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Pipelinable Low-Sensitivity Digital Filters Based on
the Localization of Transmission Zeros

Hisakazu KIKUCHI!, Hiromichi WATANABET, Akinori NISHIHARATt
and Takeshi YANAGISAWATTT, Members

SUMMARY A direct procedure to realize pipelinable low-
sensitivity digital filters is developed only in the z-domain. It is
possible to realize arbitrary digital transfer functions using this
procedure. The key concept for the low-sensitivity property lies
both in the matching concept in doubly-terminated lossless net-
works and in the localization of transmission zeros. The synthesis
procedure is based on successive extractions of transmission zeros
by means of lossless but not always reciprocal transfer scattering
matrices. Since a transfer scattering matrix involves the trans-
mission zeros as its poles, such a matrix is suitable for their
localization. Furthermore a universal first/second-degree section
is derived explicitly.

1. Introduction

Wave digital filters (WDFs) originally presented by
Fettweis”~ ™ enjoy the excellent properties. The main
reason is that they are derived from doubly-terminated
analog filters by means of digital imitation in terms of
voltage waves. Owing to the imitation, on the one hand
the synthesis procedure for a WDF needs an analog
reference filter. On the other hand it is difficult to find a
WDF realization for some class of transfer functions
which are arbitrarily specified in the digital domain.

Indeed, WDF theory introduced the entire body of
classical network structures into linear shift-invariant
digital filters. Yet many classical networks have been
derived by intended disciplines in the context of analog
component technology. For instance, see the case of a
lowpass mid-shunt lossless ladder by Fujisawa®. WDF
theory does not simply answer to what is a suitable
reference filter for a response specified in the digital
domain, and to how a reference filter suitable for digital
implementations should be synthesized. A solution to
these questions will need the sophisticated and compre-
hensive knowledge in classical network theory and
digital technology together with WDF theory.
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The main purpose of this paper is to develop a
direct procedure to realize low-sensitivity digital filters.
The direct procedure is described in terms of z-domain
transfer scattering matrices rather than the s-domain
counterparts. Thus, the synthesis procedure excludes
the bilinear transformation that lays the bridge between
the analog and digital domains. Hence, although the
realized filters may fall into a class of WDFs, one of the
differences lies in the fact that the synthesis procedure is
given only in the z-domain.

Being led from a similar motivation, Vaidyanathan
and Mitra have developed a theory based on the lossless
bounded real (LBR) concept® ®. According to the
theory, a transfer function is realized as a cascade of
lower-degree digital two-ports by successive extraction
of lower-degree LBR sections. An LBR section is
basically extracted from an input function as shown in
Fig.1. The method can also allow us to realize the
transfer function as a cross transfer function, but this
realization is restricted to the case for the transmission
zeros on the unit circle. Although a remedy for arbi-
trary transmission zeros is also described, the price paid
for this costs the disturbance of the structurally-LBR
property.

As to the input transfer function realization,
another synthesis has been recently described by
Watanabe with conventional two-port adaptors®.

The method described in this paper yields a cascade
realization as a so-called cross transfer function by
means of more regular first / second-degree sec-
tions®®-Y,

There are two essential points for low-sensitivity
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Fig. 1 Cross and input transfer functions.
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structures. First, the low-sensitivity property in a pass-
band is a consequence of matching in doubly-terminated
reactance networks in which the termination is
frequency-independent. Thus losslessness is crucial, but
reciprocity that is conserved in other literature is not of
importance.

Second, each transmission zero is realized by a
series or shunt arm in a reactance ladder network. The
independent or local realization of transmission zeros
leads to the stopband immunity of the ladder against
reactive element-value variations. This fact implies
that the localization of transmission zeros is useful for
the low-sensitivity in a stopband. Thus the methods
based on the factorization of a scattering matrix“®-9
cannot attain lower stopband sensitivity.

It should be mentioned that the topology of the
universal section derived in this paper was firstly yet
independently found by Deprettere and Dewilde"”. In
the literature the topology is used for a first-degree
section with complex multiplier coefficients. Their
method is highly mathematical, and the realization
matrices are characterized by orthogonal matrices,
hence the name ‘orthogonal filters¥~%9 By contrast,
the universal section in this paper is applied to any first/
second-degree section with real coefficients. Moreover
the described method is straight-forward, and the ortho-
gonality is not imposed.

Another point of this paper is to provide
pipelinability for the implementation of a given transfer
function without any significant modification to the
given response. By using some arbitrariness in the
transfer scattering matrix formulation, it is possible to
accomplish pipelining. The described method is a direct
procedure to realize an arbitrary digital transfer func-
tion including FIR filters.

