type of the prefilters is the mirror-image
quadratic polynomial with a slightly complicated
coefficient. Yet it dose not require any actual multiplica-
tions. The prefilters contribute the passband shaping
around the passband edge.

Both types of prefilters can be used in conjunction
with the interpolation technique. A 1 to N interpolation
causes the frequency axis to be reduced by a factor N.
Hence, on one hand this increases the primitive roll-off
rate of the first type of the prefilter from a passband to
a stopband. On the other hand, it can afford to improve
the primitive shaping effects of the second type of the
prefilters.

Since the three kinds of prefiltering alleviate the
burden of approximating an amplitude equalizer, the
equalizer requires lower degrees. This fact has reduced
the number of multipliers required in hardware imple-
mentations, when compared to conventional implemen-
tations.

Though omitted in this paper, it is possible to imple-
ment the cyclotomic polynomial based prefilter as the
RRS structure. Such an implementation will more
decrease the required number of additions. This fact is
obvious because of the inherent property of cyclotomic
polynomials. Rather, those variations are suitable for
discussing an architectural problem in LSI implementa-
tions.

One of the reasons is the possibility of oscillation in
an RRS structure by floating point implementation.
Another issue in architectural problems lies in the
pipelinability. In a recursive implementation, the sim-
plest pipelinability with the signaling clock rate is
disappeared. The pipelined processing demands provid-
ing an additional internal clock that is twice the original
signaling rate. Note that both problems dose not arise in
the nonrecursive structures described in this paper.
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Appendix
The explicit formulas of the 24 cyclotomic

polynomials are listed for a practical use.
Ci(z)=z—1

CZ(Z)=Z+1

C4(Z):ZZ+1

Ci(z)=z*+2z+1

Ciz)=2*—z+1

Ce(z)=z'+1

Ci(2)=2z—22+1

Cs(z)=z'+2+22+2z+1
Cuw(z)=z'—2+22—2z+1

Co(z2)=2+2%+1

Ci(z)=2—2+1
CAz)=2+ 2+ 2+ 22+ 22+ z+1
Cu(z)=2"—2"+2*— 22+ 2—z+1
Cle(z)228+1

C24(Z)=Z\8—Z4+1
Co(2)=22— 242" —22+1
Cis(2)=2— 2"+ 22—+ 2—2z+1
Ca(z)=22+2"—2—2*—2+z+1
Cu(2)=z2"+ 2+ 22+ 27+ 25+ 22+ 24+ 22+ 22+ z+1
Cox(2)=2"—2°+ 22— 2"+ 28— 2P+ 2t — 2+ 22— 2+1
Ca(z)=2"—25+1
Cou(z)=2"%— 20+ 22— 2P+ 2t — 22 +1
Ca(z)=2"—2"+2— 2+ 25—+ 22— 241
Ci2)=22+ 21— 22—+ 2 — 2t — 2P+ 2+1
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