2. Transfer Scattering Matrix
A linear time-invariant digital two-port shown in

Fig.2 can be characterized by a transfer scattering
matrix T(z) defined as

Xl(Zﬂ I/Z(Z>

{mz)_"T(z)[Xz(z)} i
where

. _Zf11(Z) l’]z(z)

T(2)= (2) l‘zz(Z)jl . (2)

X, ——> —> Y,
T

Y, < <— X,

Fig. 2 Digital two-port.

For simplicity, the term ‘scattering’ will be henceforth
suppressed for referring to a transfer scattering ma-
trix“?,

A two-port is defined to be lossless, if

Xl(l/Z)X1<Z) + Xz(l/Z) XZ(Z)
=Yi(1/2) Yi(2) + Yo(1/2) Yo(2) (3)

holds® 409 This relation involves no port resis-
tances and is different from the definition in terms of
pseudopower by Fettweis®~®. A port resistance plays
a key role in the wave digital filter theory. However, it
is possible to derive a kind of WDFs without port
resistances, and furthermore it is simpler and natural to
characterize digital signals. Hence the above definition
is employed®®(?,

With a notation defined by J=diag{l, —1}*4-47,
the losslessness imposed by Eq. ( 3) is expressed by the
transfer matrix as

T(2)JT(z)=J (4)
where the subscript « denotes paraconjugation :
T+(2)=T*(1/z%),

where the superscript * denotes transpose conjugation
for matrices and complex conjugation for scalars,
respectively. The property expressed by Eq. (4) is
referred to as J-losslessness after Deprettere and
Dewilde.

If | T(2)|=1, the two-port will be called reciprocal.
Nevertheless, note that all of the transfer matrices in
this paper are lossless but not always reciprocal.

To formulate a synthesis problem of low-sensitivity
digital filters, a proper transfer matrix must be derived
from a given transfer function. A rational digital filter
transfer function H(z) is described by

H(2)=F(2)/G(2) (5)

where without loss of generality F(z) and G(z) are
assumed N th-degree polynomials with respect to z7,
and G(2) is monic, i. e. the leading coefficient is equal to
unity. Actual degrees of F(z) and G(z) may be different
to each other. For instance, if the transfer function is
subject to an all-pole filter or an FIR filter, the numera-
tor or the denominator is a constant, respectively.

The transfer matrix T'(z) for H(z) is constructed

by

T(z)=

G
1 [ (2 (6)

+Ku(2)z7"
F@|K(z) }

+Gy(2)z™V
where K(z) is determined by
Gx(2)G(2)=F«(2)F(2)+ K«(2)K (). (7)

K(z) is thus an Nth or less degree polynomial with
respect to z7!. The losslessness of T'(z) is easily verified
by Eq. (4).

An additional assumption that the magnitude of
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H(z) on the unit circle is equal to or less than unity is
required. This is the condition so that K(z) is obtained
as a real coefficient polynomial. In practice in order to
give the low-sensitivity property, a transfer function
should be normalized such that the maximum of the
magnitude of H(z) is equal to unity on the unit circle.

The sign option in Eq. (6) may be selected arbi-
trarily with the same occurrence. Particularly, if either
the upper or the lower sign is chosen depending on
whether F(z) is a mirror image or an anti-mirror image
polynomial, T(z) is reciprocal.

When the transfer matrix is realized as a digital
two-port, the transfer function appears as

H(Z):l/tn:(Yz/Xol)rz:o. ( 8 )

Thus the input and the output of the digital filter are Xi
and Y, respectively.

It should be noted that the integer N in Eq. (6)
may be arbitrarily increased under preserving the input-
output relation of Eq. (8) unchanged, as long as Eq.
(7) is fulfilled. A specific figure of the integer is in-
dependent of the lossless property. Yet, it is not only
required for realizability (causality) but also of implicit
concern to invisible transmission zeros in single-input
single-output digital filter applications such as repre-
sented by Eq. (8). This fact is exploited for pipeline
processing, and the topic must be deferred until Sect. 6.

3. Cascade Synthesis

The realization problem for the high-degree matrix
of Eq. (6) can be solved by a cascade synthesis of
lossless digital two-ports. In this paper, ‘cascade’ means
the localization of multiplicative factors of a certain
quantity. Namely, each section in a cascade structure
realizes a single factor for the entire body of that
quantity ; any global structure produced by the cascade
interconnection does not affect the local realization of
the factors. If a single-input single-output transfer
function is considered as the above certain quantity, the
term ‘cascade’ merely has a usual sense. It means the
cascade realization with biquadratic cells.

In parallel to the case of reactance ladder filters, the
localization of transmission zeros will contribute the
stopband immunity against parameter variations. On
the other hand the inspection of Eq. ( 6 ) proves that the
numerator of a transfer function, which is the aggrega-
tion of transmission zeros, appears as a common denom-
inator of a transfer matrix. Hence the factorization of
a transfer matrix with respect to its denominator can
lead to the localization of transmission zeros. Therefore
the cascade synthesis based on the transfer matrix
factorization is one of the best approaches for band-
selective filter applications.

Let us assume that the transfer matrix T derived
from a given transfer function is factored into a product
of T, and T, as
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Fig. 3 Cascade realization.
T=T.T.. (9)

The common denominator of T is the numerator of a
transfer function. Specifying a single real factor of the
numerator, T, is defined as a lossless transfer matrix.
Then T, having the remaining factors of the numerator
described by

To=T.'T (10)

will necessarily become a lossless transfer matrix as
well as T and T,. Hence, if the degree of T, becomes
lower than that of T by means of T, whose degree is one
or two, such a decomposition can be repeated until a
constant matrix T,. appears. The termination of the
procedure results in

T= TalTaZ"' TanTbn- (11)

If one can find the realization network for each transfer
matrix factor, a cascade realization is obtained as
shown in Fig. 3.

By the way, the computability of a digital network
requires a special criterion that does not arise in analog
networks. A digital network must have no delay-free
loops. Paying our attention to the feedback loops in Fig.
3, it is found that if every path depicted by an asterisk
has a delay, the cascade realization is computable. It is
thus adequate to incorporate a delay in (1, 2) entry of
each T..

4. Factorization of Transfer Scattering Matrices

To factor the transfer matrix T of Eq. (6) and to
bring about the degree reduction in the remainder
matrix T, this section describes how to extract T, from
T. The extraction is based on the localization of trans-
mission zeros.

4.1 Extraction of Real Transmission Zeros

For a real transmission zero located at z=«, one
can write T, and T, as

_ 1 1+g1z_1 T hz! (12)
T= F1—az™) A +(gi+27Y)
T.— 1 [Gb(z) iKb*(z)Z_N+l:| (13)
T ERR | Kz £ Gl
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where f, g1, and & are unknown real parameters. The
upper or the lower signs in T and 7, can be specified
independently, respectively. The sign in T} is automati-
cally determined by the combination. Although the
form of Eq. (12) does not represent the case for the
transmission zero at infinity, this causes no problems,
because there is only an exceptional class of transfer
functions with a trivial factor of negative powers of z.

The losslessness induced by Eq. (7) claims that T,
satisfies

1+g12=k02+f2(1+(12) (14)
a=—Fa. (15)

The requirement for the degree of T, to reduce to N
—1 imposes an additional condition on the relationship
between T and T,. Since F(z) has a root at z=a, the
function F,(z) defined by

Fo(2)=F(2)/[fQ—az™) (16)

is a polynomial. At the same time G,(2) and K.(2)
which are computed from Eq. (10) as

{Gb(z)}: 1 [ Ge(2) an
K.(2) fl=ez"Nz '~ a) [Kc(z)
where
G2)=(q1+ 2" G(z) — koz 'K () (18 a)
K{(2)=FkG(z)£(Q+az )K(2) (18 b)

must also be polynomials. Hence the condition for the
first-degree reduction becomes

Gl @)= Gex(a)=0 (19a)
Kl@)=Kex(@)=0 (19b)
for &*+1. The condition in the case of &*=1 is
Gla)=G{a)=0 (20 a)
K{a)=K{a)=0 (20b)

where the prime stands for the derivative with respect
to 274

As a matter of fact, there are three unknown
parameters to be determined, while there are six con-

straining equations. Let us define a function P(z) as
P(2)=K(2)/G(2) (21)

then, by inspection of Eq. ( 7), this function is comple-
mentary to the transfer function H(z), and a useful
relationship

1— Ps(a)P(a)=0 (22)

is proved at the transmission zero. By exploiting this,
one can select a set of independent constraints to deter-
mine the unknown parameters.

As an example, for o?=1 it follows that Egs. (19)
yield

atat—ka'P(e)=0
G+ a—kaPx{a)=0
b—(1+ga " )P(a)=0
ko—(1+g1a) P+(2)=0

Taking Eq. (22) into account proves that the first and
second equations are dependent and that the last two
ones are also dependent. Furthermore Eq. (14) can be
obtained by a simple calculation with the last two
equations and Eqs. (22), (15). Thus one gets an indepen-
dent system of three equations that consists of Eq. (15)
and the above first and third equations. Since the system
is linear with respect to f2 ks, and gi, it can be easily
solved.

The solutions to both cases for a*+1 and o’°=1 are
represented as

Pa)—1

. nPT(a'q)j(—l’Z— for @?=F1

" Pap@ )
Pla)Pa)+a for @=1

k=(1—F3)P(a). (24)

The solution for ¢: is Eq. (15) itself. Note that this is a
direct consequence of the losslessness produced by Eq.
(7) and the computability requirement which implies
the lack of the leading coefficient of K(z) in T..

4.2 Extraction of Complex Transmission Zeros

In the parallel way to the case of real transmission
zeros, a second-degree section T, for localizing a com-
plex conjugate pair of transmission zeros located at z=
2 and z* is represented by

_ 1
T.= f(1—22 A —2%z7")

1+ gz '+ Y zl?272
k0+ k}Z_l

+ (k12_1+ kozﬁz)
T (Flalff+ gz ' +277)
(25)

where the unknown parameters are f, gi, b, and A
Unlike Eq. (12), the leading coefficient in the numerator
of (1,1) entry has been already specified by taking
account of the fact in the last paragraph in Subsec. 4.1.
Hence the remaining conditions for losslessness are of
the forms

1+ g2+ flaol'= R+ ki + {1+ (20 + 20%)* +| 20| ‘]
(26 a)
a1+ 2P = kokr— 20+ 2¥) 1+ |2l?). (26 D)
As for the second-degree reduction, let us define
Fu(2)=f(1—-2z")(1—2%z7"). 2n

If the extraction of T, from T causes the desired degree
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reduction, the associated functions F%, Gs, and K, in Ts
computed by Eq. (10) must be polynomials of z7'. In

effect,
Fu(2)=F(2)[F.2) (28)

is a polynomial, since F(z) has zeros at 2 and z*. The
other functions are of the forms

Go(2)= Go[FoFaxez™ (29 a)
Ki(2)=Ke/FaFaxz™ (29 b)
where
Go2)=(f*zl'+ gz +272)G(2)
—(kz '+ oz ) K(2) (30 a)
Klz)=*[—(k+kz")G(2)
+(1+ gz + F2lzlPz DK (2)]. (30b)

If a factor (1—zz7") divides G. and K., its complex
conjugate does the same, since these polynomials are
real. Hence the condition for the second-degree reduc-
tion can be derived as

in the case of |z|=1. The condition in the other case
becomes

GC(ZO) = GC*’(ZO) =0 (32 a)

One can thus solve the simultaneous system of Egs.
(26) and either Eq. (31) or Eq. (32) like the previous
subsection after tedious calculation. However, the solu-
tion, which is outlined in Appendix, brings about a
realization problem : The solution suggests the need of
much more hardware complexity than canonic realiza-
tions, thereby resulting the loss of the structurally-
insensitive property to multiplier coefficient variations.

Nevertheless, provided that the complementary
function P(z) is real at z=2z, a simple solution can be

obtained. Eqgs.(A+4) and (A+7) in Appendix then
reduce to
% for |z|*1
fi= (33)
P’(20)[P(z0) for lzo=1
P(20) [P(20)+220/]20]
g=—1+ Y220+ 20*)/(1+|2]%) (34)
b=(1— 5 P(z) (35)
bv=— ko z0+ 2%) [ (1+|2/%). (36)

Therefore, the realization problem caused by complex
P(z) can be removed by introducing a preamble so that
the operation makes a new complementary function be
real. When P(z) in issue is complex, the extraction
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procedure is divided into the following two steps: At
first extract a preamble section to eliminate the imagi-
nary part of the resulting complementary function at the
transmission zero of interest. Then extract the second-
degree section described in this subsection to localize
the transmission zero.

4.3 Preamble for Imaginary Part Elimination

Regarding a pair of transmission zeros z and z*,
consider the following operation such that it decom-
poses T with complex P(z) into a product of a pream-
ble section T and the residual T, with real Ps(2). The
operation will be referred to as the preamble for imagi-
nary part elimination in a complementary function, and
is illustrated in Fig. 4.

In formal description, the factorization by Eq. (10)
with T, makes the degree of T: higher than that of T by
that of T,. The degree of a preamble section is prefer-
red as low as possible. By inspection of Eq. (12) and
noting that Eqgs. (14), (15) give k*=(1— (1 —F*a, let
the section be of the form

- 1 1—flazt +EQ—F3)z7 (37
Cme | k- (= Fata)

where

=1 (38)

kP=1. (39)
The selection of the signs in ¢ and £ is independently
arbitrary.

After the same calculation as in Eqgs. (17), (18), one
can formally obtain

ol pa S
Ki(z)| FRA—atz)| g )

where
Ge(2)=(—fra+z2Y)G(2)—(1—f)kz'K(2) (41a)
K(2)=*%[~(1—7)kG(2) +(1—Ffaz ) K(2)]

(41Db)
hence
—> —>
Ta Tb
S < | <

im{P (zﬂ) } #0 Im {Pb (ZO) } =0

Fig. 4 Preamble for imaginary part elimination.
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—(A—FHk+1—Faz HYP(2)
—Flatze —(1— Ok P(z)

is obtained. In order for the imaginary part of P.(z) to
vanish,

Pb(Zo): =

(42)

Im{[—(1—/k+1—Fan")P(2)]
[=Fatzt —(1—FAka P(20)]*} =0
is necessary. Hence f? is determined as

f2=[1_ (P(20) — P(20)*)[(1+|20/) a— (20 + 26*)] T
(20— 20")[(1+]P(20) )k — (P(20) + P(20)*)]

(44)

(43)

The preamble procedure is thus completed, thereby
resulting T» which consists of a triplet of the following
polynomials

F(2)=f(—a+zYF(2) (45a)
Gu(2)=G2) (45b)
Ki(2)=K.z) (45 ¢)

The degree of T, is formally higher by one than that of
T. However the preamble is followed by an extraction
of a pair of complex transmission zeros. Thus the
successive decomposition terminates necessarily.

When T has a transmission zero at z=1 or —1, the
preamble is performed without changing the degree of
Ts. Let a be such a zero, then P*(a)=1 holds from Eq.
(22). Hence it is possible to set

a=a, k=P(a) (46)
and substituting this into Eq. (41) one can verify

Ge(a0) = Gex(a)=0 (47 a)

Koaw)=Kex(a0)=0 (47b)

Therefore it is found that (—a+27!) divides all of the
polynomials Ge, Gexz™ ™10 K, and Kexz™ V. This fact
allows us to define

Fy(z)=F(2) (48)
so that

Go(2)=Ge(2) [f(—a+27") (49 a)

Ko(2)=K(2)/[f(—a+z") (49 b)

become polynomials of at most N th-degree. This fact
means even though the preamble is needed several times
in a synthesis procedure, it is sufficient to increase the
degree by one once for all, unlike in Ref. (8).

4.4 Constant Lossless Section

At the end of the successive extraction described in
the preceding subsections, a given transfer matrix is
factored as in Eq. (11). The termination of the extrac-
tion results in a constant lossless transfer matrix

11 Tk
Tbn=— (50 a)
folpy +1
where
sz+kb2:1. (50 b)

5. Transfer Scattering Matrix Realization

This section describes a universal realization of the
transfer matrices obtained in the last section and the
special alternatives.

5.1 Universal Section

Summarizing the resqlts in the last section, one can
obtain a unified representation

- 1
= r1—aw(a)y

1—-FaW(z) Q—FrLAW(2)/k
1-r"k +(W(2)—FPa)

for all of the transfer matrix factors which are the first
or second degree section to localize transmission zeros,
and the preamble section as well as the constant section.
The individual parameters that characterize each sec-
tion, except /% are summarized as follows.

The first-degree section to extract a real transmis-
sion zero at z=¢ is characterized by

k=P(a) (52 a)
W(z)=z"". (52 b)

The second-degree section for a pair of complex trans-
mission zero at 2=z and the conjugate is characterized
by

(51)

k=P(z) (53 a)
a=—|zl? (53b)
W(z)=z"*(B+z1)/1+8zY (53¢)
B=—(2+2*)/(1+|zl. (53d)

It may be worth noting that Eq. (53 ¢) is a special case
of the lowpass-bandpass frequency transformation®®.
For the preamble section,

a=m (54 a)
k=P(a) (54 b)
W(z)=z"! (54 c)

where g is either naturally specified by a transmission
zero at 1 or —1, or arbitrarily selected as 1 or —1. Inthe
former case no degree increment happens, unlike the
latter. For both cases the magnitude of both @ and % is
unity.

The constant lossless section is automatically
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appears as the result of the preceding factorizations.
Thus it contains no parameters to be specified. The
parameterization

W(z)=1, a=0,

k=1/ks, f=fo (55)

is merely the convenience to fit the unified representa-
tion.

This preliminary review paves the way to the reali-
zation of a transfer matrix in Eq. (51). In the notation
used in this paper, as is shown in Fig. 2, a transfer
matrix is lack of the direct correspondence between its
entry and the actual signal flow. By contrast, a scatter-
ing matrix defined by

Yi(2)] Xi(2)
{mz)_ _S(Z>[Xz<z>] 0
where
[s1(2)  s12(2)
S(Z)_ _521(2) Szz(z):| (57)

is capable of representing the actual signal flow. Hence
the scattering matrix representation is convenient to
find the realization of Eq. (51).

Through the algebraic formula

|:121/l‘11 ’T|/t11]
1/th —ta/tn

(58)

the transfer matrix T, is converted into the correspond-
ing scattering matrix S, as

1
Sa= 1—FaW(z)
{ A=k (= at W) } o
fA—aW(2)) FA—F )W (2)/k]

By careful inspection in conjunction with step-by-step
decompositions, S, can be factored as

S_F/f OW o] 1 {1 —fz}
1o 1llo 1|1V _uw 1

. . (60)
1 W0 Fr/kjo 1

Substituting this into Eq. (56) and rearranging the result
give

Y [ ) G Y
W 1l v | 1 wlFex

This relationship leads to the final expression
(&) =(X)— fAla(£ k7 X2) + Yo (62 a)
Yz:(le)— W[(ik‘le)-i-a'(fk‘l Yl)] (62 b)

Figure 5 is drawn with this expression. It is a unified
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Fig. 6 Realization of the second-degree delay function block
by a two-port adaptor.

realization of the transfer matrix in Eq. (51).

Two multipliers inside the dashed box in the figure
can be removed by the cutset scaling technique®. This
is because the scaling is equivalent to convert Eq. (11)
into

T=(ATar)~ (s Tan) Ton S (1/£) (63)

where each f; is the parameter f associated with T..

The topology of the signal flow graph outside the
dashed box is presented in Ref. (14). However, the
realization principles in the literature and in the paper
are different. Furthermore, the topology is used for a
complex first-degree section in the literature, but Fig. 5
is applied to any first/second-degree section with real
multiplier coefficients.

In the cascade realization as shown in Fig. 3, two
multipliers £1/& and £ in both sides on the bottom edge
may be combined between successive two sections,
thereby reducing to a single multiplier.

In practical applications of digital filters most of the
transmission zeros lie on the unit circle. In this case
both ¢ and £ become either 1 or —1, and the four
multipliers shaded in Fig.5 thus reduce to simple con-
necting wires which may be accompanied with an inver-
ter. The general form of reciprocal lossless bounded-
real sections™® falls into this special class.

The delay function block W(z) in the second-degree
section may be realized with one multiplier and two
adders, as was done in Refs. (10), (11). For less sensitiv-
ity, however the best realization of this block is to rely
on the two-port adaptor® shown in Fig.6. The two-
port adaptor consists of one multiplier and three adders.
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Fig. 8 Lattice realization of the first-degree section for the
transmission zero at z=0.

The detailed structures with six variations are found in
Ref. (20).

5.2 Three Special Cases

At first, the constant lossless section described by
Eq. (50) is redrawn as Fig.7, based on its scattering
matrix representation. In digital filter applications,
since X>=0, the two multipliers are of no need, hence
two adders reduce to interconnection wires.

The effect of the cutset scaling as represented by
Eq. (63) appears in f» in the upper edge. As a result the
effective f» denoted by f»s takes the form

fos=fol 1L fi=H (o) (64)

where the last relation is verified by the construction of
the original transfer matrix and by the factorization
procedure itself. This is useful to ascertain the accuracy
in numerical computation in practice.

Secondly, an alternative realization of the first-
degree section for the transmission zero at z=0 is of
quite importance. Setting a=0 in Eqgs. (22), (23) and
(52 a) gives

FA=1—P+X0) (65 a)
k=1/Px(0). (65 b)

Exploiting these in Eq. (62), the lattice realization is
obtained as shown in Fig.8. The network outside the
dashed box 1is identical to the Gray-Markel lattice struc-

ture® for all-pole digital filters.

Thirdly, a pair of mirror image transmission zeros
on the real axis can be extracted at once in a similar
way as for the complex transmission zeros. Denoting
the real pair as & and 1/m, if P*(a)=1, the parameters
for the desired extraction are summarized as

=P @) P(a)+ 2 (662)
a=-1 (66 b)
k=P(a) (66 ¢)
W(2) =2 (B+2"1)/(1+8z") (66 d)
B=—(a+1/m)/2. (66 €)

When P*a)=+1, another preamble specified by
F=(a+ a)(P(aw) — k)/ 2(aP(c0) — aok) (67 a)
=1, k=1, W(z )=z (67b)

is required to transform the magnitude into unity, before
extracting the second-degree section parameterized by
Eq. (66).

6. Pipeline Processing and Other Topics
6.1 Pipelinable Cascade Realization

Pipelinability is a desirable feature in modern digi-
tal signal processing®“?, A high throughput rate is
achieved by pipeline processing in which consecutive
operations in a proper precedence relation are concur-
rently processed. Hence pipeline processing requires
hardware elements for concurrent processing, buffers to
block the direct propagation of signals, and the
pipelinability in computation algorithms.

The cascade realizations described in the preceding
sections are not pipelinable. As can be seen from Fig. 3,
the global structure posesses a critical path which tra-
verses all the constituent sections.

The critical path can be shortened, if the filter has
transmission zeros at z=0. Because such a zero makes
the parameter « in Fig. 5 be zero, and this eliminates the
direct backward-signal propagation. Although this is
merely a rare case, the fact suggests a way to introduce
the pipelinability.

According to the last paragraph in Sect. 2, a given
transfer function can be embedded into the lossless
transfer matrix in conjunction with an integer N. N is
arbitrary, in so far as it exceeds or equals the lower
bound imposed by causality. Even though the integer is
increased, the transmission from the input X; to the
output Y, remains unchanged. The increase in N pro-
duces a multiple pole at z=0 in the transfer matrix.
The pole is a multiple transmission zero of the corre-
sponding two-port, but is invisible in the transfer func-
tion of interest.



KIKUCHI et al:

Ta1 a2 bn

«— 5 k—Pe— f— ]

1

Fig. 10 Lattice realization of the first-degree section for the
infinite transmission zero.

The above discussion leads to the way for pipelining
as follows :

1) On the transfer function embedding into a trans-
fer matrix, N is increased by the number of real
coefficient factors in the numerator F(z).

2) The synthesis procedure is conducted by the
alternate localization rule in such a way that every
section to localize a set of original transmission zeros
off the origin is followed by a pipeline section which
localizes an invisible transmission zero at z=0.

The pipeline section has the structure shown in Fig.
8. The resulting pipelinable cascade realization is sche-
matically depicted in Fig.9. One can see that every
reflection signal at the junction between a section and
the following section is buffered by a delay element.
The absence of the direct propagation of those reflection
signals means a shorter critical path. This scheme will
be referred to as reflection-delayed pipelining.

Similarly, the other pipelining called as
transmission-delayed pipelining can be introduced on the
basis of localizing a multiple transmission zeros at
infinity. This pipeline brings about constant delay in the
input-output response, and the added transmission zeros
explicitly appears in the transfer function.

The pipeline section based on the infinite transmis-
sion zero is described by the transfer matrix

1 1 kz?
Ta"fz—-l k z_] (68)
where two parameters f and £ are specified by Eq. (65),

which pertains to the case for the transmission zero at z
=0. The realization structure is drawn in Fig. 10.
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6.2 Coefficient Sensitivity

The digital filters designed by the described proce-
dure display good coefficient sensitivity properties, as
was intended. At present the discussion on the
coefficient sensitivity in passband is well summarized in
Ref. (4). It is thus omitted in this paper except
mentioning the stopband sensitivity.

As for the accuracy in positioning transmission
zeros, the transfer matrix based realization is approxi-
mately as same as the cascade realization with biqua-
dratic cells. The former is superior than scattering
matrix based realizations®®"®. This is due to the locali-
zation of transmission zeros. Such an interpretation is
a lesson of experience in the filter theory and is also
stated in Refs. (15), (23).

6.3 FIR Digital Filters

There are no significant differences between FIR
and IIR digital filters with respect to the realizability
requirements. A slight difference lies in the fact that an
FIR filter has a multiple pole at z=0. Therefore there
are no obstacles to prevent from synthesizing FIR filters
by the proposed method.

The resulting strucures, however, posesses no prac-
tical advantages: they dissipate much more multiplica-
tions and additions than those required for the realiza-
tions with FIR lattice sections® (9@

It is worth noting that the cascade realization with
the nonrecursive lattice sections is obtained by the
method based on scattering matrix factorization as a
special case. This corresponds with the special case for
the transfer matrix counterpart described in subsect.
5.2, which is particulary useful for all-pole digital filters.

7. Concluding Remarks

A direct method to synthesize a low-sensitivity
digital filter from an arbitrary digital transfer function
has been described only in the z-domain. The procedure
is based on the localization of transmission zeros.
Pipeline processing is derived by utilizing a fact that the
localization concept permits to incorporate additional
but insignificant transmission zeros into the two-port
transmission scheme.

After a mathematical expression is found for realiz-
ing a transfer function, the realization problem requires
additional work, as was worked out in Sect. 5.

Only one design example is included in Appendix 2
because of the page limit. Others have been presented in
Refs. (10), (11), (25).

While there is arbitrariness in the order of localiz-
ing transmission zeros, on the other hand the order may
affect the complexity in digital filter implementations.
This is left as an open problem.
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Appendix 1

The calculation of the parameters for the second-
degree extraction is outlined. Since a complex transmis-
sion zero 2=z is a root of F(z)=0,

P(z)P(20)=1 (A-1)

is obtained from Egs. (7), (21).

In particular, in the case of |z|=1, differentiating
Eq. ( 7) with respect to z7* and evaluating it at z=2 as
well as noting z=1/z* result in

P’(20) [z0P(20)=(P"(20) 2P (20))*. (A-2)
Hence defining
u="P'(2)/z0P(20), (A+3)

w is real.
For the complex pair which is off the unit circle, Eq.
(31) is rewritten as

Azl + 1207 + 272 = (ko™ + kozo %) P(20)
Flalt+ grao+ 20*=(krzo+ kozo) P+(20)

kot kize ' =14 g1z + 1*|20%207%) P 20)
kot kizo=(1+ 120+ *|20*20%) P(20).

By using Eq. (A-1), one can select the first and second
equations as independent expressions. Thus splitting
them into real and imaginary parts and denoting P(z)=
oe’® yield a linear system of four equations. The solu-
tion is expressed by
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Fig. A<l Amplitude response of a 7th-order lowpass filter with
stepwise ripples.

Fi=[+**—1)%sin’A— ¢¥»?—1)%sinp /4
a=r[r¥c*—1)(»*— 6)sin A sin 22
+ 64 (#2—1)(»*—1)sin ¢ sin(¢p—A)]/4
bi=ro(r*—1)sin A[27%(1— 6®)cos A sin(¢— 1)
—(7*+1)(r*—0sin ¢]/4
ko=r*c(r*—1)sin A[(#»*—1)(¢*+1)cos A sin ¢
—(7r*+1)(c*—1)sin A cos ¢]/4

(A-4)

where
A=} (*— 0*)’sin’A— o*(»*—1)’sin’(¢— )] (A-5)
2=re’ (A-6)

In a similar way, Eq. (32) can be solved as

Fi=(y* sin*A—sin’*¢) /4

g=2[sin ¢ sin(p—A)— p{ p+1)sin?A cos A} /4

b= —2 sin Al ¢ cos(¢— A)sin A+sin ¢1/4

ko=2 sin A cos ¢ sin A+sin ¢ cos A)/4

(A7)

where

A=(u+1)’sin*A—sin®(¢— 1) (A-8)
with an additional attention such that # in Eq. (A+3) is

real.

Appendix 2

A T7th-order lowpass filter with stepwise ripples®
has been synthesized by the described procedure. The
transfer function was designed by the algorithm given in
Ref. (26), and its amplitude response is shown by the
solid lines in Fig. A+1. The dotted lines show the ampli-
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Table A+1 Parameters for the design example.
Section Alpha Beta - £42 kg 1/kq

1 -1 .171875 1 1
2 -1 .203125 .28125 -1 -1
3 -1 .234375 1 1
4 -1 -.171875 .46875 -1 -1
5 -1 .375 1 1
6 -1 -.078125 .40625 -1 -1
7 -1 .34375 1 1
8 kb=—.625 fb:.0146484375

tude response degraded by the coefficient quantization in
floating binary with 4-bit mantissa. The corresponding
parameters are listed in Table A-1. Note that, under the
same condition, the conventional biquadratic cascade
realization resulted in oscillation, thereby demonstrat-
ing the effectiveness of the procedure described in this

paper.
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